

Unit Code	MA22020	Unit Title	Advanced Linear Algebra
Academic Year	2024/5	Examiner	Frans
Semester	1	Question No.	1 - 5
Part	Page 1 of 3		
	Mark		

1. $U_1 + U_2$ direct unless $U_1 \leq U_2$ since

$U_1 \cap U_2 = \{0\}$ or $U_1 = U_2$. $U_1 \leq U_2$ iff

$(1, 0, -1) = \lambda(1, 1, 1) + \mu(1, -1, 0)$ some λ, μ

i.e. $\lambda = \mu = 0$ $\lambda + \mu = 1$ $\lambda = -1$ is incompatible

$\therefore U_1 + U_2$ direct.

$U_1 + U_3$ direct unless $U_1 \leq U_3$ but

$0 - 1 \neq 0$ $\therefore U_1 \not\leq U_3$ so $U_1 + U_3$ direct

$U_2 + U_3$ not direct else $\dim U_2 + U_3 = 2 + 2 = 4 > 3$

Alternatively $\lambda(1, 1, 1) + \mu(1, -1, 0) \in U_3$

iff $(\lambda - \mu) + \lambda = 0$ so

$\lambda = 1, \mu = 2$ gives

$(3, -1, 1) \in U_2 \cap U_3$

so sum not direct.

[4]

Total

Unit Code	MA22020	Unit Title	Advanced Linear Algebra
Academic Year	2024/5	Examiner	Fraser
Semester	1	Question No.	1-5
Part		Page	2 of 3

Mark

2. Either $W_1 \cap W_2 = \{0\}$ or $W_1 = W_2$

The latter holds iff $\exists \lambda \in \mathbb{R}$ s.t.

$$\lambda(1, 1, 1) + U = (2, 4, 6) + U \quad \text{i.e.}$$

$$(\lambda - 2, \lambda - 4, \lambda - 6) = \mu(0, 1, 2) \text{ some } \mu \in \mathbb{R}$$

This gives $\lambda = 2$ then

$$(0, -2, -4) = \mu(0, 1, 2) \text{ so}$$

$\mu = -2 \therefore W_1 = W_2$ and sum not direct. [4]

3. $M_A \mid P$ so M_A could be

$$(x-3), (x-7), (x-7)^2, (x-7)(x-3)$$

$$\text{or } (x-7)^2(x-3). \quad \text{[3]}$$

If A not diag, it is not multiple of I

so drop $(x-3)$ and $(x-7)$. [1]

Total

Unit Code	MA22020	Unit Title	Advanced Linear Algebra
Academic Year	2024/5	Examiner	Frans
Semester	1	Question No.	1 - 5
Part		Page	3 of 3

Mark

4. Only eigenvalue is $\lambda = 2$

$$\text{Ker } A - I = \text{Span} \{ (1, 0) \}$$

$$\text{So see } \begin{cases} \text{ s.t } (A - I)v = (1, 0) \end{cases}$$

$$\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\text{So } \begin{pmatrix} 0 \\ 1/2 \end{pmatrix} \text{ will do } \forall$$

$(1, 0), (0, 1/2)$ is Jordan basis.

[4]

$$5. 4x_1^2 - 4x_1x_2 + x_2^2 = (2x_1 - x_2)^2$$

$$\text{So rank} = 1 \quad \text{Sig} = (1, 0)$$

[4]

Total

Unit Code	MA22020	Unit Title	Advanced Linear Algebra
Academic Year	2024/5	Examiner	Frans
Semester	I	Question No.	6
Part		Page	1 of 3

(a) let $q: V \rightarrow V/U$ be quotient map

& w_1, \dots, w_n be basis of V/U .

Choose $v_1, \dots, v_n \in V$ with $q(v_i) = w_i$

& set $W = \text{Span}\{v_1, \dots, v_n\}$. [2]

Claim $V = U \oplus W$.

• $V = U + W$: let $v \in V$ then

$$q(v) = \sum a_i w_i \text{ some } a_i$$

$$= q(\sum a_i v_i) \text{ so } v - \sum a_i v_i \in \ker q$$

$$\therefore v = \sum_{i \in W} a_i v_i + \left(v - \sum_{i \in U} a_i v_i \right)$$

• $U \cap W = \{0\}$

let $\sum a_i v_i \in U \cap W$ then

$$0 = q(\sum a_i v_i) = \sum a_i w_i \Rightarrow a_i = 0 \forall i \text{ since } w_1, \dots, w_n \text{ basis}$$

Total

Unit Code	MA22020	Unit Title	Advanced Linear Algebra
Academic Year	2024/5	Examiner	Frans
Semester	I	Question No.	6
Part		Page	2 of 3

(b) (i)

$$\begin{vmatrix} 2-x & -1 & 0 \\ 6 & -3-x & -2 \\ -6 & 3 & 4-x \end{vmatrix} = (2-x) \begin{vmatrix} -(3+x) & -2 \\ 3 & 4-x \end{vmatrix}$$

$$+ \begin{vmatrix} 6 & -2 \\ -6 & 4-x \end{vmatrix} =$$

$$(2-x) \{ (x-4)(x+3) + 6 \} + 24 - 6x - 12 =$$

$$(2-x) (x^2 - x - 6) + 6(2-x) =$$

$$(2-x) x (x-1) = \Delta_A$$

$$\therefore M_A = -\Delta_A = x(x-1)(x-2) \quad [6]$$

(ii) The eigenvalues are $0, 1, 2$

The largest Jordan block is 1×1

Total

Unit Code	MA22020	Unit Title	Advanced Linear Algebra
Academic Year	2024/5	Examiner	Frans
Semester	1	Question No.	6
Part		Page	3 of 3

Mark

∴ JNF is $\mathbb{J}(0,1) \oplus \mathbb{J}(1,1) \oplus \mathbb{J}(2,1)$

& A is diagonalisable.

[3]

Total

Unit Code	MA22020	Unit Title	Advanced Linear Algebra
Academic Year	2024/5	Examiner	Frans
Semester	1	Question No.	7
Part	Page 1 of 3		

(a) (i)

$$\Delta_B = \begin{vmatrix} -x & -1 & 0 \\ 0 & -2-x & 1 \\ 1 & -3 & 1-x \end{vmatrix} =$$

$$(1-x)((2+x)(x-1) + 3) - 1 =$$

$$(1-x)(x^2 + x + 1) - 1 =$$

$$x^2 + x + 1 - x^3 - x^2 - x - 1 = -x^3$$

$$\therefore M_B = x^2 \text{ or } x^3 \quad (\text{not } x \text{ divisible and not zero})$$

$$B \text{ or } B^2 =$$

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 1 & -3 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 1 & -3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & * \\ 0 & 0 \end{pmatrix} \neq 0$$

$$\therefore M_B = x^3$$

[4]

Total

Unit Code	MA22020	Unit Title	Advanced Linear Algebra
Academic Year	2024/5	Examiner	Frans
Semester	1	Question No.	7
Part		Page	2 of 3

Mark

(ii) Jordan basis is v_1, v_2, v_3 with
each $B v_i = v_{i-1}$ or 0

$$B \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$B \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix} \neq \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$$

so given basis cannot be reordered to
Jordan basis but

$$B \begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \text{ so}$$

$(-1, -1, -2), (0, 1, 1), (0, 0, 1)$ is
a Jordan basis.

[5]

Total

Unit Code	MA22020	Unit Title	Advanced Linear Algebra
Academic Year	2024/5	Examiner	Fran
Semester	1	Question No.	7
Part		Page	3 of 3

Mark

(b) let $U_1 = \text{span}\{e_1\}$ then

for $v = \lambda e_1 \in U_1$

$$B_A(v, v) = \lambda^2 B_A(e_1, e_1) = \lambda^2$$

so B_A pos. def on U_1

$$\begin{aligned} \text{so } \rho &= \max \{ \dim U \mid B_A \text{ pos def} \} \\ &> \dim U_1 = 1 \end{aligned}$$

Similarly, let $U_2 = \text{span}\{e_2\}$

then $w = \lambda e_2$ has $B_A(w, w) = -\lambda^2$

so B_A neg. def on U_2

so $\rho > 1$ also

[5]

Total