
MA22020: Exercise sheet 4

Warmup questions

1. Write down matrices A ∈ Mn(R) of the following forms:
(a) A1 ⊕A2 ⊕A3 with each Ai ∈ M2(R).
(b) A1 ⊕ · · · ⊕A5 with each Ai ∈ M1(R).
(c) A ∈ M3(R) such that A is not of the form A1 ⊕ · · · ⊕Ak with k > 1.

2. Let V1, . . . , Vk ≤ V and φi ∈ L(Vi), 1 ≤ i ≤ k. Suppose that V = V1 ⊕ · · · ⊕ Vk and
set φ = φ1 ⊕ · · · ⊕ φk.
(a) If Ui ≤ Vi, 1 ≤ i ≤ k, show that the sum U1 + · · ·+ Uk is direct.
(b) Prove that imφ = imφ1 ⊕ · · · ⊕ imφk.

3. In the situation of Question 2, prove:
(a) mφi

divides mφ, for each 1 ≤ i ≤ k.
(b) If each mφi

divides p ∈ F[x], then p(φ) = 0.
Thus mφ is the monic polynomial of smallest degree divided by each mφi

. Otherwise
said, mφ is the least common multiple of mφ1 , . . . ,mφk

.

4. Let φ = φA ∈ L(C3) where A is given by0 0 0
4 0 0
0 0 5

 .

(a) Compute the characteristic and minimum polynomials of φ.
(b) Find bases for the eigenspaces and generalised eigenspaces of φ.

Homework questions

5. Let φ ∈ L(V ) be a linear operator on a vector space V .
Prove that imφk ≥ imφk+1, for all k ∈ N. Moreover, if imφk = imφk+1 then
imφk = imφk+n, for all n ∈ N.

6. Let φ = φA ∈ L(C3) where A is given by 0 1 −1
−10 −2 5
−6 2 1

 .

(a) Compute the characteristic and minimum polynomials of φ.
(b) Find bases for the eigenspaces and generalised eigenspaces of φ.
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MA22020: Exercise sheet 4—Solutions

1. There are a gazillion possibilities.
(a) 

1 2 0 0 0 0
2 4 0 0 0 0
0 0 5 6 0 0
0 0 7 8 0 0
0 0 0 0 9 0
0 0 0 0 1 2

 =

(
1 2
3 4

)
⊕
(
5 6
7 8

)
⊕
(
9 0
1 2

)
.

(b) Any 5× 5 diagonal matrix will do:
λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ3 0 0
0 0 0 λ4 0
0 0 0 0 λ5

 = (λ1)⊕ · · · ⊕ (λ5).

(c) Any block matrix with more than one block will have zeros so

A =

1 1 1
1 1 1
1 1 1


cannot be written A1 ⊕ · · · ⊕Ak with k > 1.

2. (a) Let u ∈ U1 + · · · + Uk so we can write u = u1 + · · · + uk, with ui ∈ Ui ≤ Vi. However,
since the sum of the Vi is direct, there is only one way to write u as a sum of elements
of the Vi and so, in particular, as a sum of elements of the Ui. Thus the sum of the Ui is
direct.

(b) Let v ∈ imφ so that v = φ(w), for some w ∈ V . Then, writing w = w1 + · · · + wk with
each wi ∈ Vi, we have

v = φ(w) = φ1(w1) + · · ·+ φk(wk) ∈ imφ1 ⊕ · · · ⊕ imφk.

Thus imφ ≤ imφ1 ⊕ · · · ⊕ imφk.
For the converse, let v ∈ imφ1 ⊕ · · · ⊕ imφk so that v = φ1(w1) + · · · + φk(wk) with
wi ∈ Vi, 1 ≤ i ≤ k. Since each φi = φ|Vi

, this reads

v = φ(w1) + · · ·+ φ(wk) = φ(w1 + · · ·+ wk) ∈ imφ.

Thus imφ1 ⊕ · · · ⊕ imφk ≤ imφ and we are done.

3. (a) We have that mφ(φ) = 0 so that 0 = mφ(φ)|Vi
= mφ(φi). It follows that mφi divides mφ.

(b) Since mφi divides p, p(φi) = 0 for each i. But then

p(φ) = p(φ1)⊕ · · · ⊕ p(φk) = 0

so that mφ divides p.

4. (a) Since A is lower triangular, we immediately see that ∆φ = ∆A = x2(x− 5). So the only
possibilities for mφ = x(x− 5) and x2(x− 5). However

A− 5I3 =

−5 0 0
4 −5 0
0 0 0





so that

A(A− 5I3) =

 0 0 0
−20 0 0

0 0 0

 6= 0.

We conclude that mφ = x2(x− 5).
Alternatively, A is block diagonal:

A =

(
0 0
4 0

)
⊕
(
5
)

and the summands clearly have minimum polynomials x2 and x−5 respectively. It follows
question 3 that mφ = x2(x− 5).

(b) We have Eφ(5) = Gφ(5) = span{(0, 0, 1)}, Eφ(0) = kerA = span{(0, 1, 0)} and finally
Gφ(0) = kerA2 = span{(1, 0, 0), (0, 1, 0)} since

A2 =

0 0 0
0 0 0
0 0 25

 .

5. Let v ∈ imφk+1 so that v = φk+1(w), for some w ∈ V . Then v = φk(φ(w)) ∈ imφk. Thus
imφk ≥ imφk+1.
Suppose now that imφk = imφk+1. We prove that imφk = imφk+n by induction on n. We
are given that this holds for n = 1 so we suppose this holds for some n (imφk = imφk+n)
and prove it then holds for n + 1. Thus, let v ∈ imφk = imφk+1 so that v = φ(φk(w)),
for some w ∈ V . Then φk(w) ∈ imφk = imφk+n, by the induction hypothesis, so that
φk(w) = φk+n(u), some u ∈ V , whence v = φ(φk+n(u)) = φk+n+1(u) ∈ imφk+n+1. We
conclude that imφk ≤ imφk+n+1. The converse inclusion always holds so we have equality.
Induction now bakes the cake.

6. (a) We compute the characteristic polynomial: ∆φ = ∆A = −x3−x2+8x+12 = (3−x)(x+
2)2. Consequently, mφ is either (x− 3)(x+ 2)2 or (x− 3)(x+ 2). We try the latter:

A− 3I3 =

 −3 1 −1
−10 −5 5
−6 2 −2

 A+ 2I3 =

 2 1 −1
−10 0 5
−6 2 3


so that

(A− 3I3)(A+ 2I3) =

−10 −5 5
0 0 0

−20 −10 10

 6= 0.

Thus mφ = mA = (x− 3)(x+ 2)2.
(b) We deduce that Gφ(3) = Eφ(3) = ker(A−3I3) while Eφ(−2) = ker(A+2I3) and Gφ(−2) =

ker(A+ 2I3)
2. We compute these: an eigenvector x with eigenvalue 3 solves

−3x1 + x3 − x3 = 0

−2x1 − x2 + x3 = 0

which rapidly yields x1 = 0 and x2 = x3. Thus the 3-eigenspace is spanned by (0, 1, 1).
An eigenvector x with eigenvalue 2 solves

2x1 + x2 − x3 = 0

−2x1 + 0x2 + x3 = 0

giving x2 = 0 and 2x1 = x3 so the eigenspace is spanned by (1, 0, 2).



Finally,

(A+ 2I3)
2 =

 0 0 0
−50 0 25
−50 0 25


with kernel spanned by (1, 0, 2) and (0, 1, 0).
To summarise:

Eφ(3) = Gφ(3) = span{(0, 1, 1)}
Eφ(−2) = span{(1, 0, 2)}
Gφ(−2) = span{(1, 0, 2), (0, 1, 0)}.


