

MA22020: Exercise sheet 4

Warmup questions

1. Write down matrices $A \in M_n(\mathbb{R})$ of the following forms:
 - (a) $A_1 \oplus A_2 \oplus A_3$ with each $A_i \in M_2(\mathbb{R})$.
 - (b) $A_1 \oplus \cdots \oplus A_5$ with each $A_i \in M_1(\mathbb{R})$.
 - (c) $A \in M_3(\mathbb{R})$ such that A is not of the form $A_1 \oplus \cdots \oplus A_k$ with $k > 1$.
2. Let $V_1, \dots, V_k \leq V$ and $\phi_i \in L(V_i)$, $1 \leq i \leq k$. Suppose that $V = V_1 \oplus \cdots \oplus V_k$ and set $\phi = \phi_1 \oplus \cdots \oplus \phi_k$.
 - (a) If $U_i \leq V_i$, $1 \leq i \leq k$, show that the sum $U_1 + \cdots + U_k$ is direct.
 - (b) Prove that $\text{im } \phi = \text{im } \phi_1 \oplus \cdots \oplus \text{im } \phi_k$.
3. In the situation of Question 2, prove:
 - (a) m_{ϕ_i} divides m_ϕ , for each $1 \leq i \leq k$.
 - (b) If each m_{ϕ_i} divides $p \in \mathbb{F}[x]$, then $p(\phi) = 0$.

Thus m_ϕ is the monic polynomial of smallest degree divided by each m_{ϕ_i} . Otherwise said, m_ϕ is the *least common multiple* of $m_{\phi_1}, \dots, m_{\phi_k}$.
4. Let $\phi = \phi_A \in L(\mathbb{C}^3)$ where A is given by

$$\begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

- (a) Compute the characteristic and minimum polynomials of ϕ .
- (b) Find bases for the eigenspaces and generalised eigenspaces of ϕ .

Homework questions

5. Let $\phi \in L(V)$ be a linear operator on a vector space V .
 Prove that $\text{im } \phi^k \geq \text{im } \phi^{k+1}$, for all $k \in \mathbb{N}$. Moreover, if $\text{im } \phi^k = \text{im } \phi^{k+1}$ then $\text{im } \phi^k = \text{im } \phi^{k+n}$, for all $n \in \mathbb{N}$.
6. Let $\phi = \phi_A \in L(\mathbb{C}^3)$ where A is given by

$$\begin{pmatrix} 0 & 1 & -1 \\ -10 & -2 & 5 \\ -6 & 2 & 1 \end{pmatrix}.$$

- (a) Compute the characteristic and minimum polynomials of ϕ .
- (b) Find bases for the eigenspaces and generalised eigenspaces of ϕ .

Please hand in at 4W level 1 by NOON on Thursday 27th November

MA22020: Exercise sheet 4—Solutions

1. There are a gazillion possibilities.

(a)

$$\begin{pmatrix} 1 & 2 & 0 & 0 & 0 & 0 \\ 2 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 5 & 6 & 0 & 0 \\ 0 & 0 & 7 & 8 & 0 & 0 \\ 0 & 0 & 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \oplus \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \oplus \begin{pmatrix} 9 & 0 \\ 1 & 2 \end{pmatrix}.$$

(b) Any 5×5 diagonal matrix will do:

$$\begin{pmatrix} \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 & 0 \\ 0 & 0 & 0 & \lambda_4 & 0 \\ 0 & 0 & 0 & 0 & \lambda_5 \end{pmatrix} = (\lambda_1) \oplus \cdots \oplus (\lambda_5).$$

(c) Any block matrix with more than one block will have zeros so

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

cannot be written $A_1 \oplus \cdots \oplus A_k$ with $k > 1$.

2. (a) Let $u \in U_1 + \cdots + U_k$ so we can write $u = u_1 + \cdots + u_k$, with $u_i \in U_i \leq V_i$. However, since the sum of the V_i is direct, there is only one way to write u as a sum of elements of the V_i and so, in particular, as a sum of elements of the U_i . Thus the sum of the U_i is direct.

(b) Let $v \in \text{im } \phi$ so that $v = \phi(w)$, for some $w \in V$. Then, writing $w = w_1 + \cdots + w_k$ with each $w_i \in V_i$, we have

$$v = \phi(w) = \phi_1(w_1) + \cdots + \phi_k(w_k) \in \text{im } \phi_1 \oplus \cdots \oplus \text{im } \phi_k.$$

Thus $\text{im } \phi \leq \text{im } \phi_1 \oplus \cdots \oplus \text{im } \phi_k$.

For the converse, let $v \in \text{im } \phi_1 \oplus \cdots \oplus \text{im } \phi_k$ so that $v = \phi_1(w_1) + \cdots + \phi_k(w_k)$ with $w_i \in V_i$, $1 \leq i \leq k$. Since each $\phi_i = \phi|_{V_i}$, this reads

$$v = \phi(w_1) + \cdots + \phi(w_k) = \phi(w_1 + \cdots + w_k) \in \text{im } \phi.$$

Thus $\text{im } \phi_1 \oplus \cdots \oplus \text{im } \phi_k \leq \text{im } \phi$ and we are done.

3. (a) We have that $m_\phi(\phi) = 0$ so that $0 = m_\phi(\phi)|_{V_i} = m_\phi(\phi_i)$. It follows that m_{ϕ_i} divides m_ϕ .

(b) Since m_{ϕ_i} divides p , $p(\phi_i) = 0$ for each i . But then

$$p(\phi) = p(\phi_1) \oplus \cdots \oplus p(\phi_k) = 0$$

so that m_ϕ divides p .

4. (a) Since A is lower triangular, we immediately see that $\Delta_\phi = \Delta_A = x^2(x-5)$. So the only possibilities for $m_\phi = x(x-5)$ and $x^2(x-5)$. However

$$A - 5I_3 = \begin{pmatrix} -5 & 0 & 0 \\ 4 & -5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

so that

$$A(A - 5I_3) = \begin{pmatrix} 0 & 0 & 0 \\ -20 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0.$$

We conclude that $m_\phi = x^2(x - 5)$.

Alternatively, A is block diagonal:

$$A = \begin{pmatrix} 0 & 0 \\ 4 & 0 \end{pmatrix} \oplus (5)$$

and the summands clearly have minimum polynomials x^2 and $x - 5$ respectively. It follows question 3 that $m_\phi = x^2(x - 5)$.

(b) We have $E_\phi(5) = G_\phi(5) = \text{span}\{(0, 0, 1)\}$, $E_\phi(0) = \ker A = \text{span}\{(0, 1, 0)\}$ and finally $G_\phi(0) = \ker A^2 = \text{span}\{(1, 0, 0), (0, 1, 0)\}$ since

$$A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 25 \end{pmatrix}.$$

5. Let $v \in \text{im } \phi^{k+1}$ so that $v = \phi^{k+1}(w)$, for some $w \in V$. Then $v = \phi^k(\phi(w)) \in \text{im } \phi^k$. Thus $\text{im } \phi^k \geq \text{im } \phi^{k+1}$.

Suppose now that $\text{im } \phi^k = \text{im } \phi^{k+1}$. We prove that $\text{im } \phi^k = \text{im } \phi^{k+n}$ by induction on n . We are given that this holds for $n = 1$ so we suppose this holds for some n ($\text{im } \phi^k = \text{im } \phi^{k+n}$) and prove it then holds for $n + 1$. Thus, let $v \in \text{im } \phi^k = \text{im } \phi^{k+1}$ so that $v = \phi(\phi^k(w))$, for some $w \in V$. Then $\phi^k(w) \in \text{im } \phi^k = \text{im } \phi^{k+n}$, by the induction hypothesis, so that $\phi^k(w) = \phi^{k+n}(u)$, some $u \in V$, whence $v = \phi(\phi^{k+n}(u)) = \phi^{k+n+1}(u) \in \text{im } \phi^{k+n+1}$. We conclude that $\text{im } \phi^k \leq \text{im } \phi^{k+n+1}$. The converse inclusion always holds so we have equality. Induction now bakes the cake.

6. (a) We compute the characteristic polynomial: $\Delta_\phi = \Delta_A = -x^3 - x^2 + 8x + 12 = (3 - x)(x + 2)^2$. Consequently, m_ϕ is either $(x - 3)(x + 2)^2$ or $(x - 3)(x + 2)$. We try the latter:

$$A - 3I_3 = \begin{pmatrix} -3 & 1 & -1 \\ -10 & -5 & 5 \\ -6 & 2 & -2 \end{pmatrix} \quad A + 2I_3 = \begin{pmatrix} 2 & 1 & -1 \\ -10 & 0 & 5 \\ -6 & 2 & 3 \end{pmatrix}$$

so that

$$(A - 3I_3)(A + 2I_3) = \begin{pmatrix} -10 & -5 & 5 \\ 0 & 0 & 0 \\ -20 & -10 & 10 \end{pmatrix} \neq 0.$$

Thus $m_\phi = m_A = (x - 3)(x + 2)^2$.

(b) We deduce that $G_\phi(3) = E_\phi(3) = \ker(A - 3I_3)$ while $E_\phi(-2) = \ker(A + 2I_3)$ and $G_\phi(-2) = \ker(A + 2I_3)^2$. We compute these: an eigenvector x with eigenvalue 3 solves

$$\begin{aligned} -3x_1 + x_3 - x_3 &= 0 \\ -2x_1 - x_2 + x_3 &= 0 \end{aligned}$$

which rapidly yields $x_1 = 0$ and $x_2 = x_3$. Thus the 3-eigenspace is spanned by $(0, 1, 1)$. An eigenvector x with eigenvalue 2 solves

$$\begin{aligned} 2x_1 + x_2 - x_3 &= 0 \\ -2x_1 + 0x_2 + x_3 &= 0 \end{aligned}$$

giving $x_2 = 0$ and $2x_1 = x_3$ so the eigenspace is spanned by $(1, 0, 2)$.

Finally,

$$(A + 2I_3)^2 = \begin{pmatrix} 0 & 0 & 0 \\ -50 & 0 & 25 \\ -50 & 0 & 25 \end{pmatrix}$$

with kernel spanned by $(1, 0, 2)$ and $(0, 1, 0)$.

To summarise:

$$\begin{aligned} E_\phi(3) &= G_\phi(3) = \text{span}\{(0, 1, 1)\} \\ E_\phi(-2) &= \text{span}\{(1, 0, 2)\} \\ G_\phi(-2) &= \text{span}\{(1, 0, 2), (0, 1, 0)\}. \end{aligned}$$