

MA22020: Exercise sheet 2

Warmup questions

1. Let $U_1, U_2, U_3 \leq \mathbb{R}^3$ be the 1-dimensional subspaces spanned by $(1, 2, 0)$, $(1, 1, 1)$ and $(2, 3, 1)$ respectively.

Which of the following sums are direct?

- (a) $U_i + U_j$, for $1 \leq i < j \leq 3$.
- (b) $U_1 + U_2 + U_3$.

2. Let $V_i \leq V$, for $1 \leq i \leq k$. Prove the converse of Corollary 2.8: if

$$\dim V_1 + \cdots + V_k = \dim V_1 + \cdots + \dim V_k$$

then the sum $V_1 + \cdots + V_k$ is direct.

3. Let $U \leq V$. Show that congruence modulo U is an equivalence relation.
4. Let $U = \text{span}\{(1, -1, 0), (0, 1, -1)\} \leq \mathbb{R}^3$. Determine which, if any, of the following cosets are equal:

$$(1, 2, 3) + U, \quad (3, 3, 0) + U, \quad (1, 1, 1) + U.$$

5. Let $U \leq V$ and $q : V \rightarrow V/U$ the quotient map. Let W be a complement to U .
Show that $q|_W : W \rightarrow V/U$ is an isomorphism.

Homework

6. Let V be a vector space. A linear map $\pi : V \rightarrow V$ is called a **projection** if $\pi \circ \pi = \pi$.
In this case, prove that $\ker \pi \cap \text{im } \pi = \{0\}$ and deduce that $V = \ker \pi \oplus \text{im } \pi$.
7. Let $U, W \leq V$. Define a linear map $\phi : U \rightarrow (U + W)/W$ by $\phi(u) = u + W$.
 - (a) Use the first isomorphism theorem, applied to ϕ , to prove the second isomorphism theorem:

$$U/(U \cap W) \cong (U + W)/W.$$

- (b) Deduce that, when V is finite-dimensional,

$$\dim(U + W) = \dim U + \dim W - \dim(U \cap W).$$

Please hand in at 4W level 1 by NOON on Thursday 30th October 2025

MA22020: Exercise sheet 2—Solutions

1. (a) All these sums are direct as each $U_i \cap U_j = \{0\}$.
 (b) Note that $(2, 3, 1) = (1, 2, 0) + (1, 1, 1)$ and so can be written in two different ways as a sum $u_1 + u_2 + u_3$, with each $u_i \in U_i$:

$$(1, 2, 0) + (1, 1, 1) + (0, 0, 0)$$

$$(0, 0, 0) + (0, 0, 0) + (2, 3, 1).$$

Thus $U_1 + U_2 + U_3$ is not a direct sum.

This shows us that $U_i \cap U_j = \{0\}$, $i \neq j$, is not enough to force $U_1 + U_2 + U_3$ to be direct.

2. Let \mathcal{B}_i be a basis for V_i and let $\mathcal{B} = \mathcal{B}_1, \dots, \mathcal{B}_k$ be the concatenation of these. By Corollary 2.7, it suffices to see that \mathcal{B} is a basis for $V_1 + \dots + V_k$. However, \mathcal{B} clearly spans and, by hypothesis,

$$|\mathcal{B}| = \dim V_1 + \dots + \dim V_k = \dim V_1 + \dots + V_k.$$

We know from last year that, for any vector space W , a list of $\dim W$ vectors that span is a basis and so we are done.

3. **Reflexive** $v - v = 0 \in U$ so $v \equiv v \pmod{U}$.

Symmetric If $v \equiv w \pmod{U}$ then $v - w \in U$ so that $w - v = -(v - w) \in U$ and $w \equiv v \pmod{U}$.

Transitive If $v \equiv w \pmod{U}$ and $w \equiv u \pmod{U}$, then $v - w, w - u \in U$ whence $v - u = (v - w) + (w - u) \in U$ and so $v \equiv u \pmod{U}$.

4. There are two ways to proceed. The first is to work straight from the definitions: we know that $v_1 + U = v_2 + U$ if and only if $v_1 - v_2 \in U$, that is, $v_1 - v_2$ is a linear combination of $(1, -1, 0)$ and $(0, 1, -1)$. Now,

$$(3, 3, 0) - (1, 2, 3) = (2, 1, -3) = 2(1, -1, 0) + 3(0, 1, -1) \in U$$

so that $(3, 3, 0) + U = (1, 2, 3) + U$. On the other hand, trying to solve

$$(3, 3, 0) - (1, 1, 1) = (2, 2, -1) = \lambda(1, -1, 0) + \mu(0, 1, -1),$$

for $\lambda, \mu \in \mathbb{R}$, leads to inconsistent equations:

$$\lambda = 2; \quad \mu = -1; \quad \mu - \lambda = 2.$$

Thus $(2, 2, -1) \notin U$ and $(3, 3, 0) + U \neq (1, 1, 1) + U$.

A slicker approach is to observe that $U = \ker \phi$ where $\phi : \mathbb{R}^3 \rightarrow \mathbb{R}$ is the linear map $\phi(x_1, x_2, x_3) = x_1 + x_2 + x_3$ (indeed, $U \leq \ker \phi$ and $\dim \ker \phi = 2$ by rank-nullity). Now $v_1 + U = v_2 + U$ if and only if $\phi(v_1) = \phi(v_2)$ and we simply compute:

$$\phi(1, 2, 3) = \phi(3, 3, 0) = 6, \quad \phi(1, 1, 1) = 3$$

to learn that

$$(1, 2, 3) + U = (3, 3, 0) + U \neq (1, 1, 1) + U.$$

5. Let $v \in V$. Since $V = U + W$, we write $v = u + w$ with $u \in U$ and $w \in W$. Then, since $\ker q = U$, $q(v) = q(u + w) = q(w)$ so that $\text{im } q|_W = \text{im } q = V/U$. Thus $q|_W$ surjects.

Further, $\ker q|_W = \ker q \cap W = U \cap W = \{0\}$ since $\ker q = U$. Thus $q|_W$ has trivial kernel and so injects.

6. Let $v \in \ker \pi \cap \text{im } \pi$. Then there is $w \in V$ such that $v = \pi(w)$ since $v \in \text{im } \pi$. But $v \in \ker \pi$ also so that

$$0 = \pi(v) = \pi(\pi(w)) = \pi(w) = v.$$

Thus $\ker \pi \cap \text{im } \pi = \{0\}$ so it remains to show that $V = \ker \pi + \text{im } \pi$. For this, write $v = (v - \pi(v)) + \pi(v)$. The second summand is certainly in $\text{im } \pi$ while

$$\pi(v - \pi(v)) = \pi(v) - \pi(\pi(v)) = \pi(v) - \pi(v) = 0$$

so the first is in $\ker \pi$ and we are done.

7. (a) Let $q : U + W \rightarrow (U + W)/W$ be the quotient map. Then ϕ is simply the restriction $q|_U$ of q to U and so is linear. Moreover, $\ker \phi = U \cap \ker q = U \cap W$. Finally, if $q(u + w) \in (U + W)/W$, then, since $q(w) = 0$,

$$q(u + w) = q(u) + q(w) = q(u) = \phi(u)$$

so that ϕ is onto. The first isomorphism theorem now reads

$$U/(U \cap W) = U/\ker \phi \cong \text{im } \phi = (U + W)/W.$$

(b) When V is finite-dimensional, we have

$$\dim U - \dim(U \cap W) = \dim U/(U \cap W) = \dim(U + W)/W = \dim(U + W) - \dim W$$

and rearranging this gives the result.