MA22020: Exercise sheet 5

1. Let $\lambda \in \mathbb{F}$ and define $J(\lambda, n) \in M_n(\mathbb{F})$ by

$$
J(\lambda, n) = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ & \ddots & \ddots & \ddots & \vdots \\ & & \ddots & \ddots & 0 \\ & & & \ddots & 1 \\ 0 & & & & \lambda \end{pmatrix}.
$$

Set $J_n := J(0, n)$. Prove:

- (a) ker $J_n^k = \textsf{span}\{e_1,\ldots,e_k\}$.
- (b) $\textsf{im }J_n^k=\textsf{span}\{e_1,\ldots,e_{n-k}\}$.
- (c) $m_{J(\lambda,n)} = \pm \Delta_{J(\lambda,n)} = (x \lambda)^n$.
- (d) λ is the only eigenvalue of $J(\lambda,n)$ and $E_{J(\lambda,n)}(\lambda) = {\sf span}\{e_1\}$, $G_{J(\lambda,n)}(\lambda) =$ \mathbb{F}^n .
- 2. Let v_1, \ldots, v_n be a basis for a vector space and $\phi \in L(V)$. Show that the following are equivalent:
	- (1) $\phi(v_1) = 0$ and $\phi(v_i) = v_{i-1}$, for $2 \le i \le n$.

(2)
$$
v_i = \phi^{n-i}(v_n)
$$
 and $\phi^n(v_n) = 0$.

3. Let $\phi \in L(V)$ be a nilpotent linear operator on a finite-dimensional vector space $\,V\,$ with Jordan normal form $\,J_{n_1}\oplus\cdots\oplus J_{n_k}$. Show that

$$
\#\{i \mid n_i = s\} = 2 \dim \ker \phi^s - \dim \ker \phi^{s-1} - \dim \ker \phi^{s+1}.
$$

- 4. Let $\phi \in L(V)$ be a nilpotent linear operator on a finite-dimensional vector space $\,V\,$ with Jordan normal form $\,J_{n_1}\oplus\cdots\oplus J_{n_k}$. Use question 3 on sheet 4 to show that $m_{\phi}=x^s$ where $s=\max\{n_1,\ldots,n_k\}$.
- 5. Let $\phi \in L(V)$ be a linear operator on a finite-dimensional complex vector space V with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. Show that ϕ is diagonalisable if and only if $m_\phi = \prod_{i=1}^k (x - \lambda_i)$.
- 6. Let $\phi = \phi_A \in L(\mathbb{C}^3)$ where A is given by

$$
\begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}.
$$

Find the JNF and a Jordan basis for ϕ . (You have studied ϕ before in question 4 of sheet 4.)

7. Let $\phi = \phi_A \in L(\mathbb{C}^3)$ where

$$
\begin{pmatrix} 0 & 1 & -1 \ -10 & -2 & 5 \ -6 & 2 & 1 \end{pmatrix}.
$$

Find the JNF and a Jordan basis for ϕ .

(You have studied ϕ before in question 6 of sheet 4.)

MA22020: Exercise sheet 5—Solutions

- 1. Note that $\phi_{J_n}(x) = (x_2, \ldots, x_n, 0)$ so that $\phi_{J_n}^k(x) = (x_{k+1}, \ldots, x_n, 0, \ldots, 0)$, $k < n$ and $\phi_{J_n}^n=0$.
	- (a) It is clear from the above that ker $J_n^k = \{x \in \mathbb{F}^n \mid x_{k+1} = \cdots = x_n = 0\}$ $span\{e_1,\ldots,e_k\}$.
	- (b) Similarly, $\text{im } J_n^k = \{ y \in \mathbb{F}^n \mid y_{n-k+1} = \cdots = y_n = 0 \} = \text{span}\{e_1, \ldots, e_{n-k}\}.$
	- (c) $J(\lambda,n)$ is upper triangular so that $\Delta_{J(\lambda,n)} = (\lambda-x)^n$. Therefore $m_{J(\lambda,n)} =$ $(x - \lambda)^s$, for some $s \leq n$. However $(J(\lambda, n) - \lambda I_n)^k = J_n^k \neq 0$, for $k < n$, so that $m_{J(\lambda,n)} = (x - \lambda)^n$.
	- (d) Finally, it is clear that λ is the only eigenvalue and the eigenspace is ker($J(\lambda, n)$ − λI_n = ker J_n = span $\{e_1\}$ by part (a). Similarly, $G_{J(\lambda,n)}(\lambda) = \ker J_n^n = \mathbb{F}^n$.
- 2. Assume (1). Then $v_{n-1} = \phi(v_n)$ and induction gives $v_i = \phi^{n-i}(v_n)$. In particular, $v_1 = \phi^{n-1}(v_n)$ so that $\phi(v_1)$ gives $\phi^n(v_n) = 0$. This establishes (2). Assume (2). Then $0 = \phi^n(v_n) = \phi(\phi^{n-1}(v_n)) = \phi(v_1)$. Moreover $\phi(v_i) = \phi(\phi^{n-i}(v_n)) =$ $\phi^{n-(i-1)}(v_n)=v_{i-1}$, for $\,2\le i\le n$. Thus we have (1).
- 3. From lectures, we know that, for $s \geq 1$,

$$
\#\{i \mid n_i \ge s\} = \dim \ker \phi^s - \dim \ker \phi^{s-1}.
$$

Now

$$
\# \{ i \mid n_i = s \} = \# \{ i \mid n_i \ge s \} - \# \{ i \mid n_i \ge s + 1 \}
$$

= dim ker ϕ^s – dim ker ϕ^{s-1} – (dim ker ϕ^{s+1} – dim ker ϕ^s)
= 2 dim ker ϕ^s – dim ker ϕ^{s-1} – dim ker ϕ^{s+1} .

- 4. We follow the hint which tells us that when $A = A_1 \oplus \cdots \oplus A_k$, m_A is the smallest monic polynomial divided by each $\ m_{A_i}$. In the case at hand, with $\,A=J_{n_1}\oplus\dots\oplus J_{n_k}$, we know from question 1 that $\,m_{J_{n_i}}=$ x^{n_i} . Thus $\,m_A\,$ is the monic polynomial of smallest degree divided by each $\,x^{n_i}\,$ which is x^s , for $s = max\{n_1, \ldots, n_k\}$.
- 5. Let $p = \prod_{i=1}^{k} (x \lambda_i) \in \mathbb{C}[x]$. If ϕ is diagonalisable then $p(\phi) = 0$ since $\phi - \lambda_i$ id $_V = 0$ on $E_\phi(\lambda_i)$ and V is the direct sum of these eigenspaces. Conversely, if $m_\phi\,=\,\prod_{i=1}^k(x-\lambda_i)$, a result from lectures tells us that all Jordan blocks in the Jordan normal form of ϕ have size 1. Otherwise said, the JNF is diagonal and the Jordan basis is an eigenbasis. So ϕ is diagonalisable.
- 6. From sheet 4, we have that $m_{\phi} = x^2(x-5)$ so that the JNF is $J(0,2) \oplus J(5,1)$. A Jordan basis for $G_{\phi}(5)$ is any non-zero eigenvector with eigenvalue 5. We know from sheet 4 that $(0, 0, 1)$ is such a vector.

For $G_{\phi}(0)$, a Jordan basis is $\phi(v), v$ with $\phi^2(v) = 0$. As usual, work backwards from

 $w \in \text{ker } \phi$: take $w = (0, 1, 0)$ and solve

$$
A\mathbf{v} = \begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}
$$

to get $v = (1/4, 0, 0)$, for example. Thus, a Jordan basis is given by $(0, 1, 0), (1/4, 0, 0), (0, 0, 1)$.

7. From question 6 of sheet 4, we know that $m_{\phi} = (x-3)(x+2)^2$ so that the JNF of φ must be $J(3,1) \oplus J(-2,2)$. A Jordan basis of $G_{\phi}(3) = E_{\phi}(3)$ is an arbitrary basis and one is given by $(0, 1, 1)$ as we found out in question 3 of sheet 4. For $G_{\phi}(-2)$, we want $(\phi + 2\mathsf{id}_{\mathbb{C}^3})(v), v$ with $(\phi + 2\mathsf{id}_{\mathbb{C}^3})^2(v) = 0$ so work backwards from an eigenvector w with eigenvalue -2 and then solve $(A + 2I_3)\mathbf{v} = \mathbf{w}$ to get v. We know from sheet 4 that we can take $w = (1, 0, 2)$ and then

$$
(A + 2I3)v = \begin{pmatrix} 2 & 1 & -1 \\ -10 & 0 & 5 \\ -6 & 2 & 3 \end{pmatrix} v = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}
$$

is clearly solved by $(0, 1, 0)$. Our Jordan basis is therefore $(0, 1, 1), (1, 0, 2), (0, 1, 0)$.