Chapter 1

Linear algebra: key concepts

1.1 Vector spaces

Definition. A wvector space V over a field F is a set V' with two operations:

addition V xV — V : (v,w) — v 4+ w such that:

e v+w=w+w, forall v,w e V;
e ut (v+w)=(u+v)+w, for all u,v,w € V;
e there is a zero element 0 € V for which v+ 0=v=04wv, forallv e V;

o each element v € V has an additive inverse —v € V for which v + (—v) =0 = (—v) + v.
In fancy language, V' with addition is an abelian group.
scalar multiplication F x V' — V : (A\,v) — Av such that

e A+ pv= v+pv, forallveV, A\ uek.
e Mv+w)=X+Aw, forall v,w € V, A € F.
(A)v = AMuw), for allv e V, A, u € F.

o lv=w, forallveV.

We call the elements of F scalars and those of V' wectors.

1.2 Subspaces

Definition. A vector (or linear) subspace of a vector space V over F is a non-empty subset U C V' which
is closed under addition and scalar multiplication: whenever u,uy,us € U and A € F, then uy + us € U
and \u € U.

In this case, we write U < V.

Say that U is trivial if U = {0} and proper if U # V.

1.3 Bases

Definitions. Let vq,...,v, be a list of vectors in a vector space V.



(1) The span of vq,...,v, is
span{vy,...,opti={ o1+ -+ Ao [N EF1I<i<n} <V.

(2) v1,...,v, span V (or are a spanning list for V') if span{vy,...,v,} =V
(3) v1,...,v, are linearly independent if, whenever \jv; +---+ A\yv, =0, then each A; =0, 1 <i <mn,
and linearly dependent otherwise.

(4) v1,...,v, is a basis for V if they are linearly independent and span V.

Definition. A vector space is finite-dimensional if it admits a finite list of vectors as basis and infinite-
dimensional otherwise.

If V is finite-dimensional, the dimension of V, dim V, is the number of vectors in a (any) basis of V.

1.3.1 Useful facts
Proposition 1.1 (Algebra 1B, Corollary 1.4.7). Any linearly independent list of vectors in a finite-
dimensional vector space can be extended to a basis.

Proposition 1.2 (Algebra 1B, Corollary 1.4.6). Let V be a finite-dimensional vector space and U < V.
Then
dimU < dimV

with equality if and only if U = V.

1.4 Linear maps

Definitions. A map ¢: V — W of vector spaces over F is a linear map (or, in older books, linear
transformation) if

Bv -+ w) = 6(0) + d(uw)
P(Av) = Ag(v),

forall v,w e V, A € F.

The kernel of ¢ isker¢:={v eV |od(v) =0} < V.

The image of ¢ is im ¢ := {p(v) |[v €V} < W.

Definition. A linear map ¢ : V. — W is a (linear) isomorphism if there is a linear map ¢ : W — V
such that

Yo¢=idy, oy =idw .
If there is an isomorphism V' — W, say that V and W are isomorphic and write V = W.

Lemma 1.3 (Algebra 1B, lemma 1.2.3). ¢ : V. — W is an isomorphism if and only if ¢ is a linear
bijection (and then 1 = ¢—1).

Notation. For vector spaces V, W over F, denote by Lg(V, W) (or simply L(V,W)) the set {¢ : V —
W | ¢ is linear} of linear maps from V' to W.

Theorem 1.4 (Linearity is a linear condition). L(V,W) is a vector space under pointwise addition and
scalar multiplication. Thus

for all p,p € L(V,W), v €V and X € F.



Proposition 1.5 (Extension by linearity). Let V,W be vector spaces over F. Let vy,...,v, be a basis
of V and wy, . ..,w, any vectors in W.

Then there is a unique ¢ € L(V, W) such that
o(vi) = wy, 1<i<n. (1.1)
Theorem 1.6 (Rank-nullity). Let ¢ : V — W be linear with V finite-dimensional. Then
dimim ¢ 4+ dim ker ¢ = dim V.

Proposition 1.7. Let ¢ : V. — W be linear with V,W finite-dimensional vector spaces of the same
dimension: dimV = dim W.
Then the following are equivalent:

(1) ¢ is injective.

(2) ¢ is surjective.

(3) ¢ is an isomorphism.



Chapter 2

Sums and quotients

Convention. In this chapter, all vector spaces are over the same field ' unless we say otherwise.

2.1 Sums of subspaces

Definition. Let Vi,...,V, < V. The sum Vi + --- + V}, is the set
V1+-~-+Vk::{v1+---+vk|vi€Vi,1§i§k}.

Proposition 2.1. Let Vi,..., Vi < V. Then

(1) Vi + Vi, <V.
(2) FW <V and Vi,...,. Ve <W then Vi,...,. Ve <Vi+ -+ Vi, < W.

2.2 Direct sums

Definition. Let Vi,..., Vi < V. The sum Vj +-- -4V}, is direct if each v € V] +--- 4+ V}, can be written
v=v1+- -+ Uk

in only one way, that is, for unique v; € V;, 1 <i < k.

In this case, we write V; @ --- ® V}, instead of Vi + --- 4+ V.

Proposition 2.2. LetVi,..., Vi, < V. Then Vi+---+Vj is direct if and only if whenever vi+- - -4v, = 0,
withv; € V;, 1 <1<k, thenv; =0, forall1 <i<k.

Proposition 2.3. Let V1,Vo < V. Then Vi + Vs is direct if and only if V1 N Va = {0}.
Definition. Let Vi,V < V. V is the (internal) direct sum of Vi and Vo it V =11 & Vs.

In this case, say that Vs is a complement of V7 (and V is a complement of V5).

Proposition 2.4. Let Vi,..., Vi, <V, k> 2. Then the sum V1 + -+ Vi is direct if and only if, for
each 1 <i <k, Vim(Zj;ﬂVj) = {0}.
2.2.1 Induction from two summands

Lemma 2.5. Let Vi,..., Vi, < V. Then Vi + -+ Vi is direct if and only if V1 + -+ + Vi1 is direct
and (Vi + -+ 4+ Vi—1) + Vi (two summands) is direct.



2.2.2 Direct sums, bases and dimension

Proposition 2.6. Let Vi,Vo < V be subspaces with bases Bi: vi,...,v; and By: wy,...,w;. Then
Vi + Vs is direct if and only if the concatenation' BiBy: v1,..., vk, w1, ..., w; is a basis of Vi + Va.

Corollary 2.7. Let Vi,..., Vi, <V be finite-dimensional subspaces with B; a basis of V;, 1 < i < k.
Then Vi + -+ -+ V. is direct if and only if the concatenation By ... By is a basis for Vi 4+ --- + Vj.

Corollary 2.8. Let Vi,..., Vi <V be subspaces of a finite-dimensional vector space V with V4 +-- -+ Vj
direct. Then
dimV1 @"'@Vk :dimV1 +~~+dika..

2.2.3 Complements

Proposition 2.9 (Complements exist). Let U <V, a finite-dimensional vector space. Then there is a
complement to U.

2.3 Quotients

Definition. Let U < V. Say that v,w € V are congruent modulo U if v —w € U. In this case, we write
v=w mod U.

Lemma 2.10. Congruence modulo U is an equivalence relation.

Definition. For v € V, U <V, theset v+ U :={v+u | u € U} CV is called a coset of U and v is
called a coset representative of v + U.

Definition. Let U < V. The quotient space V/U of V by U is the set V/U, pronounced “V mod U”, of
cosets of U:
VU :={v+U|veV}

This is a subset of the power set?> P(V) of V.
The quotient map q : V — V/U is defined by

q(v) =v+U.
Theorem 2.11. Let U < V. Then, forv,w eV, AN €T,

(wW+U)+(w+U):=@v+w)+U
Av+U) =)+ U

give well-defined operations of addition and scalar multiplication on V/U with respect to which V/U is a
vector space and q : V. — V/U is a linear map.

Moreover, kerq = U and imq = V/U.
Corollary 2.12. Let U < V. IfV is finite-dimensional then so is V/U and
dimV/U =dimV — dim U.
Theorem 2.13 (First Isomorphism Theorem). Let ¢ : V. — W be a linear map of vector spaces.
Then V/ker ¢ = im ¢.
In fact, define ¢ : V/ker ¢ — im ¢ by

where q : V — V/ker ¢ is the quotient map.

Then ¢ is a well-defined linear isomorphism.

IThe concatenation of two lists is simply the list obtained by adjoining all entries in the second list to the first.
2Recall from Algebra 1A that the power set of a set A is the set of all subsets of A.



Chapter 3

Polynomials, operators and matrices

3.1 Polynomials

Definitions. A polynomial in a variable x with coefficients in a field F is a formal expression

o0
p= g apx®
k=0

with coefficients aj, € F such that only finitely many aj are non-zero.
Two polynomials are equal if all their coefficients are equal.
The zero polynomial has all coefficients zero.
The degree of a polynomial p is deg p = max{k € N | ar # 0}. By convention, deg0 = —oo0.
The set of all polynomials in & with coeflicients in F is denoted F[z].
Definition. A polynomial is monic if its leading coefficient is 1:
p=ap+---+z"

Theorem 3.1 (Algebra 1A, Proposition 3.10). Let p,q € Flx|. Then there are unique r,s € Flx] such
that

p=sq+r
with degr < deggq.

Theorem 3.2 (Fundamental Theorem of Algebra). Let p € C[z]| be a polynomial with degp > 1. Then
p has a root. Thus there is t € C with p(t) = 0.

Theorem 3.3. Let p € Clx] and A1,..., g the distinct roots of p. Then

for someae Candn; €Zy,1<i<k.

n; 1s called the multiplicity of the root A;.

3.2 Linear operators, matrices and polynomials

3.2.1 Linear operators and matrices

Definition. Let V' be a vector space over F. A linear operator on V is a linear map ¢ : V — V.



The vector space of linear operators on V is denoted L(V') (instead of L(V,V)).
Notation. Write M, (F) for M,y (F).

Definition. Let V be a finite-dimensional vector space over F with basis B : vy,...,v,. Let ¢ € L(V).
The matriz of ¢ with respect to B is the matrix A = (A;;) € M, (F) defined by:

P(vj) = ZAijvi; (3.1)

forall 1 <j<n.

3.2.2 Polynomials in linear operators and matrices

Notation. For ¢, € L(V) write ¢ for pop € L(V).

Similarly, write ¢™ for the n-fold composition of ¢ with itself:

¢t =¢o---0¢
——

n times
and define ¢° :=idy, ¢! := ¢.
Finally, for A € M,,(F), set A° =1I,,, Al = A.
Definition. Let p € Flz], p = ap + -+ + ana™, ¢ € L(V) and A € M, (F). Then p(¢) € L(V) and
p(A) € M, (FF) are given by:

p(¢) == agidy +ard+ -+ and” =Y arg",

keN
p(A) :==aol, + a1 A+ -+ a, A" = Z apA*.
keN
Proposition 3.4. For p,q € Flz], ¢ € L(V) and A € M, (F),
(p+a)(¢) =p() +a(9) (p+q)(A) = p(4) + q(4) (3:2)
(pq)(¢) = p(9)a(¢) = a(¢)p() (pq)(A) = p(A)q(A) = q(A)p(A). (33)

3.3 The minimum polynomial

Proposition 3.5. Let A € M, (F). Then there is a monic polynomial p € Flx] such that p(A) = 0.

Similarly, if ¢ € L(V) is a linear operator on a finite-dimensional vector space over F then there is a
monic polynomial p € Flz] with p(¢) = 0.

Definition. A minimum polynomial for ¢ € L(V), V a vector space over F is a monic polynomial
p € Flz] of minimum degree with p(¢) = 0: thus, if r € F[z] has r(¢) = 0 and degr < degp, then r = 0.

Similarly, a minimum polynomial for A € M, (F) is a monic polynomial p of least degree with p(A) = 0.

Theorem 3.6. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over a field FF.
Then ¢ has a unique minimum polynomial.

Similarly, any A € M, (F) has a unique minimum polynomial.
We denote these by mg and ma respectively.

Proposition 3.7. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over F and
p € Flzx].

Then p(¢) = 0 if and only if my divides p, that is, there is s € Fz] such that p = sm.



3.4 Eigenvalues and the characteristic polynomial

Definitions. Let V be a vector space over F and ¢ € L(V).

An eigenvalue of ¢ is a scalar X € F such that there is a non-zero v € V with

o(v) = M.
Such a vector v is called an eigenvector of ¢ with eigenvalue A.

The A-eigenspace E4(X) of ¢ is given by
E4(N) :=ker(¢p — Aidy) < V.

Definition. Let V' be a finite-dimensional vector space over F and ¢ € L(V).

The characteristic polynomial Ay of ¢ is given by
Ay(X) :=det(¢ — Aidy) = det(A — AI),
where A is the matrix of ¢ with respect to some (any!) basis of V.
Thus deg Ay = dim V.
Lemma 3.8. A scalar A € F is an eigenvalue of ¢ if and only if A is a root of Ag.

Definitions. Let ¢ € L(V) be in a linear operator on a finite-dimensional vector space V over F and A
an eigenvalue of ¢. Then

(1) The algebraic multiplicity of A, am(X) € Z, is the multiplicity of A as a root of Ay.
(2) The geometric multiplicity of A, gm(X\) € Z, is dim Ey4(A).

Theorem 3.9. Let ¢ be a linear operator on a finite-dimensional vector space V over C. Then ¢ has
an eigenvalue.

Proposition 3.10. Let ¢ € L(V) be a linear operator on a vector space over a field F and let v € V be
an eigenvector of ¢ with eigenvalue \:

o(v) = . (3.4)
Let p € Flx]. Then
p(¢9)(v) = p(A)v,

so that v is an eigenvector of p(¢) also with eigenvalue p(N).

Corollary 3.11. Let ¢ be a linear operator on a finite-dimensional vector space V' over F. Then any
eigenvalue of ¢ is a root of mg.

3.5 The Cayley—Hamilton theorem

Theorem 3.12 (Cayley-Hamilton! Theorem). Let ¢ € L(V) be a linear operator on a finite-dimensional
vector space over a field F.

Then Ag(¢) = 0.
Equivalently, for any A € M, (F), As(A) =0.
Corollary 3.13. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over a field F.

(1) mg divides Ay. Equivalently, ma divides Ay, for any A € M, (F).
(2) The roots of my are exactly the eigenvalues of ¢.

L Arthur Cayley, 1821-1895; William Rowan Hamilton, 1805-1865.



Chapter 4

The structure of linear operators

4.1 On normal forms

Definition. Matrices A, B € M,,(F) are similar if there is an invertible matrix P € M, (F) such that

B=P AP

4.2 Invariant subspaces

Definition. Let ¢ be a linear operator on a vector space V. A subspace U C V is ¢-invariant if and
only if ¢(u) € U, for all u € U.

Lemma 4.1. Let ¢,¢ € L(V) be linear operators and suppose that ¢p1p = ¢ (say that ¢ and ¢ commute).
Then kertp and im1 are ¢p-invariant.
Definition. Let Vi,...,Vp, <V with V=V, @ --- @V} and let ¢; € L(V;), for 1 <i < k.

Define ¢ : V — V by
d(v) = ¢p1(v1) + -+ + Pr(vr),

where v = vy +--- + v withv; € V;, for 1 <i < k.
Call ¢ the direct sum of the ¢; and write ¢ = ¢1 B -+ D Py

Definition. Let Ay, ..., A be square matrices with A; € M,,,(F). The direct sum of the A; is

A 0
A1 ®-- DA, = € M, (),
0 A
where n =n; +--- + ng.
A matrix of this type is said to be block diagonal.
Proposition 4.2. Let Vq,..., Vi, <V with V =V1 ®--- ® V; and let ¢; € L(V;), for 1 <i < k. Let
d=¢p1 DD pr. Then
(1) ¢ is linear so that ¢ € L(V).
(2) Each V; is ¢-invariant and ¢y, = ¢;, 1 <i < k.
(

3) Let B; be a basis of V; and ¢; have matrixz A; with respect to B;, 1 < i < k. Then ¢ has matriz
AL & - ® A with respect to the concatenated basis B = By ... By.



Proposition 4.3. Let Vi,..., Vi, <V withV =V, ®--- ® Vj, and let ¢ € L(V). Suppose that each V;
s ¢-invariant.

Then ¢ = ¢1 @ -+ @ ¢p where ¢; == ¢y, € L(V;).
Proposition 4.4. Let Vi,..., Vi <V withV =Vi®---@Vi, ¢ € L(V;), 1 <i< kand ¢ = 1B - DPi.
Then:

(1) kerp = ker 1 @ - - - ® ker ¢y

(2) im¢ =im¢y @ --- ®im ¢y.

(3) p(¢) =p(¢1) ® -+ @ p(oy), for any p € Flz].

(4) Ay =TT, Ao,

Proposition 4.5. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over a field F
and let A1, ..., \; be the distinct eigenvalues of ¢.

Then ¢ is diagonalisable if and only if
k

V=P EM) (4.1)

=1
4.3 Jordan decomposition

4.3.1 Powers of operators and Fitting’s Lemma
Proposition 4.6 (Increasing kernels, decreasing images). Let V' be a vector space over a field F and
¢ € L(V). Then
(1) ker ¢* < ker ¢**+1, for all k € N. That is,
{0} =ker¢” <kerp < kero? <....
If ker ¢oF = ker ¢**1 then ker ¢* = ker ¥+, for all n € N.
(2) im ¢*F > im ¢**+1, for all k € N. That is,
V=img¢®>im¢>imep? > ....
If im ¢* = im ¢**1 then im ¢F = im ¢*+™, for all n € N.
Corollary 4.7. Let V be finite-dimensional with dimV =n and ¢ € L(V). Then, for all k € N,
ker ¢" = ker ¢"*
im ¢" = im ¢"*F.

Theorem 4.8 (Fitting!’s Lemma). Let ¢ € L(V) be a linear operator on a finite-dimensional vector
space over a field F. Then, with n = dimV, we have

V =ker ¢" @ im ¢".

4.3.2 Generalised eigenspaces

Definition. Let ¢ € L(V) be a linear operator on an n-dimensional vector space over a field F. A
generalised eigenvector of ¢ with eigenvalue A is a non-zero v € V such that

(¢ — Xid)"(v) = 0. (4.2)

The set of all such along with 0 is called the generalised eigenspace of ¢ with eigenvalue A\ and denoted
G¢(>\) Thus
Gy(A) =ker(¢ — Aidy)" < V.

1Hans Fitting, 1906-1938.

10



Lemma 4.9. E4(A\) < Gy(X) <V and Gg(N) is ¢-invariant.

Lemma 4.10. Let ¢ € L(V) be a linear operator on an n-dimensional vector space over F and A;, Ay € F
distinct eigenvalues of ¢. Then Gy(A1) N Gy(A2) = {0}.

Theorem 4.11 (Jordan? decomposition). Let ¢ € L(V) be a linear operator on a finite-dimensional
vector space over C with distinct eigenvalues A1, ..., \g. Then

k
V=P GsN).
i=1

Definition. A linear operator ¢ on a vector space V is nilpotent if ¢* = 0, for some k € N. or
equivalently, if ker oF = V.

)

Proposition 4.12. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space V over F.

Then ¢ is nilpotent if and only if there is a basis with respect to which ¢ has a strictly upper triangular
matriz A (thus A;; = 0 whenever i > j):

A= N
0 0

Proposition 4.13. Let A € C be an eigenvalue of a linear operator ¢ on a complex finite-dimensional
vector space. Then
am(A) = dim G4 (A).

Proposition 4.14. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over C with
distinct eigenvalues A1, ..., Ag. Set ¢; = @|a,(r,)- Then

(1) Each my, = (x — X\;)%, for some s; < dim Gg(N;).
(2) mo =TTz o, = T (2 = M)
Corollary 4.15. Let ¢ € L(V) be a linear operator with minimum polynomial Hle(:c — X;)%. Then
Gy(Ni) = ker(¢ — A;idy)*e.

4.4 Jordan normal form

4.4.1 Jordan blocks

Definition. The Jordan block of size n € Z4 and eigenvalue A € F is J(A\,n) € M, (F) with \’s on the
diagonal, 1’s on the super-diagonal and zeros elsewhere. Thus

A1 0. 0

J()\,n)z 0
1

0 A

Notation. Set J,, := J(0,n) so that J(A\,n) = A, + J,.
Lemma 4.16. Let vy,...,v, be a basis for a vector space V and ¢ € L(V).

Then the following are equivalent:

2Camille Jordan, 1838-1922.
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(1) ¢ has matriz J,, with respect to v1,. .., vy,.
(2) ¢(v1) =0 and d(v;) = vi—1, for2<i<n.
(3) vi = (bnii(vn); 0<i<n-—1and¢"(vy,)=0.

Theorem 4.17. Let ¢ € L(V) be a nilpotent operator on a finite-dimensional vector space over F. Then
there are vi,...,vx € V and ni,...,ng € Z4 such that

(z)nl_l(vl))'"7¢(U1)7U17"'7¢nk_l(vk)7"'7¢(vk)7vk
is a basis of V and ¢™i(v;) =0, for 1 <i < k.

Corollary 4.18. Let ¢ € L(V) be a nilpotent operator on a finite-dimensional vector space over F. Then
there is a basis for which ¢ has matriz J,, ®--- ® J,, .

Proposition 4.19. Let ¢ € L(V) be nilpotent with matrix J,, @ --- ® Jyn, for some basis of V. Then
ny,..., N, are unique up to order. Indeed,

#{i | n; > s} = dimker ¢° — dimker ¢° ',
for each s > 1.
Proposition 4.20. In the situation of Proposition 4.19, we have
me = a°,

where s = max{ny,...,ng}.

4.4.2 Jordan normal form

Theorem 4.21. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space V over C. Then
there is a basis of V' for which ¢ has as matriz a direct sum of Jordan blocks which are unique up to
order.

Such a basis is called a Jordan basis and the direct sum of Jordan blocks is called the Jordan normal
form (JNF) of ¢.

Corollary 4.22. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space V' over C with

distinct eigenvalues A1, ..., \p. Then
k

My = H(m — )%

i=1

where s; is the size of the largest Jordan block of ¢ with eigenvalue \;.

Corollary 4.23. Any A € M, (C) is similar to a direct sum of Jordan blocks, that is, there is an
invertible matriz P € M,,(C) such that

PlAP=A,¢---® A,

with each A; a Jordan block.
A1 @ - @ A, is called the Jordan normal form (JNF) of A and is unique up to the order of the A,.

Theorem 4.24. Matrices A, B € M, (C) are similar if and only if they have the same Jordan normal
form, up to reordering the Jordan blocks.

12



Chapter 5

Symmetric bilinear forms and
quadratic forms

5.1 Bilinear forms and matrices

Definition. Let V be a vector space over a field F. A map B : V x V — F is bilinear if it is linear in
each slot separately:

B(Avy 4 va,v) = AB(v1,v) + B(va,v)
B(v, Av1 +v2) = AB(v,v1) + B(v, v2),

for all v,v1,v2 € V, v,v1,v9 € V and X € F.
A bilinear map V x V — F is called a bilinear form on V.

Definition. Let V be a vector space over F with basis B = v1,...,v, and let B : V xV — F be a
bilinear form. The matriz of B with respect to B is A € M, (F) given by

Aij :B(Ui,l}j),
for 1 <i,5 <n.

Proposition 5.1. Let B: V xV — T be a bilinear form with matriz A with respect to B = v1,...,v,.
Then B is completely determined by A: if v =" | z;v; and w = Z;"zl y;v; then

B(v,w) = Z .T,‘lyJA” = XTAy.
1,7=1

Proposition 5.2. Let B:V x V — T be a bilinear form with matrices A and A’ with respect to bases
B:vi,...,v, and B v}, ... v, of V. Then

A'=PTAP
where P is the change of basis matriz' from B to B': thus vi =3 Piyvg, for 1< j <.
Definition. We say that matrices A, B € M, (F) are congruent if there is P € GL(n,F) such that

B=PTAP.

1 Algebra 1B, Definition 1.6.1.
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5.2 Symmetric bilinear forms

Definition. A bilinear form B : V x V — F is symmetric if, for all v,w € V,

B(v,w) = B(w,v)

5.2.1 Rank and radical

Definitions. Let B : V x V — F be a symmetric bilinear form.
The radical rad B of B is given by
rad B:={v eV | B(v,w) =0, for all w € V'}.
We shall shortly see that rad B < V.
We say that B is non-degenerate if rad B = {0}.

If V is finite-dimensional, the rank of B is dimV — dimrad B (so that B is non-degenerate if and only
if rank B = dim V).

Lemma 5.3. Let B: V XV — F be a symmetric bilinear form with matriz A with respect to a basis
V1y..., V. Thenv=>" z;v; € rad B if and only if Ax =0 if and only if xTA=0.

Corollary 5.4. Let B:V xV — T be a symmetric bilinear form on a finite-dimensional vector space
V' with matriz A with respect to some basis of V.. Then

rank B = rank A.

In particular, B is non-degenerate if and only if det A # 0.

5.2.2 Classification of symmetric bilinear forms
Convention. In this section, we work with a field F where 141 # 0 so that 3 = (1+1)~" makes sense.
This excludes, for example, the 2-element field Z.

Lemma 5.5. Let B: V xV — F be a symmetric bilinear form such that B(v,v) = 0, for allv € V.
Then B = 0.

Theorem 5.6 (Diagonalisation Theorem). Let B be a symmetric bilinear form on a finite-dimensional
vector space over F. Then there is a basis vi,...,v, of V with respect to which the matriz of B is
diagonal:

B(vi,vj) = 0,

foralll1 <i#j<n. Wecall vq,...,v, a diagonalising basis for B.

Corollary 5.7. Let A € M,xn(F) be symmetric. Then there is an invertible matriz P € GL(n,F) such
that PT AP is diagonal.

5.2.3 Sylvester’s Theorem

Definitions. Let B be a symmetric bilinear form on a real vector space V.
Say that B is positive definite if B(v,v) > 0, for all v € V' \ {0}.

Say that B is negative definite if —B is positive definite.

If V is finite-dimensional, the signature of B is the pair (p,q) where

p=max{dimU | U <V with Bjyy positive definite}
q = max{dim W | W <V with B}y w negative definite}.
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Theorem 5.8 (Sylvester’s Law of Inertia). Let B be a symmetric bilinear form of signature (p,q) on a
finite-dimensional real vector space Then:

e p+q=rank B;

o any diagonal matriz representing B has p positive entries and q negative entries (necessarily on
the diagonal!).

5.3 Application: Quadratic forms

Convention. We continue working with a field F where 1 + 1 # 0.

Definition. A quadratic form on a vector space V over F is a function @ : V — F of the form

Q(U) = B(U, 1}),
for all v € V, where B : V x V — F is a symmetric bilinear form.

Lemma 5.9. Let Q : V — F be a quadratic form with Q(v) = B(v,v) for a symmetric bilinear form B.
Then

B(v,w) = 5(Qv +w) - Q(v) — Q(w)),
for allv,w e V.
B is called the polarisation of Q.
Definitions. Let @) be a quadratic form on a finite-dimensional vector space V over F.
The rank of @ is the rank of its polarisation.

If F = R, the signature of @ is the signature of its polarisation.

Theorem 5.10. Let Q be a quadratic form with rank r polarisation on a finite-dimensional vector space
over .

(1) WhenTF = C, there is a basis vy, ...,v, of V such that
QO wwi) =al+ - +al
i=1

(2) When F =R and Q has signature (p,q), there is a basis v1,...,v, of V such that

n

2 2 2 2
Q(Zmiv’i) :'r1+'”+mp_‘rp+1 T Xy
=1
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