
MA22020: Exercise sheet 3

Warmup questions

1. Let p, q ∈ R[x] be given by p = x2 − 2x− 3, q = x3 − 2x2 + 2x− 5.
Let A ∈ M2(R) and B ∈ M3(R) be given by

A =

(
1 2
2 1

)
B =

 1 2 1
−2 0 1
2 1 1

 .

Compute p(A), p(B), q(A), q(B).

2. Compute the characteristic polynomials of A and B, from question 1.
What do you notice?

3. Let F = Z2, the field of two elements and let p = x2 + x ∈ F[x].
Show that p(t) = 0, for all t ∈ F.

4. Let φ ∈ L(V ) be an operator on a finite-dimensional vector space over F. Show that
φ is invertible if and only if mφ has non-zero constant term.

Homework questions

5. Compute the minimum polynomial of A ∈ M5(R) given by
0 0 0 0 −3
1 0 0 0 6
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

6. Compute the characteristic and minimum polynomials of

A =

1 −5 −7
1 4 2
0 1 4

 .

Please hand in at 4W level 1 by NOON on Thursday 14th November



MA22020: Exercise sheet 3—Solutions

1. We just compute:

A2 =

(
5 4
4 5

)
, A3 =

(
13 14
14 13

)
so that

p(A) = A2 − 2A− 3I2 =

(
5 4
4 5

)
− 2

(
1 2
2 1

)
− 3

(
1 0
0 1

)
=

(
0 0
0 0

)
q(A) = A3 − 2A2 + 2A− 5I3 =

(
13 14
14 13

)
− 2

(
5 4
4 5

)
+ 2

(
1 2
2 1

)
− 5

(
1 0
0 1

)
=

(
0 10

10 0

)
.

Similarly,

p(B) =

−6 −1 2
4 −6 −3

−2 3 −1

 ,

q(B) =

0 0 0
0 0 0
0 0 0

 .

2. Again, we just compute:

∆A =

∣∣∣∣1− x 2
2 1− x

∣∣∣∣ = (1− x)2 − 4 = x2 − 2x− 3.

Similarly,

∆B =

∣∣∣∣∣∣
1− x 2 1
−2 −x 1
2 1 1− x

∣∣∣∣∣∣ = (1− x)
(
x(x− 1)− 1

)
− 2

(
2(x− 1)− 2

)
+ (−2 + 2x)

= (−x3 + 2x2 − 1)− 4x+ 8 + 2x− 2 = −x3 + 2x2 − 2x+ 5.

We notice that, with p, q as in question 1, p = ∆A and q = −∆B and so, again from question 1,

∆A(A) = ∆B(B) = 0.

This is the Cayley–Hamilton theorem in action.
3. We recall that Z2 = {0,1} with addition and multiplication given by

0 = 0+ 0 = 1+ 1 1 = 0+ 1 = 1+ 0

0 = 00 = 01 = 10 1 = 11.

We immediately conclude that 12 + 1 = 0 = 02 + 0 so that p(t) = 0, for both t ∈ F.
4. φ is invertible if and only if φ is injective if and only if zero is not an eigenvalue if and only

if (thanks to the corollary to the Cayley–Hamilton theorem) zero is not a root of mφ if and
only if mφ has non-zero constant term.

5. Let us compute the first few powers of A:

A2 =


0 0 0 −3 0
0 0 0 6 −3
1 0 0 0 6
0 1 0 0 0
0 0 1 0 0

 A3 =


0 0 −3 0 0
0 0 6 −3 0
0 0 0 6 −3
1 0 0 0 6
0 1 0 0 0

 A4 =


0 −3 0 0 0
0 6 −3 0 0
0 0 6 −3 0
0 0 0 6 −3
1 0 0 0 6



A5 =


−3 0 0 0 −18
6 −3 0 0 36
0 6 −3 0 0
0 0 6 −3 0
0 0 0 6 −3





Stare at the top row to see that there can be no monic polynomial p = a0+ · · ·+xk with k ≤ 4
with p(A) = 0: the −3 on the top row of the leading term would give a00+ · · ·+ak−10−3 = 0.
On the other hand, we readily see that A5 − 6A+ 3I5 = 0 so that mA = x5 − 6x+ 3.

6. We compute the characteristic polynomial of A to be

∆A = −x3 + 9x2 − 27x+ 27 = −(x− 3)3.

We learn from the Cayley–Hamilton theorem that mA = (x− 3)k, for some k with k ≤ 1 ≤ 3.
Clearly k = 1 is out, since A is not diagonal, so we try k = 2:

(A− 3I)2 =

−2 −5 −7
1 1 2
0 1 1

−2 −5 −7
1 1 2
0 1 1

 =

−1 −2 −3
−1 −2 −3
1 2 3

 ,

which is non-zero. This means we must have mA = (x− 3)3.


