Section A

- Let V be a vector space over a field F and U, W ≤ V vector subspaces.
 What does it mean to say that V is the internal direct sum of U and W, that is, V = U ⊕ W?
 What is a complement to U in V? [4]
- Let V be an n-dimensional vector space over a field F and U, W ≤ V with dim U = 1 and dim W = n 1.
 Show that either U ≤ W or V = U ⊕ W. [4]
- 3. Let V be a finite-dimensional inner product space.What is an **orthonormal basis** of V?

Let u_1, \ldots, u_n be an orthonormal basis of V and $v, w \in V$. Prove that

$$v = \sum_{i=1}^{n} \langle u_i, v \rangle u_i$$

and so deduce that

$$\langle v, w \rangle = \sum_{i=1}^{n} \langle v, u_i \rangle \langle u_i, w \rangle.$$
[4]

4. Let V be a finite-dimensional complex inner product space and $\phi: V \to V$ a linear operator.

What is an **adjoint** of ϕ ?

What does it mean to say that ϕ is **normal**?

Show that ϕ is normal if and only if, for all $v, w \in V$,

$$\langle \phi(v), \phi(w) \rangle = \langle \phi^*(v), \phi^*(w) \rangle.$$
[4]

5. Let *V* be a vector space over a field \mathbb{F} .

What is the **dual space** V^* ?

Let v_1, \ldots, v_n be a basis of V. Define the **dual basis** v_1^*, \ldots, v_n^* of V^* to v_1, \ldots, v_n . Prove that, for $\alpha \in V^*$,

$$\alpha = \sum_{i=1}^{n} \alpha(v_i) v_i^*.$$
[4]

6. What is the rank and signature of the quadratic form $Q: \mathbb{R}^2 \to \mathbb{R}$ given by

$$Q(x) = x_1^2 + x_1 x_2 + x_2^2.$$
[4]

Section B

7. (a) State the First Isomorphism Theorem. [4]
(b) Let φ : V → W be a linear surjection of vector spaces over a field F and U = ker φ ≤ V. Prove that V/U ≅ W. [4]
(c) Let V be a vector space over a field F and U ≤ V a subspace such that V/U is finite-dimensional. Show that U has a complement W in V with dim W = dim V/U. Hint: For q : V → V/U the quotient map, let q(v₁),...,q(v_n) be a basis of

Hint: For $q: V \to V/U$ the quotient map, let $q(v_1), \ldots, q(v_n)$ be a basis of V/U and consider the span of v_1, \ldots, v_n . [10]

- 8. (a) State and prove the Riesz Representation Theorem. [6]
 - (b) Let U be the subspace of \mathbb{R}^4 spanned by (1, -1, 0, 0), (0, 1, -1, 0) and (0, 0, 1, -1).
 - (i) Find an orthonormal basis of *U*. [6]
 - (ii) Stating any results from lectures that you use, find $u \in U$ such that ||u (1, 1, 2, 2)|| is as small as possible. [6]
- 9. Let *A* be the matrix

$$\begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$

- (a) Find a matrix P such that $P^T A P$ is diagonal.
- (b) Let V be a real vector space.
 What is a symmetric bilinear form on V?
 What are the radical, rank and signature of a symmetric bilinear form on V?
- (c) Compute the rank and signature of the symmetric bilinear form B on \mathbb{R}^3 given by

$$B(x,y) = \mathbf{x}^T A \mathbf{y}.$$

[4]

[9]