\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\TextOrMath }[2]{#2}\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\newcommand {\bz }{\mathbf {0}}\) \(\newcommand {\bo }{\mathbf {1}}\) \(\newcommand {\id }{\operatorname {id}}\) \(\newcommand {\GL }{\operatorname {GL}}\) \(\newcommand {\im }{\operatorname {im}}\) \(\newcommand {\rank }{\operatorname {rank}}\) \(\newcommand {\sol }{\operatorname {sol}}\) \(\newcommand {\ann }{\operatorname {ann}}\) \(\newcommand {\rO }{\operatorname {O}}\) \(\newcommand {\rU }{\operatorname {U}}\) \(\newcommand {\rSU }{\operatorname {SU}}\) \(\newcommand {\ev }{\operatorname {ev}}\) \(\newcommand {\bil }{\operatorname {Bil}}\) \(\newcommand {\rad }{\operatorname {rad}}\) \(\newcommand {\Span }[1]{\operatorname {span}\{#1\}}\) \(\newcommand {\R }{\mathbb {R}}\) \(\newcommand {\C }{\mathbb {C}}\) \(\newcommand {\Z }{\mathbb {Z}}\) \(\newcommand {\F }{\mathbb {F}}\) \(\newcommand {\Q }{\mathbb {Q}}\) \(\newcommand {\N }{\mathbb {N}}\) \(\renewcommand {\P }{\mathbb {P}}\) \(\newcommand {\I }{\mathrm {I}}\) \(\newcommand {\half }{\tfrac 12}\) \(\newcommand {\rel }{\mathrel {\mathrm {rel}}}\) \(\renewcommand {\vec }[3]{(#1_{#2},\dots ,#1_{#3})}\) \(\newcommand {\lst }[3]{#1_{#2},\dots ,#1_{#3}}\) \(\newcommand {\plst }[3]{#1_{#2}+\dots +#1_{#3}}\) \(\newcommand {\oplst }[3]{#1_{#2}\oplus \dots \oplus #1_{#3}}\) \(\newcommand {\pplst }[3]{#1_{#2}\times \dots \times #1_{#3}}\) \(\newcommand {\dlst }[3]{\lst {#1^{*}}{#2}{#3}}\) \(\newcommand {\dlc }[4]{\lc #1{#2^{*}}#3#4}\) \(\newcommand {\hmg }[3]{[#1_{#2},\dots ,#1_{#3}]}\) \(\newcommand {\rng }[2]{#1,\dots ,#2}\) \(\newcommand {\lc }[4]{#1_{#3}#2_{#3}+\dots +#1_{#4}#2_{#4}}\) \(\newcommand {\plus }[2]{#1+\dots +#2}\) \(\newcommand {\set }[1]{\{#1\}}\) \(\newcommand {\abs }[1]{\lvert #1\rvert }\) \(\newcommand {\ip }[1]{\langle #1\rangle }\) \(\newcommand {\norm }[1]{\|#1\|}\) \(\newcommand {\bx }{\mathbf {x}}\) \(\newcommand {\be }{\mathbf {e}}\) \(\newcommand {\bq }{\mathbf {q}}\) \(\newcommand {\bu }{\mathbf {u}}\) \(\newcommand {\by }{\mathbf {y}}\) \(\newcommand {\bv }{\mathbf {v}}\) \(\newcommand {\E }{\mathbb {E}}\) \(\newcommand {\cI }{\mathcal {I}}\) \(\newcommand {\cB }{\mathcal {B}}\) \(\newcommand {\sub }{\subseteq }\) \(\newcommand {\st }{\mathrel {|}}\) \(\newcommand {\bw }[3]{#1\leq #2\leq #3}\) \(\newcommand {\col }[3]{(#1_{#2})_{#2\in #3}}\) \(\newcommand {\supp }{\mathrm {supp}}\) \(\newcommand {\restr }[1]{_{|#1}}\) \(\newcommand {\re }{\operatorname {Re}}\)

MA22020: Exercise sheet 2

    Warmup questions

  • 1. Let \(U_1,U_2,U_3\leq \R ^3\) be the \(1\)-dimensional subspaces spanned by \((1,2,0)\), \((1,1,1)\) and \((2,3,1)\) respectively.

    Which of the following sums are direct?

    • (a) \(U_i+U_j\), for \(1\leq i<j\leq 3\).

    • (b) \(U_1+U_2+U_3\).

  • 2. Let \(V_i\leq V\), for \(\bw 1ik\). Prove the converse of Corollary 2.8: if

    \begin{equation*} \dim \plst {V}1k=\plst {\dim V}1k \end{equation*}

    then the sum \(\plst {V}1k\) is direct.

  • 3. Let \(U\leq V\). Show that congruence modulo \(U\) is an equivalence relation.

  • 4. Let \(U=\Span {(1,-1,0),(0,1,-1)}\leq \R ^{3}\). Determine which, if any, of the following cosets are equal:

    \begin{equation*} (1,2,3)+U,\qquad (3,3,0)+U,\qquad (1,1,1)+U. \end{equation*}

  • 5. Let \(U\leq V\) and \(q:V\to V/U\) the quotient map. Let \(W\) be a complement to \(U\).

    Show that \(q_{|W}:W\to V/U\) is an isomorphism.

    Homework

  • 6. Let \(V\) be a vector space. A linear map \(\pi :V\to V\) is called a projection if \(\pi \circ \pi =\pi \).

    In this case, prove that \(\ker \pi \cap \im \pi =\set {0}\) and deduce that \(V=\ker \pi \oplus \im \pi \).

  • 7. Let \(U,W\leq V\). Define a linear map \(\phi :U\to (U+W)/W\) by \(\phi (u)=u+W\).

    • (a) Use the first isomorphism theorem, applied to \(\phi \), to prove the second isomorphism theorem:

      \begin{equation*} U/(U\cap W)\cong (U+W)/W. \end{equation*}

    • (b) Deduce that, when \(V\) is finite-dimensional,

      \begin{equation*} \dim (U+W)=\dim U+\dim W-\dim (U\cap W). \end{equation*}

Please hand in at 4W level 1 by NOON on Thursday 30th October 2025


MA22020: Exercise sheet 2—Solutions

  • 1.

    • (a) All these sums are direct as each \(U_i\cap U_j=\set 0\).

    • (b) Note that \((2,3,1)=(1,2,0)+(1,1,1)\) and so can be written in two different ways as a sum \(u_1+u_2+u_3\), with each \(u_{i}\in U_{i}\):

      \begin{gather*} (1,2,0)+(1,1,1)+(0,0,0)\\ (0,0,0)+(0,0,0)+(2,3,1). \end{gather*} Thus \(U_1+U_2+U_3\) is not a direct sum.

    This shows us that \(U_i\cap U_j=\set 0\), \(i\neq j\), is not enough to force \(U_1+U_2+U_3\) to be direct.

  • 2. Let \(\cB _i\) be a basis for \(V_i\) and let \(\cB =\lst {\cB }1k\) be the concatenation of these. By Corollary 2.7, it suffices to see that \(\cB \) is a basis for \(\plst {V}1k\). However, \(\cB \) clearly spans and, by hypothesis,

    \begin{equation*} \abs {\cB }=\plst {\dim V}1k=\dim \plst {V}1k. \end{equation*}

    We know from last year that, for any vector space \(W\), a list of \(\dim W\) vectors that span is a basis and so we are done.

  • 3.

    • Reflexive \(v-v=0\in U\) so \(v\equiv v\mod U\).

    • Symmetric If \(v \equiv w\mod U\) then \(v-w\in U\) so that \(w-v=-(v-w)\in U\) and \(w\equiv v\mod U\).

    • Transitive If \(v\equiv w\mod U\) and \(w\equiv u\mod U\), then \(v-w,w-u\in U\) whence \(v-u=(v-w)+(w-u)\in U\) and so \(v\equiv u\mod U\).

  • 4. There are two ways to proceed. The first is to work straight from the definitions: we know that \(v_1+U=v_2+U\) if and only if \(v_1-v_2\in U\), that is, \(v_1-v_2\) is a linear combination of \((1,-1,0)\) and \((0,1,-1)\). Now,

    \begin{equation*} (3,3,0)-(1,2,3)=(2,1,-3)=2(1,-1,0)+3(0,1,-1)\in U \end{equation*}

    so that \((3,3,0)+U=(1,2,3)+U\). On the other hand, trying to solve

    \begin{equation*} (3,3,0)-(1,1,1)=(2,2,-1)=\lambda (1,-1,0)+\mu (0,1,-1), \end{equation*}

    for \(\lambda ,\mu \in \R \), leads to inconsistent equations:

    \begin{equation*} \lambda =2;\qquad \mu =-1;\qquad \mu -\lambda =2. \end{equation*}

    Thus \((2,2,-1)\notin U\) and \((3,3,0)+U\neq (1,1,1)+U\).

    A slicker approach is to observe that \(U=\ker \phi \) where \(\phi :\R ^3\to \R \) is the linear map \(\phi (x_1,x_2,x_3)=x_1+x_2+x_3\) (indeed, \(U\leq \ker \phi \) and \(\dim \ker \phi =2\) by rank-nullity). Now \(v_1+U=v_2+U\) if and only if \(\phi (v_1)=\phi (v_2)\) and we simply compute:

    \begin{equation*} \phi (1,2,3)=\phi (3,3,0)=6, \qquad \phi (1,1,1)=3 \end{equation*}

    to learn that

    \begin{equation*} (1,2,3)+U=(3,3,0)+U\neq (1,1,1)+U. \end{equation*}

  • 5. Let \(v\in V\). Since \(V=U+W\), we write \(v=u+w\) with \(u\in U\) and \(w\in W\). Then, since \(\ker q =U\), \(q(v)=q(u+w)=q(w)\) so that \(\im q_{|W}=\im q=V/U\). Thus \(q_{|W}\) surjects.

    Further, \(\ker q_{|W}=\ker q\cap W=U\cap W=\set {0}\) since \(\ker q=U\). Thus \(q_{|W}\) has trivial kernel and so injects.

  • 6. Let \(v\in \ker \pi \cap \im \pi \). Then there is \(w\in V\) such that \(v=\pi (w)\) since \(v\in \im \pi \). But \(v\in \ker \pi \) also so that

    \begin{equation*} 0=\pi (v)=\pi (\pi (w))=\pi (w)=v. \end{equation*}

    Thus \(\ker \pi \cap \im \pi =\set {0}\) so it remains to show that \(V=\ker \pi +\im \pi \). For this, write \(v=(v-\pi (v))+\pi (v)\). The second summand is certainly in \(\im \pi \) while

    \begin{equation*} \pi (v-\pi (v))=\pi (v)-\pi (\pi (v))=\pi (v)-\pi (v)=0 \end{equation*}

    so the first is in \(\ker \pi \) and we are done.

  • 7.

    • (a) Let \(q:U+W\to (U+W)/W\) be the quotient map. Then \(\phi \) is simply the restriction \(q_{|U}\) of \(q\) to \(U\) and so is linear. Moreover, \(\ker \phi =U\cap \ker q=U\cap W\). Finally, if \(q(u+w)\in (U+W)/W\), then, since \(q(w)=0\),

      \begin{equation*} q(u+w)=q(u)+q(w)=q(u)=\phi (u) \end{equation*}

      so that \(\phi \) is onto. The first isomorphism theorem now reads

      \begin{equation*} U/(U\cap W)=U/\ker \phi \cong \im \phi =(U+W)/W. \end{equation*}

    • (b) When \(V\) is finite-dimensional, we have

      \begin{equation*} \dim U-\dim (U\cap W)=\dim U/(U\cap W)=\dim (U+W)/W=\dim (U+W)-\dim W \end{equation*}

      and rearranging this gives the result.