MA22020: Exercise sheet 5

1. Let $\lambda \in \mathbb{F}$ and define $J(\lambda, n) \in M_n(\mathbb{F})$ by

$$J(\lambda, n) = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ & \ddots & \ddots & \ddots & \vdots \\ & & \ddots & \ddots & 0 \\ & & & \ddots & 1 \\ 0 & & & & \lambda \end{pmatrix}.$$

Set $J_n := J(0,n)$.

Prove:

- (a) ker $J_n^k = \text{span}\{e_1, \dots, e_k\}$.
- (b) im $J_n^k = \text{span}\{e_1, \dots, e_{n-k}\}$.
- (c) $m_{J(\lambda,n)} = \pm \Delta_{J(\lambda,n)} = (x \lambda)^n$.
- (d) λ is the only eigenvalue of $J(\lambda, n)$ and $E_{J(\lambda,n)}(\lambda) = \operatorname{span}\{e_1\}$, $G_{J(\lambda,n)}(\lambda) = \mathbb{F}^n$.
- 2. Let v_1, \ldots, v_n be a basis for a vector space and $\phi \in L(V)$. Show that the following are equivalent:
 - (1) $\phi(v_1) = 0$ and $\phi(v_i) = v_{i-1}$, for $2 \le i \le n$.
 - (2) $v_i = \phi^{n-i}(v_n)$ and $\phi^n(v_n) = 0$.
- 3. Let $\phi \in L(V)$ be a nilpotent linear operator on a finite-dimensional vector space V with Jordan normal form $J_{n_1} \oplus \cdots \oplus J_{n_k}$. Show that

$$\#\{i \mid n_i = s\} = 2\dim \ker \phi^s - \dim \ker \phi^{s-1} - \dim \ker \phi^{s+1}.$$

- 4. Let φ ∈ L(V) be a nilpotent linear operator on a finite-dimensional vector space V with Jordan normal form J_{n1} ⊕ · · · ⊕ J_{nk}.
 Use question 3 on sheet 4 to show that m_φ = x^s where s = max{n₁,...,n_k}.
- 5. Let $\phi \in L(V)$ be a linear operator on a finite-dimensional complex vector space V with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. Show that ϕ is diagonalisable if and only if $m_{\phi} = \prod_{i=1}^k (x - \lambda_i)$.
- 6. Let $\phi = \phi_A \in L(\mathbb{C}^3)$ where A is given by

$$\begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

Find the JNF and a Jordan basis for ϕ . (You have studied ϕ before in question 4 of sheet 4.)

7. Let $\phi = \phi_A \in L(\mathbb{C}^3)$ where

$$\begin{pmatrix} 0 & 1 & -1 \\ -10 & -2 & 5 \\ -6 & 2 & 1 \end{pmatrix}.$$

Find the JNF and a Jordan basis for ϕ .

(You have studied ϕ before in question 6 of sheet 4.)

MA22020: Exercise sheet 5—Solutions

- 1. Note that $\phi_{J_n}(x) = (x_2, \dots, x_n, 0)$ so that $\phi_{J_n}^k(x) = (x_{k+1}, \dots, x_n, 0, \dots, 0)$, k < n and $\phi_{J_n}^n=0 \ .$
 - (a) It is clear from the above that $\ker J_n^k = \{x \in \mathbb{F}^n \mid x_{k+1} = \cdots = x_n = 0\} =$ $span\{e_1, ..., e_k\}$.
 - (b) Similarly, im $J_n^k = \{y \in \mathbb{F}^n \mid y_{n-k+1} = \cdots = y_n = 0\} = \operatorname{span}\{e_1, \dots, e_{n-k}\}$.
 - (c) $J(\lambda,n)$ is upper triangular so that $\Delta_{J(\lambda,n)} = (\lambda x)^n$. Therefore $m_{J(\lambda,n)} =$ $(x - \lambda)^s$, for some $s \le n$. However $(J(\lambda, n) - \lambda I_n)^k = J_n^k \ne 0$, for k < n, so that $m_{J(\lambda,n)} = (x - \lambda)^n$.
 - (d) Finally, it is clear that λ is the only eigenvalue and the eigenspace is ker $(J(\lambda, n) \lambda I_n) = \ker J_n = \operatorname{span}\{e_1\}$ by part (a). Similarly, $G_{J(\lambda,n)}(\lambda) = \ker J_n^n = \mathbb{F}^n$.
- 2. Assume (1). Then $v_{n-1} = \phi(v_n)$ and induction gives $v_i = \phi^{n-i}(v_n)$. In particular, $v_1 = \phi^{n-1}(v_n)$ so that $\phi(v_1)$ gives $\phi^n(v_n) = 0$. This establishes (2). Assume (2). Then $0 = \phi^n(v_n) = \phi(\phi^{n-1}(v_n)) = \phi(v_1)$. Moreover $\phi(v_i) = \phi(\phi^{n-i}(v_n)) = \phi(\phi^{n-i}(v_n)) = \phi(\phi^{n-i}(v_n))$ $\phi^{n-(i-1)}(v_n) = v_{i-1}$, for $2 \le i \le n$. Thus we have (1).
- 3. From lectures, we know that, for $s \ge 1$,

$$\#\{i \mid n_i \ge s\} = \dim \ker \phi^s - \dim \ker \phi^{s-1}.$$

Now

$$\begin{aligned} \#\{i \mid n_i = s\} &= \#\{i \mid n_i \ge s\} - \#\{i \mid n_i \ge s+1\} \\ &= \dim \ker \phi^s - \dim \ker \phi^{s-1} - (\dim \ker \phi^{s+1} - \dim \ker \phi^s) \\ &= 2\dim \ker \phi^s - \dim \ker \phi^{s-1} - \dim \ker \phi^{s+1}. \end{aligned}$$

- 4. We follow the hint which tells us that when $A = A_1 \oplus \cdots \oplus A_k$, m_A is the smallest monic polynomial divided by each m_{A_i} . In the case at hand, with $A = J_{n_1} \oplus \cdots \oplus J_{n_k}$, we know from question 1 that $m_{J_{n_k}} =$ x^{n_i} . Thus m_A is the monic polynomial of smallest degree divided by each x^{n_i} which is x^s , for $s = \max\{n_1, \ldots, n_k\}$.
- 5. Let $p = \prod_{i=1}^{k} (x \lambda_i) \in \mathbb{C}[x]$. If ϕ is diagonalisable then $p(\phi) = 0$ since $\phi - \lambda_i \operatorname{id}_V = 0$ on $E_{\phi}(\lambda_i)$ and V is the direct sum of these eigenspaces. Conversely, if $m_{\phi} = \prod_{i=1}^{k} (x - \lambda_i)$, a result from lectures tells us that all Jordan blocks in the Jordan normal form of ϕ have size 1. Otherwise said, the JNF is diagonal and the Jordan basis is an eigenbasis. So ϕ is diagonalisable.
- 6. From sheet 4, we have that $m_{\phi} = x^2(x-5)$ so that the JNF is $J(0,2) \oplus J(5,1)$. A Jordan basis for $G_{\phi}(5)$ is any non-zero eigenvector with eigenvalue 5. We know from sheet 4 that (0,0,1) is such a vector.

For $G_{\phi}(0)$, a Jordan basis is $\phi(v), v$ with $\phi^2(v) = 0$. As usual, work backwards from

 $w \in \ker \phi$: take w = (0, 1, 0) and solve

$$A\mathbf{v} = \begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

to get v = (1/4,0,0) , for example. Thus, a Jordan basis is given by (0,1,0), (1/4,0,0), (0,0,1) .

7. From question 6 of sheet 4, we know that $m_{\phi} = (x-3)(x+2)^2$ so that the JNF of ϕ must be $J(3,1) \oplus J(-2,2)$. A Jordan basis of $G_{\phi}(3) = E_{\phi}(3)$ is an arbitrary basis and one is given by (0,1,1) as we found out in question 3 of sheet 4. For $G_{\phi}(-2)$, we want $(\phi + 2 \operatorname{id}_{\mathbb{C}^3})(v), v$ with $(\phi + 2 \operatorname{id}_{\mathbb{C}^3})^2(v) = 0$ so work backwards from an eigenvector w with eigenvalue -2 and then solve $(A + 2I_3)\mathbf{v} = \mathbf{w}$ to get v. We know from sheet 4 that we can take w = (1,0,2) and then

$$(A+2I_3)\mathbf{V} = \begin{pmatrix} 2 & 1 & -1 \\ -10 & 0 & 5 \\ -6 & 2 & 3 \end{pmatrix} \mathbf{V} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

is clearly solved by (0,1,0). Our Jordan basis is therefore (0,1,1), (1,0,2), (0,1,0).