\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\TextOrMath }[2]{#2}\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\require {mathtools}\) \(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\) \(\newcommand {\approxcolon }{\approx \vcentcolon }\) \(\newcommand {\Approxcolon }{\approx \dblcolon }\) \(\newcommand {\simcolon }{\sim \vcentcolon }\) \(\newcommand {\Simcolon }{\sim \dblcolon }\) \(\newcommand {\dashcolon }{\mathrel {-}\vcentcolon }\) \(\newcommand {\Dashcolon }{\mathrel {-}\dblcolon }\) \(\newcommand {\colondash }{\vcentcolon \mathrel {-}}\) \(\newcommand {\Colondash }{\dblcolon \mathrel {-}}\) \(\newenvironment {crampedsubarray}[1]{}{}\) \(\newcommand {\smashoperator }[2][]{#2\limits }\) \(\newcommand {\SwapAboveDisplaySkip }{}\) \(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\) \(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\) \(\Newextarrow \xLongleftarrow {10,10}{0x21D0}\) \(\Newextarrow \xLongrightarrow {10,10}{0x21D2}\) \(\let \xlongleftarrow \xleftarrow \) \(\let \xlongrightarrow \xrightarrow \) \(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\) \(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\) \(\let \LWRorigshoveleft \shoveleft \) \(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\) \(\let \LWRorigshoveright \shoveright \) \(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\) \(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\) \(\newcommand {\R }{\mathbb {R}}\) \(\newcommand {\Span }[1]{\operatorname {span\{#1\}}}\) \(\newcommand {\abs }[1]{\|#1\|}\) \(\newcommand {\F }{\mathbb {F}}\) \(\newcommand {\im }{\operatorname {im}}\) \(\newcommand {\st }{\mathrel {|}}\)

Section A

  • 1. Let \(U_1,U_2,U_3\leq \R ^3\) be given by:

    \begin{align*} U_1&=\Span {(1,0,-1)};\\ U_2&=\Span {(1,1,1), (1,-1,0)};\\ U_3&=\set {x\in \R ^3\st x_2+x_3=0}. \end{align*} Which of the three sums \(U_i+U_j\), \(1\leq i<j\leq 3\), are direct? In each case, briefly justify your answer. [4]

  • 2. Let \(U=\Span {(0,1,2)}\leq \R ^3\). Define subspaces \(W_1,W_2\leq \R ^3/U\) by

    \begin{equation*} W_1=\Span {(1,1,1)+U},\qquad W_2=\Span {(2,4,6)+U}. \end{equation*}

    Is \(W_1+W_{2}\) direct? Justify your answer. [4]

  • 3. Let \(p=(x-7)^2(x-3)\in \R [x]\) and let \(A\) be a square matrix such that \(p(A)=0\).

    What are the possibilities for the minimum polynomial of \(A\)?

    How does your answer change if you know that \(A\) is not diagonal? [4]

  • 4. Let \(A\) be given by

    \begin{equation*} \begin{pmatrix} 1&2\\0&1 \end {pmatrix}. \end{equation*}

    Find a Jordan basis for \(A\). [4]

  • 5. Let \(q\colon \R ^2\to \R \) be the quadratic form given by \(q(x)=4x_1^2-4x_1x_2+x_2^2\). Find the rank and signature of \(q\). [4]

Section B

  • 6.

    • (a) Let \(U\) be a linear subspace of a possibly infinite-dimensional vector space \(V\).

      Suppose that the quotient space \(V/U\) is finite-dimensional. Show that \(U\) has a complement in \(V\). [6]

    • (b) Let \(A\) be given by

      \begin{equation*} \begin{pmatrix*}[r] 2&-1&0\\6&-3&-2\\-6&3&4 \end {pmatrix*}. \end{equation*}

      • (i) Find the characteristic and minimum polynomials of \(A\).

      • (ii) Find the Jordan normal form of \(A\).

      [9]

  • 7.

    • (a) Let \(B\in M_3(\R )\) be given by

      \begin{equation*} \begin{pmatrix*}[r] 1&-1&0\\0&-2&1\\1&-3&1 \end {pmatrix*} \end{equation*}

      • (i) Show that the minimum polynomial of \(B\) is \(x^{3}\).

      • (ii) Can the following basis of \(\R ^3\) be re-ordered to give a Jordan basis for \(B\)? If so, how? If not, find a Jordan basis for \(B\).

        \begin{equation*} (0,0,1),\qquad (0,1,1), \qquad (2,2,4). \end{equation*}

        [10]

    • (b) Contemplate the symmetric bilinear form \(B_A\) on \(\R ^5\) where

      \begin{equation*} A= \begin{pmatrix*}[r] 1&2&3&4&5\\2&-1&6&7&8\\3&6&0&9&10\\4&7&9&-3&11\\5&8&10&11&4 \end {pmatrix*}. \end{equation*}

      Let \((p,q)\) be the signature of \(B_A\). Show that \(p,q>0\). [5]