Section A

1. Define subspaces $U, W \leq \mathbb{R}^3$ by:

$$U = \text{span}\{(1, 1, 1), (1, 2, 0)\}, \qquad W = \text{span}\{(1, 0, 2)\}.$$

Is the sum U + W direct? (You must justify your answer.) [4]

- 2. With $U \leq \mathbb{R}^3$ as in question 1, v = (1, 2, 3) and w = (0, 2, 1), is $v \equiv w \mod U$? (You must justify your answer.) [4]
- 3. For $x, y \in \mathbb{C}^3$, let

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \bar{x}_3 y_3.$$

Is \langle , \rangle an inner product on \mathbb{C}^3 ? (You must justify your answer.) [4]

4. Show that $A \in M_{2 \times 2}(\mathbb{C})$ given by

$$\frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2i \\ 2i & 1 \end{pmatrix}$$

is a unitary matrix and compute its eigenvalues. [4]

5. With $U \leq \mathbb{R}^3$ as in question 1, write down a non-zero element of ann U. **Hint**: any $\alpha \in (\mathbb{R}^3)^*$ is of the form $\alpha(x) = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3$. [4] 6. Define a quadratic form Q on \mathbb{R}^2 by

$$Q(x) = 4x_1^2 + 4x_1x_2 + x_2^2.$$

Compute the rank and signature of Q.

Section **B**

- 7. Let V be a vector space over a field \mathbb{F} .
 - (a) Let $V_1, \ldots, V_k \leq V$ be subspaces of V. Show that the sum $V_1 + \cdots + V_k$ is direct if and only if, whenever $v_i \in V_i$, $1 \leq i \leq k$, satisfy

$$v_1 + \dots + v_k = 0$$

then each $v_i = 0$.

- (b) Let $u, w \in V$ and $V_1, V_2 \leq V$ subspaces such that $u + V_1 = w + V_2$. Prove that $V_1 = V_2$. [6]
- (c) Let $\alpha \in V^*$ be non-zero. Prove that

$$\dim(V/\ker\alpha) = 1.$$

[6]

[6]

[4]

8. (a) Let a, b, c, d, e be positive real numbers. Show that

$$25 \le (a+b+c+d+e)(1/a+1/b+1/c+1/d+1/e).$$

For what a, b, c, d, e do we get equality?

(b) Find the QR decomposition for the matrix A given by

$$A = \begin{pmatrix} 1 & 1 & 3 \\ -1 & 0 & 1 \\ 0 & -1 & -1 \end{pmatrix}.$$
[7]

- (c) Let $U = \text{span}\{(1, -1, 0), (1, 0, -1)\} \leq \mathbb{R}^3$ and v = (2, 1, 2). Find the closest point of U to v (where we define distance in \mathbb{R}^3 using the dot product). [6]
- 9. Let *B* be the symmetric bilinear form on \mathbb{R}^3 defined by the matrix

$$A = \begin{pmatrix} -3 & 2 & -2 \\ 2 & -1 & 1 \\ -2 & 1 & -1 \end{pmatrix}.$$

Thus $B(x, y) = \mathbf{x}^T A \mathbf{y}$.

- (a) Find a diagonalising basis for *B*. [10]
- (b) Compute the rank and signature of *B*. [4]
- (c) Compute the radical of *B*. [4]

[5]