

Section A

1. Let $U_1, U_2, U_3 \leq \mathbb{R}^3$ be given by:

$$U_1 = \text{span}\{(1, 0, -1)\};$$

$$U_2 = \text{span}\{(1, 1, 1), (1, -1, 0)\};$$

$$U_3 = \{x \in \mathbb{R}^3 \mid x_2 + x_3 = 0\}.$$

Which of the three sums $U_i + U_j$, $1 \leq i < j \leq 3$, are direct? In each case, briefly justify your answer. [4]

2. Let $U = \text{span}\{(0, 1, 2)\} \leq \mathbb{R}^3$. Define subspaces $W_1, W_2 \leq \mathbb{R}^3/U$ by

$$W_1 = \text{span}\{(1, 1, 1) + U\}, \quad W_2 = \text{span}\{(2, 4, 6) + U\}.$$

Is $W_1 + W_2$ direct? Justify your answer. [4]

3. Let $p = (x - 7)^2(x - 3) \in \mathbb{R}[x]$ and let A be a square matrix such that $p(A) = 0$.

What are the possibilities for the minimum polynomial of A ?

How does your answer change if you know that A is not diagonal? [4]

4. Let A be given by

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}.$$

Find a Jordan basis for A . [4]

5. Let $q: \mathbb{R}^2 \rightarrow \mathbb{R}$ be the quadratic form given by $q(x) = 4x_1^2 - 4x_1x_2 + x_2^2$. Find the rank and signature of q . [4]

Section B

6. (a) Let U be a linear subspace of a possibly infinite-dimensional vector space V .

Suppose that the quotient space V/U is finite-dimensional. Show that U has a complement in V . [6]

(b) Let A be given by

$$\begin{pmatrix} 2 & -1 & 0 \\ 6 & -3 & -2 \\ -6 & 3 & 4 \end{pmatrix}.$$

(i) Find the characteristic and minimum polynomials of A .
(ii) Find the Jordan normal form of A .

[9]

7. (a) Let $B \in M_3(\mathbb{R})$ be given by

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 1 & -3 & 1 \end{pmatrix}$$

- (i) Show that the minimum polynomial of B is x^3 .
- (ii) Can the following basis of \mathbb{R}^3 be re-ordered to give a Jordan basis for B ? If so, how? If not, find a Jordan basis for B .

$$(0, 0, 1), \quad (0, 1, 1), \quad (2, 2, 4).$$

[10]

(b) Contemplate the symmetric bilinear form B_A on \mathbb{R}^5 where

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & -1 & 6 & 7 & 8 \\ 3 & 6 & 0 & 9 & 10 \\ 4 & 7 & 9 & -3 & 11 \\ 5 & 8 & 10 & 11 & 4 \end{pmatrix}.$$

Let (p, q) be the signature of B_A . Show that $p, q > 0$. [5]