\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\TextOrMath }[2]{#2}\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\newcommand {\bz }{\mathbf {0}}\) \(\newcommand {\bo }{\mathbf {1}}\) \(\newcommand {\id }{\operatorname {id}}\) \(\newcommand {\GL }{\operatorname {GL}}\) \(\newcommand {\im }{\operatorname {im}}\) \(\newcommand {\rank }{\operatorname {rank}}\) \(\newcommand {\sol }{\operatorname {sol}}\) \(\newcommand {\ann }{\operatorname {ann}}\) \(\newcommand {\rO }{\operatorname {O}}\) \(\newcommand {\rU }{\operatorname {U}}\) \(\newcommand {\rSU }{\operatorname {SU}}\) \(\newcommand {\ev }{\operatorname {ev}}\) \(\newcommand {\bil }{\operatorname {Bil}}\) \(\newcommand {\rad }{\operatorname {rad}}\) \(\newcommand {\Span }[1]{\operatorname {span}\{#1\}}\) \(\newcommand {\R }{\mathbb {R}}\) \(\newcommand {\C }{\mathbb {C}}\) \(\newcommand {\Z }{\mathbb {Z}}\) \(\newcommand {\F }{\mathbb {F}}\) \(\newcommand {\Q }{\mathbb {Q}}\) \(\newcommand {\N }{\mathbb {N}}\) \(\renewcommand {\P }{\mathbb {P}}\) \(\newcommand {\I }{\mathrm {I}}\) \(\newcommand {\half }{\tfrac 12}\) \(\newcommand {\rel }{\mathrel {\mathrm {rel}}}\) \(\renewcommand {\vec }[3]{(#1_{#2},\dots ,#1_{#3})}\) \(\newcommand {\lst }[3]{#1_{#2},\dots ,#1_{#3}}\) \(\newcommand {\plst }[3]{#1_{#2}+\dots +#1_{#3}}\) \(\newcommand {\oplst }[3]{#1_{#2}\oplus \dots \oplus #1_{#3}}\) \(\newcommand {\pplst }[3]{#1_{#2}\times \dots \times #1_{#3}}\) \(\newcommand {\dlst }[3]{\lst {#1^{*}}{#2}{#3}}\) \(\newcommand {\dlc }[4]{\lc #1{#2^{*}}#3#4}\) \(\newcommand {\hmg }[3]{[#1_{#2},\dots ,#1_{#3}]}\) \(\newcommand {\rng }[2]{#1,\dots ,#2}\) \(\newcommand {\lc }[4]{#1_{#3}#2_{#3}+\dots +#1_{#4}#2_{#4}}\) \(\newcommand {\plus }[2]{#1+\dots +#2}\) \(\newcommand {\set }[1]{\{#1\}}\) \(\newcommand {\abs }[1]{\lvert #1\rvert }\) \(\newcommand {\ip }[1]{\langle #1\rangle }\) \(\newcommand {\norm }[1]{\|#1\|}\) \(\newcommand {\bx }{\mathbf {x}}\) \(\newcommand {\be }{\mathbf {e}}\) \(\newcommand {\bq }{\mathbf {q}}\) \(\newcommand {\bu }{\mathbf {u}}\) \(\newcommand {\by }{\mathbf {y}}\) \(\newcommand {\bv }{\mathbf {v}}\) \(\newcommand {\E }{\mathbb {E}}\) \(\newcommand {\cI }{\mathcal {I}}\) \(\newcommand {\cB }{\mathcal {B}}\) \(\newcommand {\sub }{\subseteq }\) \(\newcommand {\st }{\mathrel {|}}\) \(\newcommand {\bw }[3]{#1\leq #2\leq #3}\) \(\newcommand {\col }[3]{(#1_{#2})_{#2\in #3}}\) \(\newcommand {\supp }{\mathrm {supp}}\) \(\newcommand {\restr }[1]{_{|#1}}\) \(\newcommand {\re }{\operatorname {Re}}\)

MA22020: Exercise sheet 1

    Warmup questions

  • 1. Let \(U\) be a subset of a vector space \(V\). Show that \(U\) is a linear subspace of \(V\) if and only if \(U\) satisfies the following conditions:

    • (i) \(0\in U\);

    • (ii) For all \(u_1,u_2\in U\) and \(\lambda \in \F \), \(u_1+\lambda u_2\in U\).

  • 2. Which of the following subsets of \(\R ^3\) are linear subspaces? In each case, briefly justify your answer.

    (a) \(U_1:=\set {(x_1,x_2,x_3)\st x_1^2+x_2^2+x_3^2=1}\) (b) \(U_2:=\set {(x_1,x_2,x_3)\st x_1=x_2}\) (c) \(U_3:=\set {(x_1,x_2,x_3)\st x_1+2x_2+3x_3=0}\)

  • 3. Which of the following maps \(f:\R ^2\to \R ^2\) are linear? In each case, briefly justify your answer.

    (a) \(f(x,y)=(5x+y,3x-2y)\) (b) \(f(x,y)=(5x+2,7y)\) (c) \(f(x,y)=(\cos y,\sin x)\) (d) \(f(x,y)=(3y^{2},x^3)\).

  • 4. Let \(U,W\leq V\) be subspaces of a vector space \(V\).

    When is \(U\cup W\) also a subspace of \(V\)?

    Homework

  • 5. Which of the following subsets of \(\C ^3\) are linear subspaces over \(\C \)? In each case, briefly justify your answer.

    (a) \(U_1:=\set {(z_1,z_2,z_3)\st z_1z_2=1}\) (b) \(U_2:=\set {(z_1,z_2,z_3)\st z_1=\bar {z}_2}\) (c) \(U_3:=\set {(z_1,z_2,z_3)\st z_1+\sqrt {-1}z_2+3z_3=0}\)

  • 6. Let \(V,W\) be vector spaces, \(\lst {v}1n\) a basis of \(V\) and \(\lst {w}1n\) a list of vectors in \(W\). Let \(\phi :V\to W\) be the unique linear map with

    \begin{equation*} \phi (v_i)=w_i, \end{equation*}

    for all \(1\leq i\leq n\). Show:

    • (a) \(\phi \) injects if and only if \(\lst {w}1n\) is linearly independent.

    • (b) \(\phi \) surjects if and only if \(\lst {w}1n\) spans \(W\).

    Deduce that \(\phi \) is an isomorphism if and only if \(\lst {w}1n\) is a basis for \(W\).

Please hand in at 4W level 1 by NOON on Thursday 16th October 2025


MA22020: Exercise sheet 1—Solutions

  • 1. First suppose that \(U\leq V\). The \(U\) is non-empty so there is some \(u\in U\) and then, since \(U\) is closed under addition and scalar multiplication, \(0=u+(-1)u\in U\) also and condition (i) is satisfied. Now if \(u_1, u_2\in U\) and \(\lambda \in \F \), then \(\lambda u_2\in U\) (\(U\) is closed under scalar multiplication) and so \(u_1+\lambda u_2\in U\) (\(U\) is closed under addition). Thus condition (ii) holds also.

    For the converse, if conditions (i) and (ii) hold, then, first, \(0\in U\) so \(U\) is non-empty and, second, \(U\) is closed under addition (take \(\lambda =1\) in condition (ii)) and under scalar multiplication (take \(u_1=0\) in condition (ii)). Thus \(U\leq V\).

  • 2.

    • (a) \(U_1\) is not a subspace as it does not contain \(0\)!

    • (b) \(U_2\) is a subspace: in fact, it is \(\ker \phi _A\) where \(A= \begin {pmatrix} 1&-1&0 \end {pmatrix} \).

    • (c) \(U_3\) is a subspace. It is \(\ker \phi _A\) for \(A= \begin {pmatrix} 1&2&3 \end {pmatrix} \).

  • 3.

    • (a) Here \(f\) is linear: it is the map \(\phi _A\) corresponding to the matrix

      \begin{equation*} A= \begin{pmatrix} 5&1\\3&-2 \end {pmatrix}. \end{equation*}

    • (b) This is not linear (because of that \(+2\) term). In particular \(f(0,0)=(2,0)\neq 0\)!

    • (c) Again \(f(0,0)=(1,0)\neq 0\) so this \(f\) cannot be linear. Of course, we already know this because it is certainly not true that \(\cos (y_1+y_2)=\cos y_1+\cos y_2\).

    • (d) Another non-linear map: for example \(f(2x,2y)\neq 2f(x,y)\).

  • 4. If \(U\subseteq W\) then \(U\cup W=W\) is a subspace and similarly if \(W\subseteq U\). In any other case, \(U\cup W\) is not a subspace: we can find \(u\in U\setminus W\) and \(w\in W\setminus U\) and then \(u+w\notin U\) (else \(w=(u+w)-u\in U\)) and similarly \(u+w\notin W\). Thus \(U\cup W\) is not closed under addition.

  • 5.

    • (a) \(0\notin U_1\) so \(U_1\) is not a subspace.

    • (b) \(U_2\) is not a subspace because it is not closed under complex scalar multiplication: \((1,1,0)\in U_2\) but \(i(1,1,0)=(i,i,0)\) is not (here \(i=\sqrt {-1}\)). In general, any time you see complex conjugation in the definition of a subset, it is unlikely to be a complex subspace.

    • (c) \(U_3=\ker \phi _A\) for \(A= \begin {pmatrix} 1&\sqrt {-1}&3 \end {pmatrix} \) and so is a subspace.

  • 6.

    • (a) \(\lc {\lambda }w1n=0\) if and only if \(\lc {\lambda }v1n\in \ker \phi \). Thus \(\lst {w}1n\) is linearly independent if and only if \(\phi \) has trivial kernel.

    • (b) \(\phi \) surjects if and only if any \(w\in W\) can be written \(w=\phi (v)\), or equivalently,

      \begin{equation*} w=\phi (\lc {\lambda }v1n)=\lc {\lambda }{w}1n, \end{equation*}

      for some \(\lambda _i\), \(1\leq i\leq n\).