Linear algebra: key concepts

1.1 Vector spaces

Definition. A **vector space** V **over a field** \mathbb{F} is a set V with two operations:

addition $V \times V \rightarrow V : (v, w) \mapsto v + w$ such that:

- $v + w = w + v$, for all $v, w \in V$;
- $u + (v + w) = (u + v) + w$, for all $u, v, w \in V$;
- there is a **zero element** $0 \in V$ for which $v + 0 = v = 0 + v$, for all $v \in V$;
- each element $v \in V$ has an **additive inverse** $-v \in V$ for which $v + (-v) =$ $0 = (-v) + v$.

In fancy language, *V* with addition is an **abelian group**.

scalar multiplication $\mathbb{F} \times V \to V : (\lambda, v) \mapsto \lambda v$ such that

- $(\lambda + \mu)v = \lambda v + \mu v$, for all $v \in V$, $\lambda, \mu \in \mathbb{F}$.
- $\lambda(v+w) = \lambda v + \lambda w$, for all $v, w \in V$, $\lambda \in \mathbb{F}$.
- $(\lambda \mu)v = \lambda(\mu v)$, for all $v \in V$, $\lambda, \mu \in \mathbb{F}$.
- $1v = v$, for all $v \in V$.

We call the elements of F **scalars** and those of V **vectors**.

1.2 Subspaces

Definition. A **vector** (or **linear**) **subspace** of a vector space V over F is a nonempty subset $U \subseteq V$ which is closed under addition and scalar multiplication: whenever $u, u_1, u_2 \in U$ and $\lambda \in \mathbb{F}$, then $u_1 + u_2 \in U$ and $\lambda u \in U$.

In this case, we write $U \leq V$.

Say that *U* is **trivial** if $U = \{0\}$ and **proper** if $U \neq V$.

1.3 Bases

Definitions. Let v_1, \ldots, v_n be a list of vectors in a vector space V.

(1) The **span** of v_1, \ldots, v_n is

 $\text{span}\{v_1, \ldots, v_n\} := \{\lambda_1 v_1 + \cdots + \lambda_n v_n \mid \lambda_i \in \mathbb{F}, 1 \le i \le n\} \le V.$

- (2) v_1, \ldots, v_n span *V* (or are a spanning list for *V*) if $\text{span}\{v_1, \ldots, v_n\} = V$.
- (3) v_1, \ldots, v_n are **linearly independent** if, whenever $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$, then each $\lambda_i = 0$, $1 \leq i \leq n$, and **linearly dependent** otherwise.
- (4) v_1, \ldots, v_n is a **basis** for *V* if they are linearly independent and span *V*.

Definition. A vector space is **finite-dimensional** if it admits a finite list of vectors as basis and **infinite-dimensional** otherwise.

If *V* is finite-dimensional, the **dimension** of *V* , dim *V* , is the number of vectors in a (any) basis of *V* .

1.3.1 Useful facts

Proposition 1.1 (Algebra 1B, Corollary 1.4.7)**.**

Any linearly independent list of vectors in a finite-dimensional vector space can be extended to a basis.

Proposition 1.2 (Algebra 1B, Corollary 1.4.6)**.** Let *V* be a finite-dimensional vector space and $U \leq V$. Then

 $\dim U \leq \dim V$

with equality if and only if $U = V$.

1.4 Linear maps

Definitions. A map $\phi: V \to W$ of vector spaces over $\mathbb F$ is a **linear map** (or, in older books, **linear transformation**) if

$$
\phi(v + w) = \phi(v) + \phi(w)
$$

$$
\phi(\lambda v) = \lambda \phi(v),
$$

for all $v, w \in V$, $\lambda \in \mathbb{F}$.

The **kernel** of ϕ is $\ker \phi := \{v \in V \mid \phi(v) = 0\} \leq V$.

The **image** of ϕ is $\operatorname{im} \phi := {\phi(v) | v \in V} \leq W$.

Definition. A linear map $\phi: V \to W$ is a **(linear) isomorphism** if there is a linear map $\psi: W \to V$ such that

 $\psi \circ \phi = \text{id}_V, \qquad \phi \circ \psi = \text{id}_W.$

If there is an isomorphism $V \rightarrow W$, say that *V* and *W* are isomorphic and write $V \cong W$.

Lemma 1.3 (Algebra 1B, lemma 1.2.3)**.** $\phi: V \to W$ is an isomorphism if and only if ϕ is a linear bijection (and then $\psi = \phi^{-1}$).

Notation. For vector spaces *V, W* over \mathbb{F} , denote by $L_{\mathbb{F}}(V,W)$ (or simply $L(V,W)$) the set $\{\phi: V \to W \mid \phi \text{ is linear}\}\$ of linear maps from *V* to *W*.

Theorem 1.4 (Linearity is a linear condition)**.** *L*(*V, W*) is a vector space under pointwise addition and scalar multiplication. Thus

$$
(\phi + \psi)(v) := \phi(v) + \psi(v)
$$

$$
(\lambda \phi)(v) := \lambda \phi(v),
$$

for all $\phi, \psi \in L(V, W)$, $v \in V$ and $\lambda \in \mathbb{F}$.

Proposition 1.5 (Extension by linearity)**.**

Let *V, W* be vector spaces over \mathbb{F} . Let v_1, \ldots, v_n be a basis of *V* and w_1, \ldots, w_n any vectors in *W* .

Then there is a **unique** $\phi \in L(V, W)$ such that

$$
\phi(v_i) = w_i, \qquad 1 \le i \le n. \tag{1.1}
$$

Theorem 1.6 (Rank-nullity)**.**

Let $\phi: V \to W$ be linear with *V* finite-dimensional. Then

 $\dim \mathrm{im} \phi + \dim \mathrm{ker} \phi = \dim V.$

Proposition 1.7.

Let $\phi: V \to W$ be linear with *V, W* finite-dimensional vector spaces of the same dimension: $\dim V = \dim W$.

Then the following are equivalent:

- (1) *φ* is injective.
- (2) *φ* is surjective.
- (3) *φ* is an isomorphism.

Sums and quotients

Convention. In this chapter, all vector spaces are over the same field F unless we say otherwise.

2.1 Sums of subspaces

Definition. Let $V_1, \ldots, V_k \leq V$. The **sum** $V_1 + \cdots + V_k$ is the set

 $V_1 + \cdots + V_k := \{v_1 + \cdots + v_k \mid v_i \in V_i, 1 \le i \le k\}.$

Proposition 2.1.

Let $V_1, \ldots, V_k \leq V$. Then

- (1) $V_1 + \cdots + V_k \leq V$.
- (2) If $W \leq V$ and $V_1, ..., V_k \leq W$ then $V_1, ..., V_k \leq V_1 + ... + V_k \leq W$.

2.2 Direct sums

Definition. Let $V_1, \ldots, V_k \leq V$. The sum $V_1 + \cdots + V_k$ is **direct** if each $v \in V_1 + \cdots + V_k$ can be written

$$
v = v_1 + \cdots + v_k
$$

in only one way, that is, for unique $v_i \in V_i$, $1 \leq i \leq k$.

In this case, we write $V_1 \oplus \cdots \oplus V_k$ instead of $V_1 + \cdots + V_k$.

Proposition 2.2.

Let $V_1, \ldots, V_k \leq V$. Then $V_1 + \cdots + V_k$ is direct if and only if whenever $v_1 + \cdots + v_k = 0$, with $v_i \in V_i$, $1 \leq i \leq k$, then $v_i = 0$, for all $1 \leq i \leq k$.

Proposition 2.3.

Let $V_1, V_2 \leq V$. Then $V_1 + V_2$ is direct if and only if $V_1 \cap V_2 = \{0\}$.

Definition. Let $V_1, V_2 \leq V$. *V* is the (internal) direct sum of V_1 and V_2 if $V =$ $V_1 \oplus V_2$.

In this case, say that V_2 is a **complement** of V_1 (and V_1 is a complement of V_2).

Proposition 2.4.

Let $V_1, \ldots, V_k \leq V$, $k \geq 2$. Then the sum $V_1 + \cdots + V_k$ is direct if and only if, for each $1 \leq i \leq k$, $V_i \cap (\sum_{j \neq i} V_j) = \{0\}$.

2.2.1 Induction from two summands

Lemma 2.5.

Let $V_1, \ldots, V_k \leq V$. Then $V_1 + \cdots + V_k$ is direct if and only if $V_1 + \cdots + V_{k-1}$ is direct and $(V_1 + \cdots + V_{k-1}) + V_k$ (two summands) is direct.

2.2.2 Direct sums, bases and dimension

Proposition 2.6.

Let $V_1, V_2 \leq V$ be subspaces with bases $B_1: v_1, \ldots, v_k$ and $B_2: w_1, \ldots, w_l$. Then $V_1 + V_2$ is direct if and only if the **concatenation**^{[1](#page-5-0)} $\mathcal{B}_1\mathcal{B}_2$: $v_1,\ldots,v_k,w_1,\ldots,w_l$ is a basis of V_1+V_2 .

Corollary 2.7.

Let $V_1, \ldots, V_k \leq V$ be finite-dimensional subspaces with B_i a basis of V_i , $1 \leq i \leq k$. Then $V_1 + \cdots + V_k$ is direct if and only if the concatenation $B_1 \ldots B_k$ is a basis for $V_1 + \cdots + V_k$.

Corollary 2.8.

Let $V_1, \ldots, V_k \leq V$ be subspaces of a finite-dimensional vector space V with $V_1 + \cdots + V_k$ direct. Then

dim $V_1 \oplus \cdots \oplus V_k = \dim V_1 + \cdots + \dim V_k$.

¹The concatenation of two lists is simply the list obtained by adjoining all entries in the second list to the first.

2.2.3 Complements

Proposition 2.9 (Complements exist)**.**

Let $U \leq V$, a finite-dimensional vector space. Then there is a complement to U .

2.3 Quotients

Definition. Let $U \leq V$. Say that $v, w \in V$ are **congruent modulo** *U* if $v - w \in U$. In this case, we write $v \equiv w \mod U$.

Lemma 2.10.

Congruence modulo *U* is an equivalence relation.

Definition. For $v \in V$, $U \leq V$, the set $v + U := \{v + u | u \in U\} \subseteq V$ is called a **coset of** *U* and *v* is called a **coset representative** of $v + U$.

Definition. Let $U \leq V$. The **quotient space** V/U of V by U is the set V/U , pronounced " *V* mod *U* ", of cosets of *U* :

$$
V/U := \{ v + U \mid v \in V \}.
$$

This is a subset of the **power set**^{[2](#page-6-0)} $\mathcal{P}(V)$ of *V*.

The **quotient map** $q: V \to V/U$ is defined by

$$
q(v) = v + U.
$$

Theorem 2.11.

Let $U \leq V$. Then, for $v, w \in V$, $\lambda \in \mathbb{F}$,

$$
(v+U) + (w+U) := (v+w) + U
$$

$$
\lambda(v+U) := (\lambda v) + U
$$

give well-defined operations of addition and scalar multiplication on *V/U* with respect to which V/U is a vector space and $q: V \rightarrow V/U$ is a linear map.

Moreover, $\ker q = U$ and $\operatorname{im} q = V/U$.

Corollary 2.12.

Let $U \leq V$. If *V* is finite-dimensional then so is V/U and

 $\dim V/U = \dim V - \dim U.$

²Recall from Algebra 1A that the power set of a set *A* is the set of all subsets of *A* .

Theorem 2.13 (First Isomorphism Theorem)**.** Let $\phi: V \to W$ be a linear map of vector spaces.

Then $V/\ker \phi \cong \operatorname{im} \phi$.

In fact, define $\bar{\phi}$: $V / \ker \phi \rightarrow \mathrm{im} \phi$ by

 $\bar{\phi}(q(v)) = \phi(v),$

where $q: V \to V/\ker \phi$ is the quotient map.

Then $\bar{\phi}$ is a well-defined linear isomorphism.

Polynomials, operators and matrices

3.1 Polynomials

Definitions. A **polynomial in a variable** x with coefficients in a field F is a formal expression

$$
p=\sum_{k=0}^\infty a_kx^k
$$

with **coefficients** $a_k \in \mathbb{F}$ such that only finitely many a_k are non-zero.

Two polynomials are equal if all their coefficients are equal.

The zero polynomial has all coefficients zero.

The **degree** of a polynomial *p* is $\deg p = \max\{k \in \mathbb{N} \mid a_k \neq 0\}$. By convention, $\deg 0 =$ $-\infty$.

The set of all polynomials in x with coefficients in F is denoted $F[x]$.

Definition. A polynomial is **monic** if its leading coefficient is 1:

$$
p = a_0 + \cdots + x^n.
$$

Theorem 3.1 (Algebra 1A, Proposition 3.10)**.** Let $p, q \in \mathbb{F}[x]$. Then there are unique $r, s \in \mathbb{F}[x]$ such that

$$
p = sq + r
$$

with $\deg r < \deg q$.

Theorem 3.2 (Fundamental Theorem of Algebra)**.**

Let $p \in \mathbb{C}[x]$ be a polynomial with $\deg p \geq 1$. Then p has a root. Thus there is $t \in \mathbb{C}$ with $p(t) = 0$.

Theorem 3.3.

Let $p \in \mathbb{C}[x]$ and $\lambda_1, \ldots, \lambda_k$ the distinct roots of p. Then

$$
p = a \prod_{i=1}^{k} (x - \lambda_i)^{n_i},
$$

for some $a \in \mathbb{C}$ and $n_i \in \mathbb{Z}_+$, $1 \leq i \leq k$.

 n_i is called the multiplicity of the root $\,\lambda_i$.

3.2 Linear operators, matrices and polynomials

3.2.1 Linear operators and matrices

Definition. Let *V* be a vector space over F . A **linear operator on** *V* is a linear map $\phi: V \to V$.

The vector space of linear operators on *V* is denoted $L(V)$ (instead of $L(V, V)$).

Notation. Write $M_n(\mathbb{F})$ for $M_{n \times n}(\mathbb{F})$.

Definition. Let *V* be a finite-dimensional vector space over F with basis $B: v_1, \ldots, v_n$. Let $\phi \in L(V)$. The **matrix of** ϕ **with respect to** B is the matrix $A = (A_{ij}) \in M_n(\mathbb{F})$ defined by:

$$
\phi(v_j) = \sum_{i=1}^{n} A_{ij} v_i,
$$
\n(3.1)

for all $1 \leq j \leq n$.

3.2.2 Polynomials in linear operators and matrices

Notation. For $\phi, \psi \in L(V)$ write $\phi\psi$ for $\phi \circ \psi \in L(V)$.

Similarly, write ϕ^n for the *n*-fold composition of ϕ with itself:

$$
\phi^n = \underbrace{\phi \circ \cdots \circ \phi}_{n \text{ times}}
$$

and define $\phi^0 := \mathrm{id}_V$, $\phi^1 := \phi$.

Finally, for $A \in M_n(\mathbb{F})$, set $A^0 = I_n$, $A^1 = A$.

Definition. Let $p \in \mathbb{F}[x]$, $p = a_0 + \cdots + a_n x^n$, $\phi \in L(V)$ and $A \in M_n(\mathbb{F})$. Then $p(\phi) \in L(V)$ and $p(A) \in M_n(\mathbb{F})$ are given by:

$$
p(\phi) := a_0 \operatorname{id}_V + a_1 \phi + \dots + a_n \phi^n = \sum_{k \in \mathbb{N}} a_k \phi^k,
$$

 $p(A) := a_0 I_n + a_1 A + \dots + a_n A^n = \sum_{k \in \mathbb{N}} a_k A^k.$

Proposition 3.4.

For $p, q \in \mathbb{F}[x]$, $\phi \in L(V)$ and $A \in M_n(\mathbb{F})$,

$$
(p+q)(\phi) = p(\phi) + q(\phi) \qquad (p+q)(A) = p(A) + q(A) \qquad (3.2)
$$

$$
(pq)(\phi) = p(\phi)q(\phi) = q(\phi)p(\phi) \qquad (pq)(A) = p(A)q(A) = q(A)p(A). \qquad (3.3)
$$

3.3 The minimum polynomial

Proposition 3.5.

Let $A \in M_n(\mathbb{F})$. Then there is a monic polynomial $p \in \mathbb{F}[x]$ such that $p(A) = 0$.

Similarly, if $\phi \in L(V)$ is a linear operator on a finite-dimensional vector space over $\mathbb F$ then there is a monic polynomial $p \in \mathbb{F}[x]$ with $p(\phi) = 0$.

Definition. A **minimum polynomial** for $\phi \in L(V)$, V a vector space over F is a monic polynomial $p \in \mathbb{F}[x]$ of minimum degree with $p(\phi) = 0$: thus, if $r \in \mathbb{F}[x]$ has $r(\phi) = 0$ and $\deg r < \deg p$, then $r = 0$.

Similarly, a minimum polynomial for $A \in M_n(\mathbb{F})$ is a monic polynomial p of least degree with $p(A) = 0$.

Theorem 3.6.

Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space over a field \mathbb{F} . Then *φ* has a unique minimum polynomial.

Similarly, any $A \in M_n(\mathbb{F})$ has a unique minimum polynomial.

We denote these by m_{ϕ} and m_A respectively.

Proposition 3.7.

Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space over F and $p \in \mathbb{F}[x]$.

Then $p(\phi) = 0$ if and only if m_{ϕ} divides p, that is, there is $s \in \mathbb{F}[x]$ such that $p = sm_{\phi}$.

3.4 Eigenvalues and the characteristic polynomial

Definitions. Let *V* be a vector space over $\mathbb F$ and $\phi \in L(V)$.

An **eigenvalue** of ϕ is a scalar $\lambda \in \mathbb{F}$ such that there is a **non-zero** $v \in V$ with

$$
\phi(v) = \lambda v.
$$

Such a vector *v* is called an **eigenvector of** *φ* **with eigenvalue** *λ* .

The λ **-eigenspace** $E_{\phi}(\lambda)$ of ϕ is given by

$$
E_{\phi}(\lambda) := \ker(\phi - \lambda \operatorname{id}_V) \le V.
$$

Definition. Let *V* be a finite-dimensional vector space over \mathbb{F} and $\phi \in L(V)$.

The **characteristic polynomial** ∆*^φ* **of** *φ* is given by

$$
\Delta_{\phi}(\lambda) := \det(\phi - \lambda \operatorname{id}_V) = \det(A - \lambda I),
$$

where *A* is the matrix of ϕ with respect to some (any!) basis of *V*.

Thus $\deg \Delta_{\phi} = \dim V$.

Lemma 3.8.

A scalar $\lambda \in \mathbb{F}$ is an eigenvalue of ϕ if and only if λ is a root of Δ_{ϕ} .

Definitions. Let $\phi \in L(V)$ be in a linear operator on a finite-dimensional vector space *V* over $\mathbb F$ and λ an eigenvalue of ϕ . Then

- (1) The **algebraic multiplicity** of λ , $am(\lambda) \in \mathbb{Z}_+$, is the multiplicity of λ as a root of Δ_{ϕ} .
- (2) The **geometric multiplicity** of λ , $\text{gm}(\lambda) \in \mathbb{Z}_+$, is $\dim E_{\phi}(\lambda)$.

Theorem 3.9.

Let *φ* be a linear operator on a finite-dimensional vector space *V* over C . Then *φ* has an eigenvalue.

Proposition 3.10.

Let $\phi \in L(V)$ be a linear operator on a vector space over a field F and let $v \in V$ be an eigenvector of *φ* with eigenvalue *λ* :

$$
\phi(v) = \lambda v. \tag{3.4}
$$

Let $p \in \mathbb{F}[x]$. Then

$$
p(\phi)(v) = p(\lambda)v,
$$

so that *v* is an eigenvector of $p(\phi)$ also with eigenvalue $p(\lambda)$.

Corollary 3.11.

Let ϕ be a linear operator on a finite-dimensional vector space *V* over $\mathbb F$. Then any eigenvalue of ϕ is a root of m_{ϕ} .

3.5 The Cayley–Hamilton theorem

Theorem 3.[1](#page-12-0)2 (Cayley-Hamilton¹ Theorem).

Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space over a field \mathbb{F} .

Then $\Delta_{\phi}(\phi) = 0$.

Equivalently, for any $A \in M_n(\mathbb{F})$, $\Delta_A(A) = 0$.

Corollary 3.13.

Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space over a field \mathbb{F} .

- (1) m_{ϕ} divides Δ_{ϕ} . Equivalently, m_A divides Δ_A , for any $A \in M_n(\mathbb{F})$.
- (2) The roots of m_{ϕ} are exactly the eigenvalues of ϕ .

¹Arthur Cayley, 1821–1895; William Rowan Hamilton, 1805–1865.

The structure of linear operators

4.1 On normal forms

Definition. Matrices $A, B \in M_n(\mathbb{F})$ are **similar** if there is an invertible matrix $P \in$ $M_n(\mathbb{F})$ such that

 $B = P^{-1}AP$.

4.2 Invariant subspaces

Definition. Let ϕ be a linear operator on a vector space *V*. A subspace $U \subseteq V$ is ϕ -invariant if and only if $\phi(u) \in U$, for all $u \in U$.

Lemma 4.1.

Let $\phi, \psi \in L(V)$ be linear operators and suppose that $\phi\psi = \psi\phi$ (say that ϕ and ψ **commute**).

Then ker *ψ* and im *ψ* are *φ* -invariant.

Definition. Let $V_1, \ldots, V_k \leq V$ with $V = V_1 \oplus \cdots \oplus V_k$ and let $\phi_i \in L(V_i)$, for $1 \leq i \leq k$.

Define $\phi: V \to V$ by

 $\phi(v) = \phi_1(v_1) + \cdots + \phi_k(v_k),$

where $v = v_1 + \cdots + v_k$ with $v_i \in V_i$, for $1 \le i \le k$.

Call ϕ the **direct sum of the** ϕ_i and write $\phi = \phi_1 \oplus \cdots \oplus \phi_k$.

Definition. Let A_1, \ldots, A_k be square matrices with $A_i \in M_{n_i}(\mathbb{F})$. The direct sum of **the** A_i is

$$
A_1 \oplus \cdots \oplus A_k := \begin{pmatrix} A_1 & & 0 \\ & \ddots & \\ & & \ddots & \\ 0 & & & A_k \end{pmatrix} \in M_n(\mathbb{F}),
$$

where $n = n_1 + \cdots + n_k$.

A matrix of this type is said to be **block diagonal**.

Proposition 4.2.

Let $V_1, \ldots, V_k \leq V$ with $V = V_1 \oplus \cdots \oplus V_k$ and let $\phi_i \in L(V_i)$, for $1 \leq i \leq k$. Let $\phi = \phi_1 \oplus \cdots \oplus \phi_k$. Then

- (1) ϕ is linear so that $\phi \in L(V)$.
- (2) Each V_i is ϕ -invariant and $\phi_{|V_i} = \phi_i$, $1 \leq i \leq k$.
- (3) Let \mathcal{B}_i be a basis of V_i and ϕ_i have matrix A_i with respect to \mathcal{B}_i , $1 \le i \le k$. Then ϕ has matrix $A_1 \oplus \cdots \oplus A_k$ with respect to the concatenated basis $B = B_1 \dots B_k$.

Proposition 4.3.

Let $V_1, \ldots, V_k \leq V$ with $V = V_1 \oplus \cdots \oplus V_k$ and let $\phi \in L(V)$. Suppose that each V_i is *φ* -invariant.

Then $\phi = \phi_1 \oplus \cdots \oplus \phi_k$ where $\phi_i := \phi_{|V_i} \in L(V_i)$.

Proposition 4.4.

Let $V_1,\ldots,V_k\leq V$ with $V=V_1\oplus\cdots\oplus V_k$, $\phi_i\in L(V_i)$, $1\leq i\leq k$ and $\phi=\phi_1\oplus\cdots\oplus\phi_k$.

Then:

- (1) ker $\phi = \ker \phi_1 \oplus \cdots \oplus \ker \phi_k$.
- (2) im $\phi = \text{im } \phi_1 \oplus \cdots \oplus \text{im } \phi_k$.
- (3) $p(\phi) = p(\phi_1) \oplus \cdots \oplus p(\phi_k)$, for any $p \in \mathbb{F}[x]$.
- (4) $\Delta_{\phi} = \prod_{i=1}^{k} \Delta_{\phi_i}$.

Proposition 4.5.

Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space over a field F and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of ϕ .

Then *φ* is diagonalisable if and only if

$$
V = \bigoplus_{i=1}^{k} E_{\phi}(\lambda_i). \tag{4.1}
$$

4.3 Jordan decomposition

4.3.1 Powers of operators and Fitting's Lemma

Proposition 4.6 (Increasing kernels, decreasing images)**.** Let *V* be a vector space over a field \mathbb{F} and $\phi \in L(V)$. Then

(1) $\ker \phi^k \leq \ker \phi^{k+1}$, for all $k \in \mathbb{N}$. That is,

 $\{0\} = \ker \phi^0 \leq \ker \phi \leq \ker \phi^2 \leq \dots$

If $\ker \phi^k = \ker \phi^{k+1}$ then $\ker \phi^k = \ker \phi^{k+n}$, for all $n \in \mathbb{N}$.

(2) $\lim \phi^k \geq \lim \phi^{k+1}$, for all $k \in \mathbb{N}$. That is,

 $V = \operatorname{im} \phi^0 \geq \operatorname{im} \phi \geq \operatorname{im} \phi^2 \geq \dots$

If $\operatorname{im} \phi^k = \operatorname{im} \phi^{k+1}$ then $\operatorname{im} \phi^k = \operatorname{im} \phi^{k+n}$, for all $n \in \mathbb{N}$.

Corollary 4.7.

Let *V* be finite-dimensional with $\dim V = n$ and $\phi \in L(V)$. Then, for all $k \in \mathbb{N}$,

 $\ker \phi^n = \ker \phi^{n+k}$ $\lim \phi^n = \lim \phi^{n+k}.$

Theorem 4.8 (Fitting^{[1](#page-15-0)}'s Lemma).

Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space over a field \mathbb{F} . Then, with $n = \dim V$, we have

$$
V = \ker \phi^n \oplus \text{im } \phi^n.
$$

4.3.2 Generalised eigenspaces

Definition. Let $\phi \in L(V)$ be a linear operator on an *n*-dimensional vector space over a field F . A **generalised eigenvector of** *φ* **with eigenvalue** *λ* is a non-zero *v* ∈ *V* such that

$$
(\phi - \lambda \operatorname{id})^n(v) = 0. \tag{4.2}
$$

The set of all such along with 0 is called the **generalised eigenspace of** *φ* **with eigenvalue** λ and denoted $G_{\phi}(\lambda)$. Thus

$$
G_{\phi}(\lambda) = \ker(\phi - \lambda \operatorname{id}_V)^n \le V.
$$

Lemma 4.9.

 $E_{\phi}(\lambda) \leq G_{\phi}(\lambda) \leq V$ and $G_{\phi}(\lambda)$ is ϕ -invariant.

¹Hans Fitting, 1906–1938.

Lemma 4.10.

Let $\phi \in L(V)$ be a linear operator on an *n*-dimensional vector space over F and $\lambda_1, \lambda_2 \in \mathbb{F}$ distinct eigenvalues of ϕ . Then $G_{\phi}(\lambda_1) \cap G_{\phi}(\lambda_2) = \{0\}$.

Theorem 4.11 (Jordan^{[2](#page-16-0)} decomposition).

Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space over $\mathbb C$ with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. Then

$$
V = \bigoplus_{i=1}^{k} G_{\phi}(\lambda_i).
$$

Definition. A linear operator ϕ on a vector space V is **nilpotent** if $\phi^k = 0$, for some $k \in \mathbb{N}$. or, equivalently, if $\ker \phi^k = V$.

Proposition 4.12.

Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space *V* over \mathbb{F} .

Then *φ* is nilpotent if and only if there is a basis with respect to which *φ* has a strictly upper triangular matrix *A* (thus $A_{ij} = 0$ whenever $i \geq j$):

Proposition 4.13.

Let $\lambda \in \mathbb{C}$ be an eigenvalue of a linear operator ϕ on a complex finite-dimensional vector space. Then

$$
\operatorname{am}(\lambda) = \dim G_{\phi}(\lambda).
$$

Proposition 4.14.

Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space over $\mathbb C$ with $\mathsf{distinct}$ eigenvalues $\,\lambda_1,\ldots,\lambda_k\,.$ Set $\,\phi_i=\phi_{|G_\phi(\lambda_i)}\,.$ Then

- (1) Each $m_{\phi_i} = (x \lambda_i)^{s_i}$, for some $s_i \leq \dim G_{\phi}(\lambda_i)$.
- (2) $m_{\phi} = \prod_{i=1}^{k} m_{\phi_i} = \prod_{i=1}^{k} (x \lambda_i)^{s_i}$.

Corollary 4.15.

Let $\phi \in L(V)$ be a linear operator with minimum polynomial $\prod_{i=1}^k (x - \lambda_i)^{s_i}$. Then

$$
G_{\phi}(\lambda_i) = \ker(\phi - \lambda_i \operatorname{id}_V)^{s_i}.
$$

²Camille Jordan, 1838–1922.

4.4 Jordan normal form

4.4.1 Jordan blocks

Definition. The **Jordan block of size** $n \in \mathbb{Z}_+$ and eigenvalue $\lambda \in \mathbb{F}$ is $J(\lambda, n) \in$ $M_n(\mathbb{F})$ with λ 's on the diagonal, 1 's on the super-diagonal and zeros elsewhere. Thus

Notation. Set $J_n := J(0, n)$ so that $J(\lambda, n) = \lambda I_n + J_n$.

Lemma 4.16.

Let v_1, \ldots, v_n be a basis for a vector space *V* and $\phi \in L(V)$.

Then the following are equivalent:

- (1) ϕ has matrix J_n with respect to v_1, \ldots, v_n .
- (2) $\phi(v_1) = 0$ and $\phi(v_i) = v_{i-1}$, for $2 \le i \le n$.
- (3) $v_i = \phi^{n-i}(v_n)$, $0 \le i \le n-1$ and $\phi^n(v_n) = 0$.

Theorem 4.17.

Let $\phi \in L(V)$ be a nilpotent operator on a finite-dimensional vector space over \mathbb{F} . Then there are $v_1, \ldots, v_k \in V$ and $n_1, \ldots, n_k \in \mathbb{Z}_+$ such that

 $\phi^{n_1-1}(v_1), \ldots, \phi(v_1), v_1, \ldots, \phi^{n_k-1}(v_k), \ldots, \phi(v_k), v_k$

is a basis of *V* and $\phi^{n_i}(v_i) = 0$, for $1 \leq i \leq k$.

Corollary 4.18.

Let $\phi \in L(V)$ be a nilpotent operator on a finite-dimensional vector space over \mathbb{F} . Then there is a basis for which $\,\phi\,$ has matrix $\,J_{n_1}\oplus\cdots\oplus J_{n_k}$.

Proposition 4.19.

Let $\phi \in L(V)$ be nilpotent with matrix $J_{n_1} \oplus \cdots \oplus J_{n_k}$ for some basis of V . Then n_1, \ldots, n_k are unique up to order. Indeed,

$$
\#\{i \mid n_i \ge s\} = \dim \ker \phi^s - \dim \ker \phi^{s-1},
$$

for each $s > 1$.

Proposition 4.20.

In the situation of Proposition [4.19,](#page-17-0) we have

 $m_{\phi} = x^s$,

where $s = \max\{n_1, ..., n_k\}$.

4.4.2 Jordan normal form

Theorem 4.21.

Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space V over \mathbb{C} . Then there is a basis of *V* for which *φ* has as matrix a direct sum of Jordan blocks which are unique up to order.

Such a basis is called a **Jordan basis** and the direct sum of Jordan blocks is called the **Jordan normal form (JNF) of** *φ* .

Corollary 4.22.

Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space V over $\mathbb C$ with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. Then

$$
m_{\phi} = \prod_{i=1}^{k} (x - \lambda_i)^{s_i}
$$

where *sⁱ* is the size of the largest Jordan block of *φ* with eigenvalue *λⁱ* .

Corollary 4.23.

Any $A \in M_n(\mathbb{C})$ is similar to a direct sum of Jordan blocks, that is, there is an invertible matrix $P \in M_n(\mathbb{C})$ such that

$$
P^{-1}AP = A_1 \oplus \cdots \oplus A_r,
$$

with each *Aⁱ* a Jordan block.

 $A_1 \oplus \cdots \oplus A_r$ is called the **Jordan normal form (JNF) of** A and is unique up to the order of the *Aⁱ* .

Theorem 4.24.

Matrices $A, B \in M_n(\mathbb{C})$ are similar if and only if they have the same Jordan normal form, up to reordering the Jordan blocks.

Symmetric bilinear forms and quadratic forms

5.1 Bilinear forms and matrices

Definition. Let *V* be a vector space over a field \mathbb{F} . A map $B: V \times V \to \mathbb{F}$ is **bilinear** if it is linear in each slot separately:

$$
B(\lambda v_1 + v_2, v) = \lambda B(v_1, v) + B(v_2, v)
$$

$$
B(v, \lambda v_1 + v_2) = \lambda B(v, v_1) + B(v, v_2),
$$

for all $v, v_1, v_2 \in V$, $v, v_1, v_2 \in V$ and $\lambda \in \mathbb{F}$.

A bilinear map $V \times V \to \mathbb{F}$ is called a **bilinear form on** *V*.

Definition. Let *V* be a vector space over F with basis $B = v_1, \ldots, v_n$ and let *B*: $V \times V \to \mathbb{F}$ be a bilinear form. The **matrix of** *B* with respect to *B* is $A \in M_n(\mathbb{F})$ given by

$$
A_{ij} = B(v_i, v_j),
$$

for $1 \le i, j \le n$.

Proposition 5.1.

Let $B: V \times V \to \mathbb{F}$ be a bilinear form with matrix A with respect to $B = v_1, \ldots, v_n$. Then *B* is completely determined by A : if $v = \sum_{i=1}^{n} x_i v_i$ and $w = \sum_{j=1}^{n} y_j v_j$ then

$$
B(v, w) = \sum_{i,j=1}^{n} x_i y_j A_{ij} = \mathbf{x}^T A \mathbf{y}.
$$

Proposition 5.2.

Let $B: V \times V \to \mathbb{F}$ be a bilinear form with matrices A and A^t with respect to bases

 $\mathcal{B}: v_1, \ldots, v_n$ and $\mathcal{B}': v_1', \ldots, v_n'$ of V . Then

 $A' = P^T A P$

where P is the change of basis matrix^{[1](#page-20-0)}from B to B' : thus $v'_j = \sum_{i=1}^n P_{ij}v_i$, for $1 \leq j \leq j$ *n* .

Definition. We say that matrices $A, B \in M_n(\mathbb{F})$ are **congruent** if there is $P \in GL(n, \mathbb{F})$ such that

$$
B = P^T A P.
$$

5.2 Symmetric bilinear forms

Definition. A bilinear form $B: V \times V \to \mathbb{F}$ is **symmetric** if, for all $v, w \in V$,

$$
B(v, w) = B(w, v)
$$

5.2.1 Rank and radical

Definitions. Let $B: V \times V \rightarrow \mathbb{F}$ be a symmetric bilinear form.

The **radical** rad *B* **of** *B* is given by

 $rad B := \{v \in V \mid B(v, w) = 0$, for all $w \in V \}$.

We shall shortly see that $\operatorname{rad} B \leq V$.

We say that *B* is **non-degenerate** if $\text{rad } B = \{0\}$.

If *V* is finite-dimensional, the **rank** of *B* is dim *V* − dim rad *B* (so that *B* is nondegenerate if and only if $\text{rank } B = \dim V$).

Lemma 5.3.

Let $B: V \times V \to \mathbb{F}$ be a symmetric bilinear form with matrix A with respect to a basis v_1, \ldots, v_n . Then $v = \sum_{i=1}^n x_i v_i \in \text{rad } B$ if and only if $A\mathbf{x} = 0$ if and only if $\mathbf{x}^T A = 0$.

Corollary 5.4.

Let $B: V \times V \to \mathbb{F}$ be a symmetric bilinear form on a finite-dimensional vector space *V* with matrix *A* with respect to some basis of *V* . Then

rank $B = \text{rank } A$.

In particular, *B* is non-degenerate if and only if $\det A \neq 0$.

¹Algebra 1B, Definition 1.6.1.

5.2.2 Classification of symmetric bilinear forms

Convention. In this section, we work with a field $\mathbb F$ where $1+1\neq 0$ so that $\frac{1}{2} = (1+1)^{-1}$ makes sense. This excludes, for example, the 2 -element field \mathbb{Z}_2 .

Lemma 5.5.

Let $B: V \times V \to \mathbb{F}$ be a symmetric bilinear form such that $B(v, v) = 0$, for all $v \in V$. Then $B \equiv 0$.

Theorem 5.6 (Diagonalisation Theorem)**.**

Let B be a symmetric bilinear form on a finite-dimensional vector space over $\mathbb F$. Then there is a basis v_1, \ldots, v_n of V with respect to which the matrix of B is diagonal:

 $B(v_i, v_j) = 0,$

for all $1 \leq i \neq j \leq n$. We call v_1, \ldots, v_n a **diagonalising basis** for *B*.

Corollary 5.7.

Let $A \in M_{n \times n}(\mathbb{F})$ be symmetric. Then there is an invertible matrix $P \in GL(n, \mathbb{F})$ such that $P^{T}AP$ is diagonal.

5.2.3 Sylvester's Theorem

Definitions. Let *B* be a symmetric bilinear form on a **real** vector space *V* .

Say that *B* is **positive definite** if $B(v, v) > 0$, for all $v \in V \setminus \{0\}$.

Say that *B* is **negative definite** if −*B* is positive definite.

If *V* is finite-dimensional, the **signature** of *B* is the pair (p, q) where

 $p = \max{\dim U \mid U \leq V}$ with $B_{|U \times U}$ positive definite} $q = \max\{\dim W \mid W \leq V \text{ with } B_{|W \times W} \text{ negative definite}\}.$

Theorem 5.8 (Sylvester's Law of Inertia)**.**

Let *B* be a symmetric bilinear form of signature (p,q) on a finite-dimensional real vector space Then:

- $p + q = \text{rank } B$;
- any **diagonal** matrix representing *B* has *p* positive entries and *q* negative entries (necessarily on the diagonal!).

5.3 Application: Quadratic forms

Convention. We continue working with a field \mathbb{F} where $1 + 1 \neq 0$.

Definition. A **quadratic form** on a vector space *V* over $\mathbb F$ is a function $Q: V \to \mathbb F$ of the form

$$
Q(v) = B(v, v),
$$

for all $v \in V$, where $B : V \times V \to \mathbb{F}$ is a symmetric bilinear form.

Lemma 5.9.

Let $Q: V \to \mathbb{F}$ be a quadratic form with $Q(v) = B(v, v)$ for a symmetric bilinear form *B* . Then

 $B(v, w) = \frac{1}{2}(Q(v + w) - Q(v) - Q(w)),$

for all $v, w \in V$.

B is called the **polarisation of** *Q* .

Definitions. Let *Q* be a quadratic form on a finite-dimensional vector space *V* over ${\mathbb F}$.

The **rank** of *Q* is the rank of its polarisation.

If $\mathbb{F} = \mathbb{R}$, the **signature** of *Q* is the signature of its polarisation.

Theorem 5.10.

Let *Q* be a quadratic form with rank *r* polarisation on a finite-dimensional vector space over F .

(1) When $\mathbb{F} = \mathbb{C}$, there is a basis v_1, \ldots, v_n of *V* such that

$$
Q(\sum_{i=1}^{n} x_i v_i) = x_1^2 + \dots + x_r^2.
$$

(2) When $\mathbb{F} = \mathbb{R}$ and *Q* has signature (p, q) , there is a basis v_1, \ldots, v_n of *V* such that

$$
Q(\sum_{i=1}^{n} x_i v_i) = x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_r^2.
$$