Section A

1. Let V be a vector space over a field \mathbb{F} and $U, W \leq V$ vector subspaces.

What does it mean to say that V is the internal direct sum of U and W, that is, $V = U \oplus W$?

What is a **complement** to U in V? [4]

2. Let V be an n-dimensional vector space over a field $\mathbb F$ and $U,W\leq V$ with $\dim U=1$ and $\dim W=n-1$.

Show that either $U \leq W$ or $V = U \oplus W$. [4]

3. Let V be a finite-dimensional inner product space.

What is an **orthonormal basis** of V?

Let u_1, \ldots, u_n be an orthonormal basis of V and $v, w \in V$. Prove that

$$v = \sum_{i=1}^{n} \langle u_i, v \rangle u_i$$

and so deduce that

$$\langle v, w \rangle = \sum_{i=1}^{n} \langle v, u_i \rangle \langle u_i, w \rangle.$$

[4]

4. Let V be a finite-dimensional complex inner product space and $\phi:V\to V$ a linear operator.

What is an **adjoint** of ϕ ?

What does it mean to say that ϕ is **normal**?

Show that ϕ is normal if and only if, for all $v, w \in V$,

$$\langle \phi(v), \phi(w) \rangle = \langle \phi^*(v), \phi^*(w) \rangle.$$

[4]

5. Let V be a vector space over a field \mathbb{F} .

What is the **dual space** V^* ?

Let v_1, \ldots, v_n be a basis of V. Define the **dual basis** v_1^*, \ldots, v_n^* of V^* to v_1, \ldots, v_n .

Prove that, for $\alpha \in V^*$,

$$\alpha = \sum_{i=1}^{n} \alpha(v_i) v_i^*.$$

[4]

6. What is the rank and signature of the quadratic form $Q:\mathbb{R}^2 \to \mathbb{R}$ given by

$$Q(x) = x_1^2 + x_1 x_2 + x_2^2.$$

[4]

Section B

7. (a) State the **First Isomorphism Theorem**.

[4]

(b) Let $\phi:V\to W$ be a linear surjection of vector spaces over a field $\mathbb F$ and $U=\ker\phi\leq V.$

Prove that $V/U \cong W$.

[4]

(c) Let V be a vector space over a field $\mathbb F$ and $U \leq V$ a subspace such that V/U is finite-dimensional.

Show that U has a complement W in V with dim $W = \dim V/U$.

Hint: For $q: V \to V/U$ the quotient map, let $q(v_1), \ldots, q(v_n)$ be a basis of V/U and consider the span of v_1, \ldots, v_n . [10]

8. (a) State and prove the Riesz Representation Theorem.

[6]

- (b) Let U be the subspace of \mathbb{R}^4 spanned by (1,-1,0,0), (0,1,-1,0) and (0,0,1,-1).
 - (i) Find an orthonormal basis of U.

[6]

- (ii) Stating any results from lectures that you use, find $u \in U$ such that $\|u (1, 1, 2, 2)\|$ is as small as possible. [6]
- 9. Let A be the matrix

$$\begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$

(a) Find a matrix P such that P^TAP is diagonal.

[9]

(b) Let *V* be a real vector space.

What is a **symmetric bilinear form** on *V*?

What are the **radical**, **rank** and **signature** of a symmetric bilinear form on V? [5]

(c) Compute the rank and signature of the symmetric bilinear form B on \mathbb{R}^3 given by

$$B(x,y) = \mathbf{x}^T A \mathbf{y}.$$

[4]