MA22020: Exercise sheet 2

Warmup questions

1. Let U,Us, Uz < R?® be the 1-dimensional subspaces spanned by (1,2,0),
(1,1,1) and (2,3,1) respectively.
Which of the following sums are direct?
(@) Ui+U;, for 1<i<j<3.
(b) U1 +U;+Us.
2. Let V; <V, for 1<i<k. Prove the converse of Corollary 2.8: if
dmVi+ -+ Ve, =dimV; +---+dimVj
then the sum V; +--- +V;, is direct.
3. Let U < V. Show that congruence modulo U is an equivalence relation.
4. Let U = span{(1,-1,0),(0,1,—-1)} < R®*. Determine which, if any, of the
following cosets are equal:
(1,2,3)+U,  (3,3,00+U,  (1,1,1)+U.
5. Let U<V and ¢:V — V/U the quotient map. Let W be a complement to
U.
Show that ¢y : W — V/U is an isomorphism.
Homework
6. Let V be a vector space. Alinear map n:V — V is called a projection if
TOT=T.
In this case, prove that kerrnim= = {0} and deduce that V' =kerr@imr.
7. Let UW <V . Definealinearmap ¢:U — (U+W)/W by ¢(u) =u+W.

(a) Use the first isomorphism theorem, applied to ¢, to prove the second
isomorphism theorem:

U/(UNW)=(U+W)/W.
(b) Deduce that, when V is finite-dimensional,

dim(U + W) = dim U + dim W — dim(U n'W).

Please hand in at 4W level 1 by NOON on Thursday 30th October
2025



MA22020: Exercise sheet 2—Solutions

1.

(a) All these sums are direct as each U;nU; = {0}.

(b) Notethat (2,3,1) =(1,2,0)4+(1,1,1) and so can be written in two different ways
as a sum wu; + ug + us , with each w; € U; :

(1,2,0) 4+ (1,1,1) + (0,0, 0)

Thus U, + U, + Us is not a direct sum.
This shows us that U;nU; = {0}, i # j, is not enough to force U, + U, + U; to be
direct.

Let B; be a basis for V; and let B =By,...,B, be the concatenation of these. By
Corollary 2.7, it suffices to see that B is a basis for V; +--- + 1V, . However, B
clearly spans and, by hypothesis,

B =dimV; +---+dimV, =dimV; +--- + V4.

We know from last year that, for any vector space W, a list of dim W vectors that
span is a basis and so we are done.

Reflexive v—v=0€U so v=v modU.

Symmetric If v=w modU then v—w e U sothat w—v=—-(v—w) e U and
w=v modU.

Transitive If v=w modU and w=v mod U, then v —w,w —u € U whence
v—u=w—-—w)+(w—u)eU andso v=u mod U .

There are two ways to proceed. The first is to work straight from the definitions:
we know that v1 + U = v, + U ifand only if v; —vy € U, thatis, v; — vy is a linear
combination of (1,—1,0) and (0,1,—1). Now,

(3,3,0) — (1,2,3) = (2,1,-3) = 2(1,—-1,0) + 3(0,1,-1) e U
so that (3,3,0)+ U = (1,2,3) + U . On the other hand, trying to solve
(3,3,0) — (1,1,1) = (2,2,—1) = A(1,-1,0) + p(0,1, -1),
for \,un € R, leads to inconsistent equations:
A =2 w=—1; w—A=2.

Thus (2,2,-1)¢ U and (3,3,0)+ U # (1,1,1) + U .

A slicker approach is to observe that U = ker¢ where ¢ : R?* — R is the linear map
o(x1,22,23) = 1 + 29 + x5 (indeed, U < ker¢ and dimker¢ = 2 by rank-nullity).
Now v, + U = vy + U if and only if ¢(vi) = ¢(vy) and we simply compute:

$(1,2,3) =¢(3,3,0) =6,  ¢(1,1,1)=3

to learn that
(1,2,3) +U = (3,3,0) + U # (1,1,1) + U.



Let ve V. Since V=U+W, wewrite v=u+w with ue U and w e W. Then,
since kerq = U, q(v) = q(u +w) = q(w) so that imqyw = imq = V/U. Thus qw
surjects.

Further, kerqu = kergnW =UNW = {0} since kerq = U. Thus gy has trivial
kernel and so injects.

Let v € kerrNnim=. Then there is w € V such that v = n(w) since v € imn. But
v € kern also so that
0=m()=mn(r(w)) =nr(w) =wv.

Thus kerrnim= = {0} so it remains to show that V = kerr+im~. For this, write
v=(v—m(v))+w(v). The second summand is certainly in imz while

(v —m()) =n(v) —w(r(v)) =7(v) —7(v) =0

so the firstis in kerm and we are done.

(@) Let ¢ : U+ W — (U + W)/W be the quotient map. Then ¢ is simply the
restriction ¢y of ¢ to U and so is linear. Moreover, ker¢ =Unkerqg=UNW .
Finally, if ¢(u+ w) € (U +W)/W , then, since ¢(w) =0,

q(u +w) = q(u) + q(w) = q(u) = ¢(u)
so that ¢ is onto. The first isomorphism theorem now reads
U/(UNnW)=U/ker¢=2im¢= U+ W)/W.
(b) When V is finite-dimensional, we have
dimU —dimUnNW) =dimU/(UnNW)=dim{U + W)/W =dim(U + W) —dimW

and rearranging this gives the result.



