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Chapter 1

Linear algebra: key concepts

Let us warm up by revising some of the key ideas from Algebra 1B.

1.1 Vector spaces

Recall from Algebra 1B, §1.1:

Definition. A vector space V over a field F is a set V with two operations:

addition V × V → V : (v, w) 7→ v + w such that:

• v + w = w + v, for all v, w ∈ V ;
• u+ (v + w) = (u+ v) + w, for all u, v, w ∈ V ;
• there is a zero element 0 ∈ V for which v + 0 = v = 0 + v, for all v ∈ V ;
• each element v ∈ V has an additive inverse −v ∈ V for which v + (−v) = 0 = (−v) + v.

In fancy language, V with addition is an abelian group.

scalar multiplication F × V → V : (λ, v) 7→ λv such that

• (λ+ µ)v = λv + µv, for all v ∈ V , λ, µ ∈ F.
• λ(v + w) = λv + λw, for all v, w ∈ V , λ ∈ F.
• (λµ)v = λ(µv), for all v ∈ V , λ, µ ∈ F.
• 1v = v, for all v ∈ V .

We call the elements of F scalars and those of V vectors.

Examples.

(1) Take V = F, the field itself, with addition and scalar multiplication the field addition and multi-
plication.

(2) Fn, the n-fold Cartesian product of F with itself, with component-wise addition and scalar multi-
plication:

(λ1, . . . , λn) + (µ1, . . . , µn) := (λ1 + µ1, . . . , λn + µn)
λ(λ1, . . . , λn) := (λλ1, . . . , λλn).
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(3) Let Mm×n(F) denote the set of m by n matrices (thus m rows and n columns) with entries in F.
This is a vector space under entry-wise addition and scalar multiplication.
Special cases are the vector spaces of column vectors Mn×1(F) and row vectors M1×n(F). In
computations, we often identify Fn with Mn×1(F) by associating x = (x1, . . . , xn) ∈ Fn with the
column vector

x =

x1

xn

.

1.2 Subspaces

Definition. A vector (or linear) subspace of a vector space V over F is a non-empty subset U ⊆ V which
is closed under addition and scalar multiplication: whenever u, u1, u2 ∈ U and λ ∈ F, then u1 + u2 ∈ U
and λu ∈ U .

In this case, we write U ≤ V .

Say that U is trivial if U = {0} and proper if U 6= V .

Of course, U is now a vector space in its own right using the addition and scalar multiplication of V .

Exercise.1 U ⊆ V is a subspace if and only if U satisfies the following conditions:

(1) 0 ∈ U ;
(2) For all u1, u2 ∈ U and λ ∈ F, u1 + λu2 ∈ U .

This gives a efficient recipe for checking when a subset is a subspace.

1.3 Bases

Definitions. Let v1, . . . , vn be a list of vectors in a vector space V .

(1) The span of v1, . . . , vn is

span{v1, . . . , vn} := {λ1v1 + · · · + λnvn | λi ∈ F, 1 ≤ i ≤ n} ≤ V.

(2) v1, . . . , vn span V (or are a spanning list for V ) if span{v1, . . . , vn} = V .
(3) v1, . . . , vn are linearly independent if, whenever λ1v1 + · · · +λnvn = 0, then each λi = 0, 1 ≤ i ≤ n,

and linearly dependent otherwise.
(4) v1, . . . , vn is a basis for V if they are linearly independent and span V .

Remark. Notice that any re-ordering of a basis is also a (different) basis. Example: if v1, v2v3 is a basis,
so is v2, v1, v3 and so on.

Definition. A vector space is finite-dimensional if it admits a finite list of vectors as basis and infinite-
dimensional otherwise.

If V is finite-dimensional, the dimension of V , dimV , is the number of vectors in a (any) basis of V .

Terminology. Let v1, . . . , vn be a list of vectors.

(1) A vector of the form λ1v1 + · · · + λnvn is called a linear combination of the vi.
(2) An equation of the form λ1v1 + · · · + λnvn = 0 is called a linear relation on the vi.

Example. Some lucky vector spaces come with a natural choice of basis. For instance, define ei :=
(0, . . . , 1, . . . , 0) ∈ Fn, 1 ≤ i ≤ n with a single 1 in the i-th place and zeros elsewhere. Then e1, . . . , en is
a basis of Fn called the standard basis

1Question 1 on sheet 1.
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1.3.1 Useful facts

A very useful fact about bases that we shall use many times was proved in Algebra 1B:

Proposition 1.1 (Algebra 1B, Corollary 1.5.7). Any linearly independent list of vectors in a finite-
dimensional vector space can be extended to a basis.

Here is another helpful result :

Proposition 1.2 (Algebra 1B, Corollary 1.5.6). Let V be a finite-dimensional vector space and U ≤ V .
Then

dimU ≤ dimV

with equality if and only if U = V .

1.4 Linear maps

Definitions. A map φ : V → W of vector spaces over F is a linear map (or, in older books, linear
transformation) if

φ(v + w) = φ(v) + φ(w)
φ(λv) = λφ(v),

for all v, w ∈ V , λ ∈ F.

The kernel of φ is kerφ := {v ∈ V | φ(v) = 0} ≤ V .

The image of φ is imφ := {φ(v) | v ∈ V } ≤ W .

Remark. φ is linear if and only if
φ(v + λw) = φ(v) + λφ(w),

for all v, w ∈ V , λ ∈ F, which has the virtue of being only one thing to prove.

Examples.

(1) A ∈ Mm×n(F) determines a linear map φA : Fn → Fm by φA(x) = y where, for 1 ≤ i ≤ m,

yi =
n∑

j=1
Aijxj .

Otherwise said, y is given by matrix multiplication: y = Ax.
(2) For any vector space V , the identity map idV : V → V is linear.
(3) If φ : V → W and ψ : W → U are linear then so is ψ ◦ φ : V → U .

Definition. A linear map φ : V → W is a (linear) isomorphism if there is a linear map ψ : W → V
such that

ψ ◦ φ = idV , φ ◦ ψ = idW .

If there is an isomorphism V → W , say that V and W are isomorphic and write V ∼= W .

In Algebra 1B, we saw:

Lemma 1.3 (Algebra 1B, lemma 1.3.3 (4)). φ : V → W is an isomorphism if and only if φ is a linear
bijection (and then ψ = φ−1).

Notation. For vector spaces V,W over F, denote by LF(V,W ) (or simply L(V,W )) the set {φ : V →
W | φ is linear} of linear maps from V to W .
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Theorem 1.4 (Linearity is a linear condition). L(V,W ) is a vector space under pointwise addition and
scalar multiplication. Thus

(φ+ ψ)(v) := φ(v) + ψ(v)
(λφ)(v) := λφ(v),

for all φ, ψ ∈ L(V,W ), v ∈ V and λ ∈ F.

Proof. There is a lot to do here but it is all easy. First we must show that φ+ψ, as defined above, really
is a linear map when φ, ψ ∈ L(V,W ):

(φ+ ψ)(v + λw) = φ(v + λw) + ψ(v + λw)
= φ(v) + λφ(w) + ψ(v) + λψ(w)
= (φ(v) + ψ(v)) + λ(φ(w) + ψ(w))
= (φ+ ψ)(v) + λ(φ+ ψ)(w),

for all v, w ∈ V , λ ∈ F. Here the first and last equalities are just the definition of pointwise addition
while the middle equalities come from the linearity of φ, ψ and the vector space axioms of W .

Similarly, it is a simple exercise to see that if µ ∈ F and φ ∈ L(V,W ) then µφ is also linear.

Now we need a zero element for our proposed vector space: observe that the zero map 0 : v 7→ 0 ∈ W is
linear:

0(v + λw) = 0 = 0 + λ0 = 0(v) + λ0(w).

We also define −φ by
(−φ)(v) = −φ(v),

for v ∈ V and check that it is also linear.

Finally, we must check all the vector space axioms which all follow from those of W . For example, for
any v ∈ V ,

(φ+ ψ)(v) = φ(v) + ψ(v) = ψ(v) + φ(v) = (ψ + φ)(v),

so that φ+ ψ = ψ + φ. The remaining axioms are left as a (rather boring) exercise.

A linear map of a finite-dimensional vector space is completely determined by its action on a basis. More
precisely:

Proposition 1.5 (Extension by linearity). Let V,W be vector spaces over F. Let v1, . . . , vn be a basis
of V and w1, . . . , wn any vectors in W .

Then there is a unique φ ∈ L(V,W ) such that

φ(vi) = wi, 1 ≤ i ≤ n. (1.1)

Proof. We need to prove that such a φ exists and that there is only one. We prove existence first.

Let v ∈ V . From Algebra 1B2,we know there are unique λ1, . . . , λn ∈ F for which

v = λ1v1 + · · · + λnvn

and so we define φ(v) to be the only thing it could be:

φ(v) := λ1w1 + · · · + λnwn.

Let us show that this φ does the job. First, with λi = 1 and λj = 0, for i 6= j, we see that

φ(vi) =
∑
j 6=i

0wj + 1wi = wi

2Proposition 1.4.4
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so that (1.1) holds. Now let us see that φ is linear: let v, w ∈ V with

v = λ1v1 + · · · + λnvn

w = µ1v1 + · · · + µnvn.

Then, for λ ∈ F,
v + λw = (λ1 + λµ1)v1 + · · · + (λn + λµn)vn

whence

φ(v + λw) = (λ1 + λµ1)w1 + · · · + (λn + λµn)wn

= (λ1w1 + · · · + λnwn) + λ(µ1w1 + · · · + µnwn)
= φ(v) + λφ(w).

For uniqueness, suppose that φ, φ′ ∈ L(V,W ) both satisfy (1.1). Let v ∈ V and write v = λ1v1 + · · · +
λnvn. Then

φ(v) = λ1φ(v1) + · · · + λnφ(vn)
= λ1w1 + · · · + λnwn

= λ1φ
′(v1) + · · · + λnφ

′(vn)
= φ′(v),

where the first and last equalities come from the linearity of φ, φ′ and the middle two from (1.1) for first
φ and then φ′. We conclude that φ = φ′ and we are done.

Remark. In the context of Theorem 1.5, φ is an isomorphism if and only if w1, . . . , wn is a basis for W
(exercise3!).

Among the most important results in Algebra 1B is the famous rank-nullity theorem:

Theorem 1.6 (Rank-nullity). Let φ : V → W be linear with V finite-dimensional. Then

dim imφ+ dim kerφ = dimV.

Using this, together with the observation that φ is injective if and only if kerφ = {0} and surjective if
and only if imφ = W we have:

Proposition 1.7. Let φ : V → W be linear with V,W finite-dimensional vector spaces of the same
dimension: dimV = dimW .

Then the following are equivalent:

(1) φ is injective.
(2) φ is surjective.
(3) φ is an isomorphism.

3This is question 6 on exercise sheet 1.
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Chapter 2

Sums and quotients

We will discuss various ways of building new vector spaces out of old ones.

Convention. In this chapter, all vector spaces are over the same field F unless we say otherwise.

2.1 Sums of subspaces

Definition. Let V1, . . . , Vk ≤ V . The sum V1 + · · · + Vk is the set

V1 + · · · + Vk := {v1 + · · · + vk | vi ∈ Vi, 1 ≤ i ≤ k}.

V1 + · · · + Vk is the smallest subspace of V that contains each Vi. More precisely:

Proposition 2.1. Let V1, . . . , Vk ≤ V . Then

(1) V1 + · · · + Vk ≤ V .
(2) If W ≤ V and V1, . . . , Vk ≤ W then V1, . . . , Vk ≤ V1 + · · · + Vk ≤ W .

Proof. It suffices to prove (2) since (1) then follows by taking W = V .

For (2), first note that V1 + · · · + Vk is a subset of W : if vi ∈ Vi then vi ∈ W so that v1 + · · · + vk ∈ W
since W is closed under addition.

Now observe that each Vi ≤ V1+· · ·+Vk since we can write any vi ∈ Vi as 0+· · ·+vi+· · ·+0 ∈ V1+· · ·+Vk.
In particular, 0 ∈ V1 + · · · + Vk.

Finally, we show that V1 + · · · + Vk is a subspace. If v1 + · · · + vk, w1 + · · · + wk ∈ V1 + · · · + Vk, with
vi, wi ∈ Vi, for all i, and λ ∈ F then

(v1 + · · · + vk) + λ(w1 + · · · + wk) = (v1 + λw1) + · · · + (vk + λwk) ∈ V1 + · · · + Vk

since each vi + λwi ∈ Vi.

Remark. The union
⋃k

i=1 Vi is almost never a subspace of V so we use sums as a substitute for unions
in Linear Algebra.

2.2 Direct sums

Let V1, . . . , Vk ≤ V . Any v ∈ V1 + · · · + Vk can be written

v = v1 + · · · + vk,

with each vi ∈ Vi. We distinguish the case where the vi are unique.
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Definition. Let V1, . . . , Vk ≤ V . The sum V1 + · · · +Vk is direct if each v ∈ V1 + · · · +Vk can be written

v = v1 + · · · + vk

in only one way, that is, for unique vi ∈ Vi, 1 ≤ i ≤ k.

In this case, we write V1 ⊕ · · · ⊕ Vk instead of V1 + · · · + Vk.

0

V2

V1

v

v1

v2

Figure 2.1: R2 = V1 ⊕ V2

Example. Define V1, V2 ≤ F3 by

V1 = {(x1, x2, 0) | x1, x2 ∈ F}
V2 = {(0, 0, x3) | x3 ∈ F}.

Then F3 = V1 ⊕ V2.

When is a sum direct? We begin with a useful reformulation of the property.

Proposition 2.2. Let V1, . . . , Vk ≤ V . Then V1+· · ·+Vk is direct if and only if whenever v1+· · ·+vk = 0,
with vi ∈ Vi, 1 ≤ i ≤ k, then vi = 0, for all 1 ≤ i ≤ k.

Proof. Suppose that V1 + · · · + Vk is direct and let v1 + · · · + vk = 0, with each vi ∈ Vi. We can also
write 0 = 0 + · · · + 0 so that the uniqueness in the direct sum property forces each vi = 0.

Conversely, if the “zero sum” property holds, suppose that, for some v ∈ V1 + · · · + Vk, we have

v = v1 + · · · + vk = w1 + · · · + wk,

with each vi, wi ∈ Vi. Then
0 = v − v = (v1 − w1) + · · · + (vk − wk)

and each vi − wi ∈ Vi so the zero sum property gives vi = wi. We conclude that the sum is direct.

For the case of two summands this gives a very simple way to decide if a sum is direct:

Proposition 2.3. Let V1, V2 ≤ V . Then V1 + V2 is direct if and only if V1 ∩ V2 = {0}.

Proof. Suppose first that V1 + V2 is direct and let v ∈ V1 ∩ V2. Then

0 = v + (−v)

and v ∈ V1, −v ∈ V2 so that v = −v = 0 by Theorem 2.2.

Conversely, suppose that V1 ∩ V2 = {0} and that v1 + v2 = 0, with vi ∈ Vi, i = 1, 2. Then v1 = −v2 ∈
V1 ∩ V2 = {0} so that v1 = v2 = 0. Thus V1 + V2 is direct by Theorem 2.2.

The special case V = V1 + V2 is important and deserves some terminology:
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Definition. Let V1, V2 ≤ V . V is the (internal) direct sum of V1 and V2 if V = V1 ⊕ V2.

In this case, say that V2 is a complement of V1 (and V1 is a complement of V2).

Warning. This notion of the complement of the subspace V1 has nothing at all to do with the set-
theoretic complement V \ V1 which is never a subspace.

Remarks.

(1) From Theorem 2.3, we see that V = V1 ⊕ V2 if and only if V = V1 + V2 and V1 ∩ V2 = {0}. Many
people take these latter properties as the definition of internal direct sum.

(2) There is a related notion of external direct sum that we will not discuss.

0

V2

V1

Figure 2.2: R3 as a direct sum of a line and a plane

When there are many summands, the condition that a sum be direct is a little more involved:

Proposition 2.4. Let V1, . . . , Vk ≤ V , k ≥ 2. Then the sum V1 + · · · + Vk is direct if and only if, for
each 1 ≤ i ≤ k, Vi ∩ (

∑
j 6=i Vj) = {0}.

Proof. This is an exercise in imitating the proof of Theorem 2.3.

Remark. This is a much stronger condition than simply asking that each Vi ∩ Vj = {0}, for i 6= j.

2.2.1 Induction from two summands

A convenient way to analyse direct sums with many summands is to induct from the two summand case.
For this, we need:

Lemma 2.5. Let V1, . . . , Vk ≤ V . Then V1 + · · · + Vk is direct if and only if V1 + · · · + Vk−1 is direct
and (V1 + · · · + Vk−1) + Vk (two summands) is direct.

Proof. Suppose first that V1 + · · ·+Vk is direct. We use Theorem 2.2 to see that V1 + · · ·+Vk−1 is direct:
let v1 + · · · + vk−1 = 0 with each vi ∈ Vi, 1 ≤ i ≤ k− 1. Write this as v1 + · · · + vk = 0 where vk = 0 ∈ Vk

and deduce that each vi = 0, 1 ≤ i ≤ k − 1.

Again, if v = v1 + · · ·+vk−1 ∈ V1 + · · ·+Vk−1 and vk ∈ Vk with v+vk = 0, then we have v1 + · · ·+vk = 0
so that each vi = 0 whence v = 0 also. Now Theorem 2.2 tells us that (V1 + · · · + Vk−1) + Vk is direct.

Conversely, suppose that both V1+· · ·+Vk−1 and (V1+· · ·+Vk−1)+Vk are direct and that v1+· · ·+vk = 0,
with each vi ∈ Vi. Let v = v1 + · · · + vk−1 ∈ V1 + · · · + Vk−1 so that v + vk = 0. Now Theorem 2.2 and
the directness of (V1 + · · · + Vk−1) + Vk tell us that v = vk = 0. Thus v1 + · · · + vk−1 = 0 and a final
application of Theorem 2.2 yields vi = 0, 1 ≤ i ≤ k − 1 since V1 + · · · + Vk−1 is direct.
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2.2.2 Direct sums, bases and dimension

When a sum is direct, bases of the summands fit together to give a basis of the sum:

Proposition 2.6. Let V1, V2 ≤ V be subspaces with bases B1 : v1, . . . , vk and B2 : w1, . . . , wl. Then
V1 + V2 is direct if and only if the concatenation1 B1B2 : v1, . . . , vk, w1, . . . , wl is a basis of V1 + V2.

Proof. Clearly B1B2 spans V1 + V2 and so will be a basis exactly when it is linearly independent.

Suppose that V1 + V2 is direct and that we have a linear relation
∑k

i=1 λivi +
∑l

j=1 µjwj = 0. Then
Theorem 2.2 yields

k∑
i=1

λivi =
l∑

j=1
µjwj = 0

so that all the λi and µj vanish since B1 and B2 are linearly independent. We conclude that B1B2 is
linearly independent and so a basis.

Conversely, if B1B2 is a basis and v + w = 0 with v ∈ V1 and w ∈ V2, write v =
∑k

i=1 λivi and
w =

∑l
j=1 µjwj to get a linear relation

∑k
i=1 λivi +

∑l
j=1 µjwj = 0. By linear independence of B1B2,

all λi, µj vanish so that v = w = 0. Thus V1 + V2 is direct by Theorem 2.2.

Again, this along with Theorem 2.5 and induction on k yields the many-summand version:

Corollary 2.7. Let V1, . . . , Vk ≤ V be finite-dimensional subspaces with Bi a basis of Vi, 1 ≤ i ≤ k.
Then V1 + · · · + Vk is direct if and only if the concatenation B1 . . .Bk is a basis for V1 + · · · + Vk.

Proof. Our induction hypothesis at k is that V1 + · · · + Vk is direct if and only if B1 . . .Bk is a basis for
V1 + · · · + Vk. This is vacuous at k = 1 so let us suppose it is true for k and examine the case k + 1.

First suppose that V1 + · · · + Vk+1 is direct so that V1 + · · · + Vk and (V1 + · · · + Vk) + Vk+1 are direct
by Theorem 2.5. The induction hypothesis applies to both of these so that, first, B1 . . .Bk is a basis of
V1 + · · ·+Vk and then (B1 . . .Bk)Bk+1 = B1 . . .Bk+1 is a basis of (V1 + · · ·+Vk)+Vk+1 = V1 + · · ·+Vk+1.

Conversely, if B1 . . .Bk+1 is a basis of V1 + · · · + Vk+1, B1 . . .Bk is linearly independent and so a basis of
V1 + · · · + Vk. By the induction hypothesis, we learn that V1 + · · · + Vk is direct. Similarly, we see that
(V1 + · · · + Vk) + Vk+1 is direct whence, by Theorem 2.5, V1 + · · · + Vk+1 is direct.

This establishes the induction hypothesis at k + 1 and so the result is proved.

From this we see that dimensions add over direct sums:

Corollary 2.8. Let V1, . . . , Vk ≤ V be subspaces of a finite-dimensional vector space V with V1 + · · ·+Vk

direct. Then
dimV1 ⊕ · · · ⊕ Vk = dimV1 + · · · + dimVk.

Proof. Let Bi be basis for Vi so that B1 . . .Bk is a basis of V1 + · · · + Vk by Theorem 2.7. Then

dimV1 + · · · + Vl = |B1 . . .Bk| = |B1| + · · · + |Bk| = dimV1 + · · · + dimVk.

Exercise.2 Prove the converse of Theorem 2.8: if dimV1 + · · · + Vk = dimV1 + · · · + dimVk, then the
sum is direct.

1The concatenation of two lists is simply the list obtained by adjoining all entries in the second list to the first.
2Question 2 on sheet 2.
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2.2.3 Complements

For finite-dimensional vector spaces, any subspace has a complement:

Proposition 2.9 (Complements exist). Let U ≤ V , a finite-dimensional vector space. Then there is a
complement to U .

Proof. Let B1 : v1, . . . , vk be a basis for U and so a linearly independent list of vectors in V . By
Theorem 1.1, we can extend the list to get a basis B : v1, . . . , vn of V . Set W = span{vk+1, . . . , vn} ≤ V :
this is a complement to U .

Indeed, B2 : vk+1, . . . , vn is a basis for W and B = B1B2 so that V = U ⊕W by Theorem 2.6.

In fact, as Figure 2.3 illustrates, there are many complements to a given subspace.

U

Figure 2.3: Each dashed line is a complement to the undashed subspace.

2.3 Quotients

Let U ≤ V . We construct a new vector space from U and V which is an “abstract complement” to U .
The elements of this vector space are equivalence classes for the following equivalence relation:

Definition. Let U ≤ V . Say that v, w ∈ V are congruent modulo U if v−w ∈ U . In this case, we write
v ≡ w mod U .

Warning. This is emphatically not the relation of congruence modulo an integer n that you studied in
Algebra 1A: here the relation is between vectors in a vector space. However, both notions of congruence
are examples of a general construction in group theory.

Lemma 2.10. Congruence modulo U is an equivalence relation.

Proof. Exercise3!

Thus each v ∈ V lies in exactly one equivalence class [v] ⊆ V .

What do these equivalence classes look like? Note that w ≡ v mod U if and only if w − v ∈ U or,
equivalently, w = v + u, for some u ∈ U .

Definition. For v ∈ V , U ≤ V , the set v + U := {v + u | u ∈ U} ⊆ V is called a coset of U and v is
called a coset representative of v + U .

We conclude that the equivalence class of v modulo U is the coset v + U .
Remark. In geometry, cosets of vector subspaces are called affine subspaces. Examples include lines in
R2 and lines and planes in R3 irrespective of whether they contain zero (as vector subspaces must).

3This is question 3 on exercise sheet 2.
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U

v + U

v

0

Figure 2.4: A subspace U ≤ R2 and a coset v + U .

Example. Fibres of a linear map: let φ : V → W be a linear map and let w ∈ imφ. Then the fibre of
φ over w is defined by:

φ−1{w} := {v ∈ V | φ(v) = w}.

Unless w = 0, this is not a linear subspace but notice that v, v′ are in the same fibre if and only if
φ(v) = φ(v′), or, equivalently, φ(v−v′) = 0 or v−v′ ∈ kerφ. We conclude that the fibres of φ are exactly
the cosets of kerφ:

φ−1{w} = v + kerφ,

for any v ∈ φ−1{w}.

We shall see below that any coset arises this way for a suitable φ.

Definition. Let U ≤ V . The quotient space V/U of V by U is the set V/U , pronounced “V mod U”, of
cosets of U :

V/U := {v + U | v ∈ V }.

This is a subset of the power set4 P(V ) of V .

The quotient map q : V → V/U is defined by

q(v) = v + U.

The quotient map q will be important to us. It has two key properties:

(1) q is surjective.
(2) q(v) = q(v′) if and only if v ≡ v′ mod U , that is, v − v′ ∈ U .

We can add and scalar multiply cosets to make V/U into a vector space and q into a linear map:

Theorem 2.11. Let U ≤ V . Then, for v, w ∈ V , λ ∈ F,

(v + U) + (w + U) := (v + w) + U

λ(v + U) := (λv) + U

give well-defined operations of addition and scalar multiplication on V/U with respect to which V/U is a
vector space and q : V → V/U is a linear map.

Moreover, ker q = U and im q = V/U .

Proof. We phrase everything in terms of q to keep the notation under control. Since q surjects, we lose
nothing by doing this: any element of V/U is of the form q(v) for some v ∈ V .

4Recall from Algebra 1A that the power set of a set A is the set of all subsets of A.
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With this understood, the proposed addition and scalar multiplication in V/U read

q(v) + q(w) := q(v + w)
λq(v) := q(λv)

so that q is certainly linear so long as these operations make sense. Here the issue is that if q(v) = q(v′)
and q(w) = q(w′), we must show that

q(v + w) = q(v′ + w′), q(λv) = q(λv′). (2.1)

However, in this case, we have v − v′ ∈ U and w − w′ ∈ U so that

(v + w) − (v′ + w′) = (v − v′) + (w − w′) ∈ U

λv − λv′ = λ(v − v′) ∈ U,

since U is a subspace, and this establishes (2.1).

As for the vector space axioms, these follow from those of V . For example:

q(v) + q(w) = q(v + w) = q(w + v) = q(w) + q(v).

Here the first and third equalities are the definition of addition in V/U and the middle one comes from
commutativity of addition in V . The zero element is q(0) = 0 +U = U while the additive inverse of q(v)
is q(−v).

The linearity of q comes straight from how we defined our addition and scalar multiplication while
v ∈ ker q if and only if q(v) = q(0) if and only if v = v − 0 ∈ U so that ker q = U .

V

U

v + U

q

V/U

0

v

0 + U

v + U

Figure 2.5: The quotient map q.

Corollary 2.12. Let U ≤ V . If V is finite-dimensional then so is V/U and

dimV/U = dimV − dimU.

Proof. Apply rank-nullity to q using ker q = U and im q = V/U .

Remark. Theorem 2.11 shows that:

(1) Any U ≤ V is the kernel of a linear map.
(2) Any coset v + U is the fibre of a linear map: indeed

v + U = q−1{q(v)}.

Commentary. Many people find the quotient space V/U difficult to think about: its elements are
(special) subsets of V and this can be confusing.

An alternative, perhaps better way, to proceed is to concentrate instead on the properties of V/U in
much that same way that, in Analysis, we deal with real numbers via the axioms of a complete ordered
field without worrying too much what a real number actually is!

From this point of view, the quotient V/U of V by U is a vector space along with a linear map q : V →
V/U such that

12



• q surjects;
• ker q = U

and this is really all you need to know!

The content of Theorem 2.11, from this perspective, is simply that quotients exist!

Theorem 2.13 (First Isomorphism Theorem). Let φ : V → W be a linear map of vector spaces.

Then V/ kerφ ∼= imφ.

In fact, define φ̄ : V/ kerφ → imφ by
φ̄(q(v)) = φ(v),

where q : V → V/ kerφ is the quotient map.

Then φ̄ is a well-defined linear isomorphism.

Proof. First we show that φ̄ is well-defined: q(v) = q(v′) if and only if v − v′ ∈ kerφ if and only if
φ(v− v′) = 0, or, equivalently, φ(v) = φ(v′). We also get a bit more: φ̄ injects since if φ̄(q(v)) = φ̄(q(v′))
then φ(v) = φ(v′) which implies that q(v) = q(v′).

To see that φ̄ is linear, we compute using the linearity of q and φ:

φ̄(q(v1) + λq(v2)) = φ̄(q(v1 + λv2)) = φ(v1 + λv2) = φ(v1) + λφ(v2) = φ̄(q(v1)) + λφ̄(q(v2)),

for v1, v2 ∈ V , λ ∈ F.

It remains to show that φ̄ is surjective: but if w ∈ imφ, then w = φ(v) = φ̄(q(v)), for some v ∈ V , and
we are done.

Remarks.

(1) Let q : V → V/ kerφ be the quotient map and i : imφ → W the inclusion. Then the First
Isomorphism Theorem shows that we may write φ as the composition i ◦ φ̄ ◦ q of a quotient map,
an isomorphism and an inclusion.

(2) This whole story of cosets, quotients and the First Isomorphism Theorem has versions in many
other contexts such as group theory and ring theory (see MA22017).
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Chapter 3

Polynomials, operators and matrices

3.1 Polynomials

Recall from Algebra 1A (§3.2):

Definitions. A polynomial in a variable x with coefficients in a field F is a formal expression

p =
∞∑

k=0
akx

k

with coefficients ak ∈ F such that only finitely many ak are non-zero.

Two polynomials are equal if all their coefficients are equal.

The zero polynomial has all coefficients zero.

The degree of a polynomial p is deg p = max{k ∈ N | ak 6= 0}. By convention, deg 0 = −∞.

The set of all polynomials in x with coefficients in F is denoted F[x].

When deg p = n, we usually write
p = a0 + a1x+ · · · + anx

n.

Thus we adopt the convention x0 = 1, x1 = x. Here anx
n is the leading term of p and an the leading

coefficient.

Definition. A polynomial is monic if its leading coefficient is 1:

p = a0 + · · · + xn.

We can add and multiply polynomials: if

p =
∞∑

k=0
akx

k, q =
∞∑

k=0
bkx

k

then

p+ q :=
∞∑

k=0
(ak + bk)xk

pq :=
∞∑

k=0
(

∑
i+j=k

aibj)xk.

14



In particular, we multiply polynomials using xixj = xi+j and collecting terms.

The usual rules of multiplication and addition apply (in the language of MA22017, F[x] is a ring) and,
in particular, F[x] is a vector space. Moreover we have:

deg(pq) = deg p+ deg q,
deg(p+ q) ≤ max{deg p,deg q}.

We can evaluate polynomials at elements of F. For p = a0 + · · · + anx
n and t ∈ F, define p(t) ∈ F by

p(t) := a0 + a1t+ · · · + ant
n,

where all the additions and multiplications take place in F. We say that t ∈ F is a root of p if p(t) = 0 ∈ F.

Here are the main facts about evaluation:

• Evaluation preserves addition and multiplication: for fixed t ∈ F, we have

(p+ q)(t) = p(t) + q(t)
(pq)(t) = p(t)q(t).

In particular, p 7→ p(t) is a linear map F[x] → F.

• Evaluation defines functions on F: each p ∈ F[x] defines a function t 7→ p(t) : F → F.

Remark. What is a polynomial? We are used to thinking of them as the functions they define but this
is not quite correct. Polynomials are simply lists of coefficients or, equivalently, sequences in F that are
eventually zero:

F[x] ∼= {(a0, . . . , an, 0, 0, . . . )}.

The role of the variable x is that of a placeholder to help keep track of things when we multiply polyno-
mials.

For some fields, different polynomials can define the same function. For example, with F = Z2, p = x2 +x
and the zero polynomial both define the zero function1: p(t) = 0 for all t ∈ Z2.

We will need three crucial results from Algebra 1A:

Theorem 3.1 (Algebra 1A, Proposition 3.19). Let p, q ∈ F[x]. Then there are unique r, s ∈ F[x] such
that

p = sq + r

with deg r < deg q.

Theorem 3.1 holds for any field F but the next two results show that the field C of complex numbers is
special:

Theorem 3.2 (Fundamental Theorem of Algebra). Let p ∈ C[x] be a polynomial with deg p ≥ 1. Then
p has a root. Thus there is t ∈ C with p(t) = 0.

Together with Theorem 3.1, this yields:

Theorem 3.3. Let p ∈ C[x] and λ1, . . . , λk the distinct roots of p. Then

p = a

k∏
i=1

(x− λi)ni ,

for some a ∈ C and ni ∈ Z+, 1 ≤ i ≤ k.

ni is called the multiplicity of the root λi.
1This is question 3 on exercise sheet 3.
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3.2 Linear operators, matrices and polynomials

3.2.1 Linear operators and matrices

Definition. Let V be a vector space over F. A linear operator on V is a linear map φ : V → V .

The vector space of linear operators on V is denoted L(V ) (instead of L(V, V )).

Notation. Write Mn(F) for Mn×n(F).

Recall from Algebra 1B §1.5 that, in the presence of a basis, there is a close relationship between linear
operators and square matrices:

Definition. Let V be a finite-dimensional vector space over F with basis B : v1, . . . , vn. Let φ ∈ L(V ).
The matrix of φ with respect to B is the matrix A = (Aij) ∈ Mn(F) defined by:

φ(vj) =
n∑

i=1
Aijvi, (3.1)

for all 1 ≤ j ≤ n.

Thus the recipe for computing A is: expand φ(vj) in terms of v1, . . . , vn to get the j-th column of A.

Equivalently, φ(x1v1 + · · · + xnvn) = y1v1 + · · · + ynvn where

y = Ax.

The map φ 7→ A is a linear isomorphism L(V ) ∼= Mn(F) which also plays well with composition and
matrix multiplication: if ψ ∈ L(V ) has matrix B with respect to B then ψ ◦ φ has matrix BA with
respect to B. This gives us a compelling dictionary between linear maps and matrices.
Remark. There is a fancy way to say all this: recall that a basis B : v1, . . . , vn of V gives rise to a linear
isomorphism φB : Fn → V via

φB(λ1, . . . , λn) =
n∑

i=1
λivi. (3.2)

Now the relation between φ and A is that

φ = φB ◦ φA ◦ φ−1
B

or, equivalently, φB ◦ φA = φ ◦ φB so that the following diagram commutes:

V V

Fn Fn

φ

φA

φB φB

(The assertion that such a diagram commutes is simply that the two maps one builds by following the
arrows in two different ways coincide. However, the diagram also helps us keep track of where the various
maps go!)

3.2.2 Polynomials in linear operators and matrices

A special feature of L(V ) is that composition is a binary operation (φ, ψ) 7→ φ◦ψ : L(V )×L(V ) → L(V ).
Thus we can think of composition as a multiplication of operators which suggests the following notations:
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Notation. For φ, ψ ∈ L(V ) write φψ for φ ◦ ψ ∈ L(V ).

Similarly, write φn for the n-fold composition of φ with itself:

φn = φ ◦ · · · ◦ φ︸ ︷︷ ︸
n times

and define φ0 := idV , φ1 := φ.

Finally, for A ∈ Mn(F), set A0 = In, A1 = A.

With these notations and conventions, we have

φn+m = φnφm, An+m = AnAm, (3.3)

for any φ ∈ L(V ), A ∈ Mn(F) and n,m ∈ N.

Note that if φ has matrix A with respect to a basis B then φn has matrix An with respect to B, for all
n ∈ N.

We can now evaluate polynomials on operators and matrices:

Definition. Let p ∈ F[x], p = a0 + · · · + anx
n, φ ∈ L(V ) and A ∈ Mn(F). Then p(φ) ∈ L(V ) and

p(A) ∈ Mn(F) are given by:

p(φ) := a0 idV +a1φ+ · · · + anφ
n =

∑
k∈N

akφ
k,

p(A) := a0In + a1A+ · · · + anA
n =

∑
k∈N

akA
k.

Remark. If φ has matrix A with respect to a basis B then p(φ) has matrix p(A) with respect to B.

This construction plays nicely with the algebra of polynomials:

Proposition 3.4. For p, q ∈ F[x], φ ∈ L(V ) and A ∈ Mn(F),

(p+ q)(φ) = p(φ) + q(φ) (p+ q)(A) = p(A) + q(A) (3.4)
(pq)(φ) = p(φ)q(φ) = q(φ)p(φ) (pq)(A) = p(A)q(A) = q(A)p(A). (3.5)

Proof. We prove the formulae for φ. The arguments for A are very similar.

Write p =
∑

k∈N akx
k and q =

∑
k∈N bkx

k. Then

(p+ q)(φ) =
∑
k∈N

(ak + bk)φk =
∑
k∈N

akφ
k +

∑
k∈N

bkφ
k = p(φ) + q(φ)

which establishes (3.4) for φ.

Now for (3.5). We have

(pq)(φ) =
∑
k∈N

( ∑
i+j=k

aibj

)
φk =

∑
k∈N

( ∑
i+j=k

aibjφ
iφj

)
=

∑
k∈N

∑
i+j=k

(aiφ
i)(bjφ

j) =
(∑

i∈N
aiφ

i
)(∑

j∈N
bjφ

j
)

= p(φ)q(φ).

Here we used (3.3) for the last equality on the first line and linearity of φi to get bjφ
iφj = φi(bjφ

j).

Finally pq = qp so that
pq(φ) = qp(φ) = q(φ)p(φ)

by what we have already proved.

Remark. The fancy way to say Theorem 3.4 is that the maps p 7→ p(φ) : F[x] → L(V ) and p 7→ p(A) :
F[x] → Mn(F) are homomorphisms of rings (see MA22017).
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3.3 The minimum polynomial

Proposition 3.5. Let A ∈ Mn(F). Then there is a monic polynomial p ∈ F[x] such that p(A) = 0.

Similarly, if φ ∈ L(V ) is a linear operator on a finite-dimensional vector space over F then there is a
monic polynomial p ∈ F[x] with p(φ) = 0.

Proof. We prove the result for A and then deduce that for φ.

We know that dimMn(F) = n2 so that the n2 + 1 elements In, A, . . . , A
n2 of Mn(F) must be linearly

dependent. We therefore have a linear relation

a0In + · · · + an2An2
= 0

with not all ak zero. Otherwise said, q(A) = 0, where

q = a0 + · · · + an2xn2
∈ F[x].

Let am be the leading term of q (m could be less than n2). Then p := q/am is a monic polynomial with
p(A) = 0.

Now let φ ∈ L(V ) and let A be its matrix with respect to some basis. Let p ∈ F[x] be a monic polynomial
with p(A) = 0. Then p(φ) = 0 also.

This prompts:

Definition. A minimum polynomial for φ ∈ L(V ), V a vector space over F is a monic polynomial
p ∈ F[x] of minimum degree with p(φ) = 0: thus, if r ∈ F[x] has r(φ) = 0 and deg r < deg p, then r = 0.

Similarly, a minimum polynomial for A ∈ Mn(F) is a monic polynomial p of least degree with p(A) = 0.

Remark. If φ has matrix A with respect to some basis, then p(φ) = 0 if and only if p(A) = 0 so that p
is a minimum polynomial for φ if and only if it is one for A.

Minimum polynomials exist and are unique:

Theorem 3.6. Let φ ∈ L(V ) be a linear operator on a finite-dimensional vector space over a field F.
Then φ has a unique minimum polynomial.

Similarly, any A ∈ Mn(F) has a unique minimum polynomial.

We denote these by mφ and mA respectively.

Proof. We prove this for φ. The argument for A is the same.

By Theorem 3.5, the set of non-zero polynomials which vanish on φ is non-empty. Choose one of smallest
degree and divide by the leading term if necessary to get a monic one. This settles existence.

For uniqueness, suppose that we have p1, p2 in the set, both monic and of smallest degree. Set r = p1−p2.
Then deg r < deg pi, since the leading terms of the pi cancel, while r(φ) = p1(φ)−p2(φ) = 0. Thus r = 0
and p1 = p2.

Remark. Unless V = {0}, degmφ ≥ 1: the only monic polynomial of degree zero is 1 and 1(φ) = idV 6= 0!

Examples.

(1) m0 = x.
(2) midV

= x− 1.
(3) More generally, for λ ∈ F, mλ idV

= x − λ. Thus degmφ = 1 if and only if φ = λ idV , for some
λ ∈ F.
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(4) Let π ∈ L(V ) be a projection2 with 0 < dim kerπ < dimV . Then mπ = x2 − x (exercise!).

How can we compute mA? One method is to find it by brute force: for each k ≥ 1 in turn, seek
a0, . . . , ak−1 such that

a0I + · · · + ak−1A
k−1 +Ak = 0.

This is n2 inhomogeneous linear equations in k unknowns. They are either inconsistent, in which case
you move on to k + 1 or, the first time you find a solution, mA = a0 + · · · + xk.

Examples.

(1) Find mA where

A =
(

1 2
3 4

)
.

Solution. A 6= λI so degmA ≥ 2. First try to find a0, a1 with a0I + a1A+A2 = 0. This expands
out to (

a0 + a1 + 7 0 + 2a1 + 10
0 + 3a1 + 15 a0 + 4a1 + 22

)
= 0

The equation in the (1, 2)-slot gives a1 = −5 and then that in the (1, 1)-slot gives a0 = −2. These
also satisfy the other two equations and so mA = −2 − 5x+ x2.

(2) Find mA where

A =

0 1 0
0 0 1
1 0 0

.
Solution. We have

A2 =

0 0 1
1 0 0
0 1 0


so that the (1, 3)-slot of a0I3 + a1A + A2 = 0 gives the inconsistent equation a00 + a10 + 1 = 0
and we conclude that degmA is at least three. Carrying on, we compute A3 and find that A3 = I3
which short-circuits the whole story: A3 − I3 = 0 so that mA = x3 − 1.

We will see other ways to compute the minimum polynomial later.

One reason the minimum polynomial is important:

Proposition 3.7. Let φ ∈ L(V ) be a linear operator on a finite-dimensional vector space over F and
p ∈ F[x].

Then p(φ) = 0 if and only if mφ divides p, that is, there is s ∈ F[x] such that p = smφ.

Proof. If p(φ) = 0 then, by Theorem 3.1, there are s, r ∈ F[x] with deg r < degmφ such that p = smφ +r.
But then

0 = p(φ) = s(φ)mφ(φ) + r(φ) = r(φ)

so that r = 0 and p = smφ by the smallest degree property of mφ.

Conversely, if p = smφ then p(φ) = s(φ)mφ(φ) = 0.

Of course, the same statement (and proof!) holds for the minimum polynomial of a matrix A ∈ Mn(F).
2Thus π ◦ π = π.
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3.4 Eigenvalues and the characteristic polynomial

Recall from Chapter 3 of Algebra 1B:

Definitions. Let V be a vector space over F and φ ∈ L(V ).

An eigenvalue of φ is a scalar λ ∈ F such that there is a non-zero v ∈ V with

φ(v) = λv.

Such a vector v is called an eigenvector of φ with eigenvalue λ.

The λ-eigenspace Eφ(λ) of φ is given by

Eφ(λ) := ker(φ− λ idV ) ≤ V.

Remark. Thus Eφ(λ) consists of all eigenvectors of φ with eigenvalue λ along with 0.

Definition. Let V be a finite-dimensional vector space over F and φ ∈ L(V ).

The characteristic polynomial ∆φ of φ is given by

∆φ(λ) := det(φ− λ idV ) = det(A− λI),

where A is the matrix of φ with respect to some (any!) basis of V .

Thus deg ∆φ = dimV .

The characteristic polynomial is important to us because:

Lemma 3.8. A scalar λ ∈ F is an eigenvalue of φ if and only if λ is a root of ∆φ.

This prompts:

Definitions. Let φ ∈ L(V ) be in a linear operator on a finite-dimensional vector space V over F and λ
an eigenvalue of φ. Then

(1) The algebraic multiplicity of λ, am(λ) ∈ Z+, is the multiplicity of λ as a root of ∆φ.
(2) The geometric multiplicity of λ, gm(λ) ∈ Z+, is dimEφ(λ).

From Algebra 1B3,we know that am(λ) ≥ gm(λ) and we will get a geometric understanding of am(λ) in
the next chapter (see §4.3.2).

When F = C, Theorem 3.2, the Fundamental Theorem of Algebra, ensures that the characteristic
polynomial has at least one root so we conclude from Theorem 3.8:

Theorem 3.9. Let φ be a linear operator on a finite-dimensional vector space V over C. Then φ has
an eigenvalue.

Remark. This was crucial in Algebra 1B for the proof of the Spectral Theorem and will be equally crucial
for us in the next chapter.

Eigenvalues and eigenvectors play nicely with polynomials:

Proposition 3.10. Let φ ∈ L(V ) be a linear operator on a vector space over a field F and let v ∈ V be
an eigenvector of φ with eigenvalue λ:

φ(v) = λv. (3.6)

Let p ∈ F[x]. Then
p(φ)(v) = p(λ)v,

so that v is an eigenvector of p(φ) also with eigenvalue p(λ).
3Proposition 3.4.6.
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Proof. The idea is to iterate (3.6):

φ2(v) = φ(φ(v)) = φ(λv) = λφ(v) = λ2v

and so, by induction, φk(v) = λkv, for all k ∈ N.

Now, for p =
∑n

k=0 akx
k,

p(φ)(v) =
n∑

k=0
akφ

k(v) =
n∑

k=0
akλ

kv =
( n∑

k=0
akλ

k
)
v = p(λ)v.

This gives us something interesting: if p(φ) = 0 then

0 = p(φ)(v) = p(λ)v

so that, since v 6= 0, p(λ) = 0. Thus any eigenvalue of φ is a root of p. In particular:

Corollary 3.11. Let φ be a linear operator on a finite-dimensional vector space V over F. Then any
eigenvalue of φ is a root of mφ.

3.5 The Cayley–Hamilton theorem

Theorem 3.12 (Cayley–Hamilton4 Theorem). Let φ ∈ L(V ) be a linear operator on a finite-dimensional
vector space over a field F.

Then ∆φ(φ) = 0.

Equivalently, for any A ∈ Mn(F), ∆A(A) = 0.

Before proving this, let us see what it tells us. Let

A =
(
a b
c d

)
∈ M2(F).

Then
∆A =

∣∣∣∣a− x b
c d− x

∣∣∣∣ = x2 − (a+ d)x+ (ad− bc).

So the Cayley–Hamilton theorem is telling us that

A2 − (a+ d)A+ (ad− bc)I2 = 0,

that is, (
a2 + bc ab+ bd
ca+ dc cb+ d2

)
− (a+ d)

(
a b
c d

)
+

(
ad− bc 0

0 ad− bc

)
=

(
0 0
0 0

)
.

This is certainly true (check it!) but is far from obvious! If you are not yet convinced, work out what
the theorem says for A ∈ M3(F).

Proof of Theorem 3.12. We will prove the matrix version. So let A ∈ Mn(F) and write

∆A = a0 + · · · + anx
n.

Thus, our mission is to show that

a0In + a1A+ · · · + anA
n = 0.

4Arthur Cayley, 1821–1895; William Rowan Hamilton, 1805–1865.
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The key is the adjugate formula from Algebra 1B5:

adj(A− xIn)(A− xIn) = det(A− xIn)In. (3.7)

Each entry of adj(A− xIn) is a polynomial in x of degree at most n− 1 so we write

adj(A− xIn) = B0 +B1x+ · · · +Bn−1x
n−1,

with each Bk ∈ Mn(F). Substitute this into (3.7) to get

(B0 +B1x+ · · · +Bn−1x
n−1)(A− xIn) = (a0 + · · · + anx

n)In

and compare coefficients of xk to get
BkA−Bk−1 = akIn, (3.8)

for 0 ≤ k ≤ n, where we have set B−1 = Bn = 0 ∈ Mn(F).

Multiply (3.8) by Ak on the right to get

BkA
k+1 −Bk−1A

k = akA
k

and sum:

∆A(A) =
n∑

k=0
akA

k =
n∑

k=0
(BkA

k+1 −Bk−1A
k) = BnA

n+1 −B−1 = 0

because nearly all terms in the penultimate sum cancel.

Corollary 3.13. Let φ ∈ L(V ) be a linear operator on a finite-dimensional vector space over a field F.

(1) mφ divides ∆φ. Equivalently, mA divides ∆A, for any A ∈ Mn(F).
(2) The roots of mφ are exactly the eigenvalues of φ.

Proof. By Theorem 3.12, ∆φ(φ) = 0 so mφ divides ∆φ by Theorem 3.7. As a result, any root of mφ is
a root of ∆φ and so an eigenvalue. Conversely, any eigenvalue is a root of mφ by Theorem 3.11.

Let us summarise the situation when F = C so that any polynomial is a product of linear factors. So
let φ ∈ L(V ) be a linear operator on a finite-dimensional complex vector space with distinct eigenvalues
λ1, . . . , λk. Then

∆φ = ±
k∏

i=1
(x− λi)ri

mφ =
k∏

i=1
(x− λi)si ,

where ri = am(λi) and 1 ≤ si ≤ ri, for 1 ≤ i ≤ k.

This gives us another way to find mφ if we can factorise ∆φ: mφ will be of the form p =
∏k

i=1(x− λi)si ,
with each 1 ≤ si ≤ ri, so evaluate p(φ) to find the one of lowest degree with p(φ) = 0.

Examples. Let us find mA in the following cases:

(1) Take

A =

1 1 2
0 1 1
0 0 2

 .

Since A is upper triangular, we immediately see that ∆A = −(x− 1)2(x− 2) so that mA is either
(x− 1)(x− 2) or (x− 1)2(x− 2).

5Theorem 2.4.6
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We try the first of these:

(A− I3)(A− 2I3) =

0 1 2
0 0 1
0 0 1

 −1 −1 2
0 −1 1
0 0 0

 =

0 −1 1
0 0 0
0 0 0

 6= 0.

We conclude that mA = (x− 1)2(x− 2).
(2) Let us try again with

A =

1 0 3
0 1 2
0 0 2


which also has ∆A = −(x− 1)2(x− 2) so that mA is either (x− 1)(x− 2) or (x− 1)2(x− 2).
However, this time

(A− I3)(A− 2I3) =

0 0 3
0 0 2
0 0 1

 −1 0 3
0 −1 2
0 0 0

 = 0

so that mA = (x− 1)(x− 2).
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Chapter 4

The structure of linear operators

4.1 On normal forms

Question. Given φ ∈ L(V ), is there a basis with respect to which φ has a “nice” matrix?

Of course, this does not make much sense without some idea of what “nice” should mean for matrices
but a reasonable idea might be that there should be a low number of non-zero entries.

There is a matrix version of the same question. For this, recall:

Definition. Matrices A,B ∈ Mn(F) are similar if there is an invertible matrix P ∈ Mn(F) such that

B = P−1AP.

We can then ask:

Question. Is A similar to a “nice” matrix?

and a very practical question:

Question (Similarity problem). When are A,B ∈ Mn(F) similar?

A possible answer to this last question would be to compare “nice” matrices similar to A and B (recall
that similarity is an equivalence relation!).

We already know one situation where this sort of thing works out. Recall from Algebra 1B1 that
A ∈ Mn(F) is diagonalisable if and only if it has an eigenbasis if and only if it is similar to a diagonal
matrix λ1 0

0 λn

. (4.1)

Here λ1, . . . , λn are the eigenvalues of A listed with their multiplicities, that is, each λi appears am(λi)
times. We say that (4.1) is a normal form of A.

We can conclude, after reordering eigenbases if necessary:

Theorem. Diagonalisable matrices A,B ∈ Mn(F) are similar if and only if they have the same eigen-
values and multiplicities up to order.

Our plan in this chapter is to try and generalise these ideas to arbitrary A ∈ Mn(F). We encounter two
difficulties almost immediately.

1Definition 3.3.1
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(1) Not enough eigenvalues: Let

A =
(

0 −1
1 0

)
.

Then ∆A = x2 + 1 which has no eigenvalues at all in F = R. We solve this problem by working
over C.

(2) Not enough eigenvectors: Let

A =
(

0 1
0 0

)
.

Then ∆A = x2 but kerA = span{(1, 0)}. We therefore do not have enough eigenvectors to span
C2. To solve this problem will need a new idea (see §4.3).

In this chapter, we will, among other things, completely solve the similarity problem for any A ∈ Mn(C).
This will take quite a bit of work but here is a sneak preview: any A ∈ Mn(C) is similar to a matrix of
the form 

λ1 ∗ 0

∗0 λn


with eigenvalues with multiplicity on the diagonal, each ∗ on the first super-diagonal either 0 or 1 and
zeros elsewhere.

4.2 Invariant subspaces

Definition. Let φ be a linear operator on a vector space V . A subspace U ⊆ V is φ-invariant if and
only if φ(u) ∈ U , for all u ∈ U .

The next lemma gives us lots of examples:

Lemma 4.1. Let φ, ψ ∈ L(V ) be linear operators and suppose that φψ = ψφ (say that φ and ψ commute).

Then kerψ and imψ are φ-invariant.

Proof. Let v ∈ kerψ so that ψ(v) = 0. Then

ψ(φ(v)) = φ(ψ(v)) = φ(0) = 0

so that φ(v) ∈ kerψ also.

Again, if v ∈ imψ, there is w ∈ V with ψ(w) = v and now

φ(v) = φ(ψ(w)) = ψ(φ(w)) ∈ imψ,

as required.

As a consequence, the following are φ-invariant:

• kerφ and imφ (since φ commutes with itself!).
• ker p(φ), im p(φ), for any p ∈ F[x] (since xp = px so that φp(φ) = p(φ)φ).

Also, we have

• span{v}, for any eigenvector v of φ, since φ(v) = λv ∈ span{v}. Thus:
• Any U ≤ Eφ(λ) is φ-invariant.

Remark. If U ≤ V is φ-invariant then φ|U : U → U is in L(U).
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Definition. Let V1, . . . , Vk ≤ V with V = V1 ⊕ · · · ⊕ Vk and let φi ∈ L(Vi), for 1 ≤ i ≤ k.

Define φ : V → V by
φ(v) = φ1(v1) + · · · + φk(vk),

where v = v1 + · · · + vk with vi ∈ Vi, for 1 ≤ i ≤ k.

Call φ the direct sum of the φi and write φ = φ1 ⊕ · · · ⊕ φk.

There is a related notion for matrices:

Definition. Let A1, . . . , Ak be square matrices with Ai ∈ Mni
(F). The direct sum of the Ai is

A1 ⊕ · · · ⊕Ak :=

A1 0

0 Ak

 ∈ Mn(F),

where n = n1 + · · · + nk.

A matrix of this type is said to be block diagonal.

Example.

(
1 2
3 4

)
⊕

(
5
)

⊕
(

1 1
1 1

)
=


1 2 0 0 0
3 4 0 0 0
0 0 5 0 0
0 0 0 1 1
0 0 0 1 1

 ∈ M5(R).

Proposition 4.2. Let V1, . . . , Vk ≤ V with V = V1 ⊕ · · · ⊕ Vk and let φi ∈ L(Vi), for 1 ≤ i ≤ k. Let
φ = φ1 ⊕ · · · ⊕ φk. Then

(1) φ is linear so that φ ∈ L(V ).
(2) Each Vi is φ-invariant and φ|Vi

= φi, 1 ≤ i ≤ k.
(3) Let Bi be a basis of Vi and φi have matrix Ai with respect to Bi, 1 ≤ i ≤ k. Then φ has matrix

A1 ⊕ · · · ⊕Ak with respect to the concatenated basis B = B1 . . .Bk.

Proof. For (1), let v, w ∈ V and write

v = v1 + · · · + vk w = w1 + · · · + wk,

with each vi, wi ∈ Vi. Then

v + λw = (v1 + λw1) + · · · + (vk + λwk)

with each vi + λwi ∈ Vi.

Then

φ(v + λw) =
k∑

i=1
φi(vi + λwi) =

k∑
i=1

(
φi(vi) + λφi(wi)

)
=

k∑
i=1

φi(vi) + λ

k∑
i=1

φi(wi) = φ(v) + λφ(w),

where we used the linearity of φi in the second equality.

For (2), let v ∈ Vi so that we can write v = v1 + · · · + vk with vi = v and vj = 0, for i 6= j. Then

φ(v) = φ1(0) + · · · + φi(v) + · · · + φk(0) = φi(v) ∈ Vi

so that Vi is φ-invariant and φ|Vi
= φi.

Finally, for (3), let B = B1 . . .Bk = v1, . . . , vn with Bi = va+1, . . . , va+r. Let φ have matrix A with
respect to B. Then, for 1 ≤ j ≤ r,

φ(va+j) =
n∑

b=1
Ab,a+jvb.
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On the other hand,

φ(va+j) = φi(va+j) =
r∑

c=1
(Ai)cjva+c.

Now compare coefficients to see that

Aa+c,a+j = (Ai)cj , 1 ≤ j ≤ r

Ab,a+j = 0 otherwise.

Otherwise said, the a+j-th column of A has the j-th column of the r×r matrix Ai in rows a+1, . . . , a+r
and zeros elsewhere. This settles (3).

Conversely, any direct sum decomposition into φ-invariant subspaces arises this way:

Proposition 4.3. Let V1, . . . , Vk ≤ V with V = V1 ⊕ · · · ⊕ Vk and let φ ∈ L(V ). Suppose that each Vi

is φ-invariant.

Then φ = φ1 ⊕ · · · ⊕ φk where φi := φ|Vi
∈ L(Vi).

Proof. This is almost obvious: write v ∈ V as v = v1 + · · · + vk with each vi ∈ Vi. Then

φ(v) = φ(v1) + · · · + φ(vk) = φ1(v1) + · · · + φk(vk) = φ1 ⊕ · · · ⊕ φk(v),

where the first equality comes from linearity of φ and the last from the definition of φ1 ⊕ · · · ⊕ φk.

The usefulness of such a decomposition comes from the fact that nearly all properties of φ reduce to
properties of the simpler φi:

Proposition 4.4. Let V1, . . . , Vk ≤ V with V = V1⊕· · ·⊕Vk, φi ∈ L(Vi), 1 ≤ i ≤ k and φ = φ1⊕· · ·⊕φk.

Then:

(1) kerφ = kerφ1 ⊕ · · · ⊕ kerφk.
(2) imφ = imφ1 ⊕ · · · ⊕ imφk.
(3) p(φ) = p(φ1) ⊕ · · · ⊕ p(φk), for any p ∈ F[x].
(4) ∆φ =

∏k
i=1 ∆φi .

Note that the sums in (1) and (2) are direct thanks to:

Exercise.2 Let V = V1 ⊕ · · · ⊕ Vk and let Ui ≤ Vi, 1 ≤ i ≤ k. Then the sum U1 + · · · + Uk is direct.

Proof of Theorem 4.4. For (1), write v ∈ kerφ as v = v1 + · · · + vk with each vi ∈ Vi. Then

φ(v) = φ1(v1) + · · · + φk(vk) = 0 = 0 + · · · + 0,

with φi(vi), 0 ∈ Vi. The direct sum property tells us that each φi(vi) = 0 so that v ∈ kerφ1 ⊕· · ·⊕kerφk.
Thus kerφ ≤ kerφ1 ⊕ · · · ⊕ kerφk.

Conversely, if v = v1 + · · · + vk ∈ kerφ1 ⊕ · · · ⊕ kerφk then each φi(vi) = 0 and

φ(v) = φ1(v1) + · · · + φk(vk) = 0.

The argument for item (2) is very similar and so left as an exercise3.

For item (3), note that, for vi ∈ Vi, φ(vi) = φi(vi) ∈ Vi so that

φ2(vi) = φ(φi(vi)) = φi(φi(vi)) = φ2
i (vi)

2Exercise sheet 4, question 2(a)
3Question 2(b) on exercise sheet 4.
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and so on.

Finally, for item (4), let Ai be the matrix of φi with respect to some basis Bi of Vi. Then φ has matrix
A1 ⊕ · · · ⊕Ak with respect to B1 . . .Bk by Theorem 4.2(3). Now Theorem 2.1.4 of Algebra 1B tells us

∆φ = det(A− xI) =

∣∣∣∣∣∣∣
A1 − xI 0

0 Ak − xI

∣∣∣∣∣∣∣ =
k∏

i=1
det(Ai − xI) =

k∏
i=1

∆φi
.

Exercise.4 In this situation, what can you say about mφ?

Here is a first example of these ideas in action:

Proposition 4.5. Let φ ∈ L(V ) be a linear operator on a finite-dimensional vector space over a field F
and let λ1, . . . , λk be the distinct eigenvalues of φ.

Then φ is diagonalisable if and only if

V =
k⊕

i=1
Eφ(λi). (4.2)

Proof. Suppose that (4.2) holds and let Bi be a basis of Eφ(λi). Then, by Theorem 2.7, B1 . . .Bk is a
basis of V which consists of eigenvectors and so is an eigenbasis. Thus φ is diagonalisable.

Conversely, suppose that B = v1, . . . , vn is an eigenbasis for φ so that each φ(vj) = µjvj , for some
µj ∈ {λ1, . . . , λk}.

We claim: for λ an eigenvalue,

Uλ := span{vj | µj = λ} = Eφ(λ).

Given this, Bi := {vj | µj = λi} is a basis for Eφ(λi) and then B = B1 . . .Bk so that (4.2) holds, again
by Theorem 2.7.

It remains to prove the claim. Clearly Uλ ≤ Eφ(λ). Conversely, if v ∈ Eφ(λ), write v =
∑n

j=1 ajvj .
Then

0 = (φ− λ id)(v) =
∑

j|µj=λ

(µj − λ)ajvj +
∑

j|µj 6=λ

(µj − λ)ajvj =
∑

j|µj 6=λ

(µj − λ)ajvj .

Since the vj are linearly independent, we see that (µj − λ)aj = 0, for all j with µj 6= λ, and so all such
aj vanish. Thus

v =
∑

j|µj=λ

ajvj ∈ Uλ.

To summarise the situation: when φ is diagonalisable, then with Vi := Eφ(λi) and φi := φ|Vi
, we have

V = V1 ⊕ · · · ⊕ Vk, φ = φ1 ⊕ · · · ⊕ φk and

φi = λi idVi .

Thus the φi are as simple as they possibly can be!

We now turn to what we can say about general φ.
4Exercise sheet 4, question 3.
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4.3 Jordan decomposition

4.3.1 Powers of operators and Fitting’s Lemma

Proposition 4.6 (Increasing kernels, decreasing images). Let V be a vector space over a field F and
φ ∈ L(V ). Then

(1) kerφk ≤ kerφk+1, for all k ∈ N. That is,

{0} = kerφ0 ≤ kerφ ≤ kerφ2 ≤ . . . .

If kerφk = kerφk+1 then kerφk = kerφk+n, for all n ∈ N.
(2) imφk ≥ imφk+1, for all k ∈ N. That is,

V = imφ0 ≥ imφ ≥ imφ2 ≥ . . . .

If imφk = imφk+1 then imφk = imφk+n, for all n ∈ N.

Proof. We prove (1) and leave (2) as an exercise5.

If v ∈ kerφk then φk(v) = 0 so that φk+1(v) = φ(φk(v)) = φ(0) = 0. Thus v ∈ kerφk+1 as required.

Now suppose that kerφk = kerφk+1 and induct to prove that kerφk = kerφk+n, for n ∈ N. We already
have the n = 1 case by assumption so suppose kerφk = kerφk+n, for some n and let v ∈ kerφk+n+1.
Then

0 = φk+n+1(v) = φk+1(φn(v))

so that φn(v) ∈ kerφk+1 = kerφk. Thus φn+k(v) = 0 and v ∈ kerφn+k = kerφk by the induction
hypothesis. Induction now tells us that kerφk = kerφk+n, for all n ∈ N.

Corollary 4.7. Let V be finite-dimensional with dimV = n and φ ∈ L(V ). Then, for all k ∈ N,

kerφn = kerφn+k

imφn = imφn+k.

Proof. By Theorem 4.6, we need to prove kerφn = kerφn+1 and imφn = imφn+1.

If kerφn 6= kerφn+1 then, by Theorem 4.6, we have subspaces

{0} � kerφ � · · · � kerφn+1

of strictly increasing dimension so that dim kerφn+1 ≥ n + 1 > dimV : a contradiction. Thus kerφn =
kerφn+1.

Rank-nullity now tells us that dim imφn = dim imφn+1 whence imφn = imφn+1 also.

Theorem 4.8 (Fitting6’s Lemma). Let φ ∈ L(V ) be a linear operator on a finite-dimensional vector
space over a field F. Then, with n = dimV , we have

V = kerφn ⊕ imφn.

Proof. From Theorem 4.7, we know that kerφn = kerφn+k, imφn = imφn+k, for all k ∈ N.

We start by proving that kerφn ∩ imφn = {0}. For this, let v ∈ kerφn ∩ imφn so that φn(v) = 0 and
there is w ∈ V such that v = φn(w). Then 0 = φn(v) = φ2n(w) so that w ∈ kerφ2n = kerφn. Thus
v = φn(w) = 0 as required.

It follows that V ≥ kerφn ⊕ imφn but, by rank-nullity, the dimensions of these spaces coincide whence
V = kerφn ⊕ imφn.

5Question 5 on exercise sheet 4.
6Hans Fitting, 1906–1938.
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4.3.2 Generalised eigenspaces

Let us revisit the example of Section 4.1 of an operator with not enough eigenvectors: contemplate
φ := φA ∈ L(C2) where

A =
(

0 1
0 0

)
.

We know that φ has only zero as eigenvalue and the corresponding eigenspace Eφ(0) = span{(1, 0)} 6= C2.
However, A2 = 0 so that ker(φ− 0 id)2 = C2.

This gives us a new idea: for φ ∈ L(V ) and λ ∈ F look for non-zero v ∈ V such that

(φ− λ id)k(v) = 0,

for some k ∈ N. Thanks to Theorem 4.6 and Theorem 4.7, this amounts to demanding that

(φ− λ id)n(v) = 0,

where n = dimV .

Observe that this means that (φ−λ id)k is not injective (it has non-trivial kernel) so that φ−λ id is not
injective either (and so has non-trivial kernel) and therefore λ is an eigenvalue of φ.

This prompts:

Definition. Let φ ∈ L(V ) be a linear operator on an n-dimensional vector space over a field F. A
generalised eigenvector of φ with eigenvalue λ is a non-zero v ∈ V such that

(φ− λ id)n(v) = 0. (4.3)

The set of all such along with 0 is called the generalised eigenspace of φ with eigenvalue λ and denoted
Gφ(λ). Thus

Gφ(λ) = ker(φ− λ idV )n ≤ V.

Lemma 4.9. Eφ(λ) ≤ Gφ(λ) ≤ V and Gφ(λ) is φ-invariant.

Proof. There are two things to prove:

(1) Eφ(λ) ≤ Gφ(λ). This is straight from Theorem 4.6: Eφ(λ) = ker(φ − λ idV ) ≤ ker(φ − λ idV )n =
Gφ(λ).

(2) Gφ(λ) is φ-invariant. Gφ(λ) = ker p(φ) where p = (x− λ)n which is φ-invariant (see the examples
after Theorem 4.1).

Lemma 4.10. Let φ ∈ L(V ) be a linear operator on an n-dimensional vector space over F and λ1, λ2 ∈ F
distinct eigenvalues of φ. Then Gφ(λ1) ∩Gφ(λ2) = {0}.

Proof. The assertion amounts to the fact that (φ− λ1 id)n
|Gφ(λ2) is injective (having trivial kernel). It is

enough then to prove that (φ−λ1 id)|Gφ(λ2) is injective, or, equivalently, that Eφ(λ1)∩Gφ(λ2) = {0}. For
this, let v ∈ Eφ(λ1)∩Gφ(λ2). Then φ(v) = λ1v and, from Theorem 3.10, (φ−λ2 id)n(v) = (λ1−λ2)nv = 0.
We conclude that v = 0 and we are done.

We now arrive at the promised generalisation of Theorem 4.5.

Theorem 4.11 (Jordan7 decomposition). Let φ ∈ L(V ) be a linear operator on a finite-dimensional
vector space over C with distinct eigenvalues λ1, . . . , λk. Then

V =
k⊕

i=1
Gφ(λi).

7Camille Jordan, 1838–1922.
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Proof. We induct on n := dimV .

When n = 1, φ = λ id, for some λ ∈ C, so that V = Eφ(λ) = Gφ(λ). This settles the base case.

For the induction step, suppose that the theorem holds for spaces of dimension < n and that dimV = n.
Now, by Theorem 3.9, φ has an eigenvalue λ1, say (this is where we use F = C). Then Gφ(λ1) =
ker(φ− λ1 id)n so that, by Theorem 4.8, we have

V = Gφ(λ1) ⊕ im(φ− λ1 id)n.

Set U := im(φ− λ1 id)n and write φ̂ = φ|U . We claim:

1. φ̂ has eigenvalues λ2, . . . , λk.
2. For i ≥ 2, Gφ̂(λi) = Gφ(λi).

Given the claim, since dimU < n, the induction hypothesis applies to give

U =
k⊕

i=2
Gφ(λi)

whence

V = Gφ(λ1) ⊕ U =
k⊕

i=1
Gφ(λi)

as required. The magic of induction now proves the theorem.

It remains to prove the claim. For this, first note that if λ is an eigenvalue of φ̂ with eigenvector u ∈ U
then

λu = φ̂(u) = φ(u)

so that λ is an eigenvalue of φ.

Next, observe that
Eφ(λ1) ∩ U ≤ Gφ(λ1) ∩ U = {0}

so that λ1 is not an eigenvalue of φ̂.

On the other hand, for i ≥ 2, Theorem 4.4 tells us that

Gφ(λi) = ker(φ− λi idV )n = (Gφ(λi) ∩Gφ(λ1)) ⊕ (Gφ(λi) ∩ U) = Gφ(λi) ∩ U,

where the last equality comes from Theorem 4.10. From this we learn that Gφ(λi) ≤ U so that, first, λi

is an eigenvalue of φ̂ and also that Gφ̂(λi) = Gφ(λi) (since it is always true that Gφ̂(λi) = Gφ(λi) ∩ U).
This settles the claim and so the whole proof.

Let us summarise the situation. With Vi = Gφ(λi) and φi = φ|Vi
, we have V = V1 ⊕ · · · ⊕ Vk and

φi = λi idVi
+Ni,

where we have set Ni = φi − λi idVi
∈ L(Vi). The key point is that Nn

i = 0 which prompts some
terminology.

Definition. A linear operator φ on a vector space V is nilpotent if φk = 0, for some k ∈ N. or,
equivalently, if kerφk = V .

Remark. If V is finite-dimensional, we may take k = dimV by Theorem 4.7.

Our remaining task is to understand nilpotent operators. As a useful first pass at this, we have:

Proposition 4.12. Let φ ∈ L(V ) be a linear operator on a finite-dimensional vector space V over F.
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Then φ is nilpotent if and only if there is a basis with respect to which φ has a strictly upper triangular
matrix A (thus Aij = 0 whenever i ≥ j):

A =

0 ∗

0 0

.
Proof. Begin by observing that φ has strictly upper triangular matrix with respect to B : v1, . . . , vn if
and only if φ(v1) = 0 and φ(vj) ∈ span{v1, . . . , vj−1}, for j > 1.

Thus, if φ has strictly upper triangular matrix A ∈ Mn(F) with respect v1, . . . , vn, we can iterate to
see that φk vanishes on v1, . . . , vk and φk(vj) ∈ span{v1, . . . , vj−k}, for j > k. In particular φn = 0.
Alternatively, Ak has zeros on the first k − 1 super-diagonals:

Ak =



0 0 ∗

0

0 0


.

In particular, An = 0 so that φn = 0 also.

For the converse, if φ is nilpotent, we consider the subspaces

{0} ≤ kerφ ≤ kerφ2 ≤ · · · ≤ kerφdim V = V.

Note that, if v ∈ kerφk, 0 = φk(v) = φk−1(φ(v)) so that φ(v) ∈ kerφk−1, for k ≥ 1.

Now take a basis v1, . . . , v` of kerφ, extend it successively to one of kerφk, for each k, until we arrive
at a basis v1, . . . , vn of V with the property that each φ(vj) ∈ span{v1, . . . , vj−1}. This means precisely
that the matrix of φ with respect to v1, . . . , vn is strictly upper triangular.

Apply Theorem 4.12 to each Ni to get a basis of Vi for which φi has a matrix of the formλi ∗

0 λi


so that, in particular, ∆φi

= (λi − x)dim Vi . In view of Theorem 4.4(4), we conclude that

∆φ =
k∏

i=1
∆φi

= ±
∏
i=1

(x− λi)dim Vi .

Otherwise said, am(λi) = dimVi and we have proved:

Proposition 4.13. Let λ ∈ C be an eigenvalue of a linear operator φ on a complex finite-dimensional
vector space. Then

am(λ) = dimGφ(λ).

Remark. Since Eφ(λ) ≤ Gφ(λ), this explains the Algebra 1B result8that gm(λ) ≤ am(λ).

Finally, we can say something useful about the minimal polynomial of φ: it is the product of the minimal
polynomials of the φi:

Proposition 4.14. Let φ ∈ L(V ) be a linear operator on a finite-dimensional vector space over C with
distinct eigenvalues λ1, . . . , λk. Set φi = φ|Gφ(λi). Then

8Proposition 3.4.6
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(1) Each mφi
= (x− λi)si , for some si ≤ dimGφ(λi).

(2) mφ =
∏k

i=1 mφi
=

∏k
i=1(x− λi)si .

Proof. We know from Theorem 3.13(1) that mφi
divides ∆φi

= (λi − x)dim Gφ(λi) so (1) is immediate.

For (2), let p =
∏k

i=1(x − λi)si . Then p(φ) =
⊕k

i=1 p(φi) = 0 since each p(φi) = 0. Thus mφ divides p
and we see conclude that

mφ =
k∏

i=1
(x− λi)ti ,

with each 1 ≤ ti ≤ si.

On the other hand, each mφi
= (x − λ)si divides mφ since mφ(φi) = mφ(φ)|Vi

= 0. Thus si ≤ ti, for
1 ≤ i ≤ k, and mφ = p.

As a corollary, we get an efficient (in the sense of low powers of (φ− λi idV )) expression for Gφ(λi):

Corollary 4.15. Let φ ∈ L(V ) be a linear operator with minimum polynomial
∏k

i=1(x− λi)si . Then

Gφ(λi) = ker(φ− λi idV )si .

Proof. By definition, ker(φ − λi idV )si ≤ Gφ(λi). On the other hand, with Vi = Gφ(λi) and φi = φ|Vi
,

we know that 0 = mφi
(φi) = (φi − λi idVi

)si . Otherwise said, (φ − λi idV )si

|Vi
= 0 so that Gφ(λi) ≤

ker(φ− λi idV )si .

Example. Let φ = φA ∈ L(C3) where

A =

1 1 1
0 1 1
0 0 2

.
Find mφ, the eigenspaces and generalised eigenspaces of φ.

Solution: A being upper triangular, we see at once that ∆φ = ∆A = (1 − x)2(2 − x) so that mA is
either (x− 1)(x− 2) or (x− 1)2(x− 2) by Theorem 3.13. We check the first possibility:

(A− I3)(A− 2I3) =

0 1 1
0 0 1
0 0 1

 −1 1 1
0 −1 1
0 0 0

 =

0 −1 1
0 0 0
0 0 0

 6= 0.

We conclude that mφ = (x − 1)2(x − 2) and immediately deduce from Theorem 4.15 that Gφ(1) =
ker(φ− id)2 while Gφ(2) = ker(φ− 2 id) = Eφ(2).

It remains to compute these:

Eφ(1) = ker(φ− id) = ker

0 1 1
0 0 1
0 0 1

 = span{(1, 0, 0)}

Gφ(1) = ker(φ− id)2 = ker

0 1 1
0 0 1
0 0 1

2

= ker

0 0 2
0 0 1
0 0 1

 = span{(1, 0, 0), (0, 1, 0)}

Eφ(2) = Gφ(2) = ker(φ− 2 id) = ker

−1 1 1
0 −1 1
0 0 0

 = span{(2, 1, 1)}.

4.4 Jordan normal form

We complete our analyis of linear operators by improving on Theorem 4.12.

First we introduce the key ingredient.
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4.4.1 Jordan blocks

Definition. The Jordan block of size n ∈ Z+ and eigenvalue λ ∈ F is J(λ, n) ∈ Mn(F) with λ’s on the
diagonal, 1’s on the super-diagonal and zeros elsewhere. Thus

J(λ, n) =



λ 1 0 0

0

1
0 λ


Notation. Set Jn := J(0, n) so that J(λ, n) = λIn + Jn.

We have:

Exercises.9

(1) kerJk
n = span{e1, . . . , ek}. In particular, Jn is nilpotent: Jn

n = 0.
(2) im Jk

n = span{e1, . . . , en−k}.
(3) λ is the only eigenvalue of J(λ, n) and EJ(λ,n)(λ) = span{e1}, GJ(λ,n)(λ) = Fn.
(4) mJ(λ,n) = ±∆J(λ,n) = (x− λ)n.

We are going to prove that any nilpotent operator φ ∈ L(V ) on a finite-dimensional vector space has a
basis for which the matrix of φ is a direct sum of Jordan blocks: Jn1 ⊕· · ·⊕Jnk

with n1+· · ·+nk = dimV .

We start by spelling out what it means for an operator to have a Jordan block as matrix:

Lemma 4.16. Let v1, . . . , vn be a basis for a vector space V and φ ∈ L(V ).

Then the following are equivalent:

(1) φ has matrix Jn with respect to v1, . . . , vn.
(2) φ(v1) = 0 and φ(vi) = vi−1, for 2 ≤ i ≤ n.
(3) vi = φn−i(vn), 0 ≤ i ≤ n− 1 and φn(vn) = 0.

Proof. The equivalence of (1) and (2) comes straight from the definitions since (Jn)i−1,i = 1 and all
other entries in the i-th column vanish.

The equivalence of (2) and (3) is an easy exercise10.

We will work with characterisation (3) and prove:

Theorem 4.17. Let φ ∈ L(V ) be a nilpotent operator on a finite-dimensional vector space over F. Then
there are v1, . . . , vk ∈ V and n1, . . . , nk ∈ Z+ such that

φn1−1(v1), . . . , φ(v1), v1, . . . , φ
nk−1(vk), . . . , φ(vk), vk

is a basis of V and φni(vi) = 0, for 1 ≤ i ≤ k.

Using this basis and Theorem 4.16 we immediately conclude:

Corollary 4.18. Let φ ∈ L(V ) be a nilpotent operator on a finite-dimensional vector space over F. Then
there is a basis for which φ has matrix Jn1 ⊕ · · · ⊕ Jnk

.
9Exercise sheet 5, question 1.

10Question 2 on sheet 5.
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Remark. Note that direct sums of the Jni
are characterised by having 1’s and zeros (at the joins of

successive blocks) on the super-diagonal and zeros elsewhere.

Proof of Theorem 4.17. Once again we induct on dimV .

If dimV = 1, the only nilpotent operator is the zero operator and any basis v1 will do.

For the induction step, suppose that the theorem is true when dimV < n and suppose that dimV = n.
We prove the theorem for V in three steps.

Step 1: apply the induction hypothesis to imφ. We let r = rankφ and k = n− r = dim kerφ. Since φ
is nilpotent, k > 0 so that r = dim imφ < n. We therefore apply the induction hypothesis to φ| im φ to
get w1, . . . , w` ∈ imφ, m1, . . . ,m` ∈ Z+ such that

u1, . . . , ur := φm1−1(w1), . . . , φ(w1), w1, . . . , φ
m`−1(w`), . . . , φ(w`), w`

is a basis of imφ and φmi(wi) = 0, for 1 ≤ i ≤ `. Observe that each φ(ui) is either ui−1 or zero.

Step 2: Find the first ` of the vi. Each wi ∈ imφ so choose v1, . . . , v` such that φ(vi) = wi, for 1 ≤ i ≤ `.

We claim that u1, . . . , ur, v1, . . . , v` are linearly independent. For this, suppose that we have a linear
relation

r∑
j=1

λjuj +
∑̀
i=1

µivi = 0 (4.4)

and take φ of this to get
r∑

j=1
λjφ(uj) +

∑̀
i=1

µiφ(vi) = 0

which reads ∑
j|φ(uj)6=0

λjuj−1 +
∑̀
i=1

µiwi = 0. (4.5)

Since these uj−1 and wi are distinct, (4.5) is still a linear relation on the linearly independent uj and so,
in particular, each µi = 0. Now (4.4) becomes a linear relation on the uj and so all λj = 0 also. This
proves the claim.

Step 3: extend u1, . . . , ur, v1, . . . , v` to a basis of V by adding elements of kerφ. Define U ≤ V by

U = span{u1, . . . , ur, v1, . . . , v`} ≥ imφ

and note that imφ = φ(U) since any ui = φm(vj), for some 1 ≤ j ≤ ` and 1 ≤ m ≤ mj . We extend to
get a basis

u1, . . . , ur, v1, . . . , v`, x`+1, . . . , xk

of V . Now, for `+ 1 ≤ j ≤ k, there is some yj ∈ U such that φ(yj) = φ(xj) whence vj := xj − yj ∈ kerφ.

By construction

span{u1, . . . , ur, v1, . . . , vk} = span{u1, . . . , ur, v1, . . . , v`, x`+1, . . . , xk} = V

so that u1, . . . , ur, v1, . . . , vk is a basis of V . Moreover, setting

ni =
{
mi + 1 1 ≤ i ≤ `

1 `+ 1 ≤ i ≤ k

we have φni(vi) = 0, for all 1 ≤ i ≤ k and our basis, reordered to slot the first ` vi into the right places,
is

φn1−1(v1), . . . , φ(v1), v1, . . . , φ
n`−1(v`), . . . , φ(v`), v`, v`+1, . . . , vk,

which is of the required form.
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The only question left is how unique are the ni? We already know from the proof of Theorem 4.17 that
there are k = dim kerφ of them11 but we can do better. For this, set A = Jn1 ⊕ · · · ⊕ Jnk

so that, for
s ∈ N, As = Js

n1
⊕ · · · ⊕ Js

nk
. Now

dim kerJs
ni

= s,

for s ≤ ni so that

dim kerJs
ni

− dim kerJs−1
ni

=
{

1 1 ≤ s ≤ ni

0 s > ni.
(4.6)

Now kerAs =
⊕k

i=1 kerJs
ni

so summing (4.6) over i yields:

#{i | ni ≥ s} = dim kerAs − dim kerAs−1.

This proves:

Proposition 4.19. Let φ ∈ L(V ) be nilpotent with matrix Jn1 ⊕ · · · ⊕ Jnk
for some basis of V . Then

n1, . . . , nk are unique up to order. Indeed,

#{i | ni ≥ s} = dim kerφs − dim kerφs−1,

for each s ≥ 1.

Exercise.12 In the situation of Theorem 4.19, show that

#{i | ni = s} = 2 dim kerφs − dim kerφs−1 − dim kerφs+1.

In another direction:

Proposition 4.20. In the situation of Theorem 4.19, we have

mφ = xs,

where s = max{n1, . . . , nk}.

Proof. Exercise13!

4.4.2 Jordan normal form

We put §4.4.1 together with Theorem 4.11 to prove the ultimate structure theorem for linear operators
on a finite-dimensional complex vector space.

Theorem 4.21. Let φ ∈ L(V ) be a linear operator on a finite-dimensional vector space V over C. Then
there is a basis of V for which φ has as matrix a direct sum of Jordan blocks which are unique up to
order.

Such a basis is called a Jordan basis and the direct sum of Jordan blocks is called the Jordan normal
form (JNF) of φ.

Proof. Let λ1, . . . , λk be the distinct eigenvalues of φ. By Theorem 4.11, V =
⊕
Vi, for Vi = Gφ(λi) and

then φi := φ|Vi
can be written

φi = λi idVi +Ni,

with Ni nilpotent. Apply Theorem 4.18 to get a basis of Vi for which Ni has matrix Jn1 ⊕ · · · ⊕ Jn`
. By

Theorem 4.19, the n1, . . . , n` are unique up to order. Now φi has matrix

J(λi, n1) ⊕ · · · ⊕ J(λi, n`).

We then concatenate these bases to get the required Jordan basis of V .
11Alternatively, if you have not read the proof: if there are k Jordan blocks Jni , we have dim ker φ =

∑k

i=1 dim ker J(ni) =
k since dim ker J(ni) = 1.

12Question 3 on sheet 5.
13Question 4 on sheet 5.
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From this, Theorem 4.14 and Theorem 4.20, we get a complete account of the minimum polynomial:

Corollary 4.22. Let φ ∈ L(V ) be a linear operator on a finite-dimensional vector space V over C with
distinct eigenvalues λ1, . . . , λk. Then

mφ =
k∏

i=1
(x− λi)si

where si is the size of the largest Jordan block of φ with eigenvalue λi.

Exercise.14 φ is diagonalisable if and only if mφ =
∏k

i=1(x− λi) (that is, all si = 1).

We can apply all this to matrices and solve the similarity problem.

Corollary 4.23. Any A ∈ Mn(C) is similar to a direct sum of Jordan blocks, that is, there is an
invertible matrix P ∈ Mn(C) such that

P−1AP = A1 ⊕ · · · ⊕Ar,

with each Ai a Jordan block.

A1 ⊕ · · · ⊕Ar is called the Jordan normal form (JNF) of A and is unique up to the order of the Ai.

Proof. Apply Theorem 4.21 to φA : Cn → Cn and let P be the change of basis matrix from the standard
basis to the Jordan basis of φA (so that the columns of P are the Jordan basis).

This gives:

Theorem 4.24. Matrices A,B ∈ Mn(C) are similar if and only if they have the same Jordan normal
form, up to reordering the Jordan blocks.

4.4.3 Examples

Example. Let φ = φA : C4 → C4 where

A =


2 −4 2 2

−2 0 1 3
−2 −2 3 3
−2 −6 3 7

 .

let us find the Jordan normal form of A and a Jordan basis of φ.

Step 1: compute ∆A. This turns out to be (2 − x)2(4 − x)2 so that we have eigenvalues 2, 4 and
Theorem 4.13 tells us that

dimGφ(2) = dimGφ(4) = 2.

Step 2: compute mA by trial and error. It must be (x − 2)s1(x − 4)s2 with 1 ≤ si ≤ 2 so first try
(x− 2)(x− 4):

(A− 2I)(A− 4I) =


0 0 0 0
0 −4 2 2
0 −4 2 2
0 −4 2 2

 6= 0.

Next try (x− 2)(x− 4)2:
(A− 2I)(A− 4I)2 = 0 ∈ M4(C)

so that mA = (x− 2)(x− 4)2.

Step 3: deduce the shape of the Jordan normal form using Theorem 4.22:
14Question 5 on sheet 5.
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Since s1 = 1, all Jordan blocks with eigenvalue 2 have size 1, Eφ(2) = Gφ(2).

Since s2 = 2, there is at least one Jordan block of size 2 with eigenvalue 4 and since dimGφ(4) = 2 there
is no room for any other block.

We conclude that A has JNF J(2, 1) ⊕ J(2, 1) ⊕ J(4, 2):
2

2
4 1

4

.
We find a Jordan basis by finding one for each generalised eigenspace in turn. Any basis of Eφ(2) will
do for the 2-generalised eigenspace so solve (A− 2I)v = 0 to find one. I found (2, 1, 0, 2), (0, 1, 2, 0).

For the 4-generalised eigenspace, we need a basis of the form (φ− 4 id)v, v with (φ− 4 id)2(v) = 0. For
this we work backwards:

(a) Find an eigenvector with eigenvalue 4 by solving Aw = 4w. One solution is w = (0, 1, 1, 1).
(b) Find v by solving (A− 4I)v = w. One solution is (1, 0, 0, 1).

We therefore have a Jordan basis (2, 1, 0, 2), (0, 1, 2, 0), (0, 1, 1, 1), (1, 0, 0, 1).

It follows that

P =


2 0 0 1
1 1 1 0
0 2 1 0
2 0 1 1


satisfies

P−1AP =


2

2
4 1

4

.
Example. Let φ ∈ L(V ) with ∆φ = (x− 5)4 and mφ = (x− 5)2. What can be said about the JNF of
φ?

Solution: We see from ∆φ that 5 is the only eigenvalue of φ and that dimV = deg ∆φ = 4.

From mφ, we see that there must be at least one Jordan block of size 2. This gives two possibilities:

J(5, 2) ⊕ J(5, 2)
J(5, 2) ⊕ J(5, 1) ⊕ J(5, 1).

In the first case, dimEφ(5) = 2 and, in the second, dimEφ(5) = 3.

Example. What is the JNF of A given by −1 1 0
−1 1 0
−1 1 0

?

Find a Jordan basis for A.

Solution: One readily checks that ∆A = x3, and A2 = 0 whence A is nilpotent with mA = x2. Thus A
has at least one J2 = J(0, 2) block of size two so the JNF must be J2 ⊕ J1.

A Jordan basis is v1, v2, v3 with Av2 = v1 and Av1 = Av3 = 0 so we seek v1 ∈ imA ∩ kerA and work
backwards from there.

Solve linear equations to see that

kerA = {(x, x, y) | x, y ∈ F}
imA = {(x, x, x) | x ∈ F}
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so take v1 = (1, 1, 1) and solve Av2 = v1 to get, for example, v2 = (0, 1, 0). Finally take any v3 ∈ kerA
that is linearly independent of v1: (0, 0, 1) will do.

Thus we have arrived at the Jordan basis (1, 1, 1), (0, 1, 0), (0, 0, 1).

Remark. We see from these computations that Jordan bases of φ are far from unique: many choices are
made when finding one.
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Chapter 5

Symmetric bilinear forms and
quadratic forms

We give describe a generalisation of real inner products to vectors spaces V over an arbitrary field F and
use this to study the simplest non-linear functions on V .

5.1 Bilinear forms and matrices

Definition. Let V be a vector space over a field F. A map B : V × V → F is bilinear if it is linear in
each slot separately:

B(λv1 + v2, v) = λB(v1, v) +B(v2, v)
B(v, λv1 + v2) = λB(v, v1) +B(v, v2),

for all v, v1, v2 ∈ V , v, v1, v2 ∈ V and λ ∈ F.

A bilinear map V × V → F is called a bilinear form on V .

Remark. A bilinear form B : V × V → F has B(v, 0) = B(0, v) = 0, for all v ∈ V . Indeed,

B(v, 0) = B(v, 0 + 0) = B(v, 0) +B(v, 0)

and similarly for B(0, v).

Examples.

(1) Any real inner product is a bilinear form (what goes wrong for complex inner products?).
(2) Let A ∈ Mn(F) and define a bilinear form BA : Fn × Fn → F by

BA(x, y) = xTAy.

This gives us a new use for matrices.

There is a converse to this last example:

Definition. Let V be a vector space over F with basis B = v1, . . . , vn and let B : V × V → F be a
bilinear form. The matrix of B with respect to B is A ∈ Mn(F) given by

Aij = B(vi, vj),

for 1 ≤ i, j ≤ n.
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The matrix A along with B tells the whole story:

Proposition 5.1. Let B : V × V → F be a bilinear form with matrix A with respect to B = v1, . . . , vn.
Then B is completely determined by A: if v =

∑n
i=1 xivi and w =

∑n
j=1 yjvj then

B(v, w) =
n∑

i,j=1
xiyjAij = xTAy.

Proof. We simply expand out using the bilinearity of B:

B(v, w) =
n∑

i,j=1
xiyjB(vi, vj) =

n∑
i,j=1

xiyjAij .

Remark. When V = Fn and B : e1, . . . , en is the standard basis, this tells us that any bilinear form on
V is BA where Aij = B(ei, ej).

How does A change when we change basis of V ?

Proposition 5.2. Let B : V × V → F be a bilinear form with matrices A and A′ with respect to bases
B : v1, . . . , vn and B′ : v′

1, . . . , v
′
n of V . Then

A′ = PTAP

where P is the change of basis matrix1from B to B′: thus v′
j =

∑n
i=1 Pijvi, for 1 ≤ j ≤ n.

Proof. Using the bilinearity to expand things out, we compute:

A′
ij = B(v′

i, v
′
j) = B(

∑
k

Pkivk,
∑

h

Phjvh)

=
∑
k,h

PkiB(vk, vh)Phj =
∑
k,h

(PT )ikAkhPhj = (PTAP )ij .

This prompts:

Definition. We say that matrices A,B ∈ Mn(F) are congruent if there is P ∈ GL(n,F) such that

B = PTAP.

5.2 Symmetric bilinear forms

Definition. A bilinear form B : V × V → F is symmetric if, for all v, w ∈ V ,

B(v, w) = B(w, v)

Exercise. If V is finite-dimensional, B is symmetric if and only if B(vi, vj) = B(vj , vi), 1 ≤ i, j ≤ n,
for some basis v1, . . . , vn of V .

Thus B is symmetric if and only if its matrix A with respect to some (and then any) basis is a symmetric
matrix: AT = A.

Example. A real inner product is a symmetric bilinear form. Thinking of symmetric bilinear forms as
a generalisation of inner products is a good source of intuition.

1Algebra 1B, Definition 1.7.1.
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5.2.1 Rank and radical

Definitions. Let B : V × V → F be a symmetric bilinear form.

The radical radB of B is given by

radB := {v ∈ V | B(v, w) = 0, for all w ∈ V }.

We shall shortly see that radB ≤ V .

We say that B is non-degenerate if radB = {0}.

If V is finite-dimensional, the rank of B is dimV − dim radB (so that B is non-degenerate if and only
if rankB = dimV ).

Remark. A real inner product B is non-degenerate since B(v, v) > 0 when v 6= 0.

Lemma 5.3. Let B : V × V → F be a symmetric bilinear form with matrix A with respect to a basis
v1, . . . , vn. Then v =

∑n
i=1 xivi ∈ radB if and only if Ax = 0 if and only if xTA = 0.

Proof. Since the vi span V , we see that B(v, w) = 0, for all w ∈ V , if and only if B(v, vi) = 0 for
i ≤ 1 ≤ n. Thus, v ∈ radB if and only if

∑n
j=1 xjAji = 0, for each i. Otherwise said, v ∈ radB if and

only if xTA = 0 or, taking transposes and remembering that AT = A, Ax = 0.

This enables us to compute rankB:

Corollary 5.4. Let B : V × V → F be a symmetric bilinear form on a finite-dimensional vector space
V with matrix A with respect to some basis of V . Then

rankB = rankA.

In particular, B is non-degenerate if and only if detA 6= 0.

Proof. We have, for n = dimV :

rankB = n− dim radB = n− dim kerA = rankA,

where the last equality is rank-nullity.

Examples. We contemplate some symmetric bilinear forms on F3:

(1) B(x, y) = x1y1 + x2y2 − x3y3. With respect to the standard basis, we have

A =

1 0 0
0 1 0
0 0 −1


so that rankB = 3.

(2) B(x, y) = x1y2 + x2y1. Here the matrix with respect to the standard basis is

A =

0 1 0
1 0 0
0 0 0


so that B has rank 2 and radical span{e3}.

(3) In general, B(x, y) =
∑3

i,j=1 Aijxiyj so we can read off A from the coefficients of the xiyj .
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5.2.2 Classification of symmetric bilinear forms

Convention. In this section, we work with a field F where 1 + 1 6= 0 so that 1
2 = (1 + 1)−1 makes sense.

This excludes, for example, the 2-element field Z2.

We can always find a basis with respect to which B has a diagonal matrix. First a lemma:

Lemma 5.5. Let B : V × V → F be a symmetric bilinear form such that B(v, v) = 0, for all v ∈ V .
Then B ≡ 0.

Proof. Let v, w ∈ V . We show that B(v, w) = 0. We know that B(v +w, v +w) = 0 and expanding out
gives us

0 = B(v, v) + 2B(v, w) +B(w,w) = 2B(v, w).
Since 2 6= 0 in F, B(v, w) = 0.

We can now prove:

Theorem 5.6 (Diagonalisation Theorem). Let B be a symmetric bilinear form on a finite-dimensional
vector space over F. Then there is a basis v1, . . . , vn of V with respect to which the matrix of B is
diagonal:

B(vi, vj) = 0,
for all 1 ≤ i 6= j ≤ n. We call v1, . . . , vn a diagonalising basis for B.

Proof. This is reminiscent of the spectral theorem2 and we prove it in a similar way by inducting on
dimV .

So our inductive hypothesis is that such a diagonalising basis exists for symmetric bilinear forms on a
vector space of dimension n.

Certainly the hypothesis holds vacuously if dimV = 1. Now suppose it holds for all vector spaces of
dimension at most n− 1 and that B is a symmetric bilinear form on a vector space V with dimV = n.

There are two possibilities: if B(v, v) = 0, for all v ∈ V , then, by Theorem 5.5, B(v, w) = 0, for all
v, w ∈ V , and any basis is trivially diagonalising.

Otherwise, there is v1 ∈ V with B(v1, v1) 6= 0 and we set

U := span{v1}, W := {v | B(v1, v) = 0} ≤ V.

We have:

(1) U ∩W = {0}: if λv1 ∈ W then 0 = B(v1, λv1) = λB(v1, v1) forcing λ = 0.
(2) V = U +W : for v ∈ V , write

v = B(v1,v)
B(v1,v1)v1 + (v − B(v1,v)

B(v1,v1)v1).

The first summand is in U while

B
(
v1, v − B(v1,v)

B(v1,v1)v1
)

= B(v1, v) −B(v1, v) = 0

so the second summand is in W .

We conclude that V = U ⊕ W . We therefore apply the inductive hypothesis to B|W ×W to get a basis
v2, . . . , vn of W with B(vi, vj) = 0, for 2 ≤ i 6= j ≤ n.

Now v1, . . . , vn is a basis of V and, further, since vj ∈ W , for j > 1, B(v1, vj) = 0 so that

B(vi, vj) = 0,

for all 1 ≤ i 6= j ≤ n.

Thus the inductive hypothesis holds at dimV = n and so the theorem is proved.
2Theorem 5.2.11 from Algebra 1B
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Remark. We can do a little better if F is C or R: when B(vi, vi) 6= 0, either

(1) If F = C, replace vi with vi/
√
B(vi, vi) to get a diagonalising basis with each B(vi, vi) either 0 or

1.
(2) If F = R, replace vi with vi/

√
|B(vi, vi)| to get a diagonalising basis with each B(vi, vi) either 0,

1 or −1.

Corollary 5.7. Let A ∈ Mn×n(F) be symmetric. Then there is an invertible matrix P ∈ GL(n,F) such
that PTAP is diagonal.

Proof. We apply Theorem 5.6 to BA to get a diagonalising basis B and then let P be the change of basis
matrix from the standard basis to B. Now apply Theorem 5.2.

Remark. When F = R, Theorem 5.7 also follows from the spectral theorem for real symmetric matrices3,
which assures the existence of P ∈ O(n) with P−1AP = PTAP diagonal.

Theorem 5.6 also gives us a recipe for computing a diagonalising basis: find v1 with B(v1, v1) 6= 0,
compute W = {v | B(v1, v) = 0} and iterate. In more detail:

(1) Find v1 ∈ V with B(v1, v1) 6= 0.
(2) Suppose we already have found v1, . . . , vk−1. Now find non-zero y ∈ V solving

B(v1, y) = · · · = B(vk−1, y) = 0. (5.1)

(3) If k = dimV , take vk = y and we are done. Otherwise:
(4) Inspect B(y, y). There are three possibilities:

(i) If B(y, y) 6= 0, then set vk = y, and return to step 2 to find vk+1.
(ii) If B(y, y) = 0 and y ∈ radB (so that B(y, v) = 0 for all vinV ), then again set vk = y, and

return to step 2 to find vk+1.
(iii) Otherwise reject y (it cannot be a member of a diagonalising basis4) and try another solution

of (5.1).

Here are some examples:

Examples.

(1) Problem: find a diagonalising basis for B = BA : R3 × R3 → R where

A =

1 2 1
2 0 1
1 1 0

.
Solution: First note that A11 6= 0 so take v1 = e1. We seek v2 among y such that

0 = B(v1, y) =
(
1 0 0

)
Ay =

(
1 2 1

)
y = y1 + 2y2 + y3.

We try v2 = (1,−1, 1) for which

B(v2, y) =
(
1 −1 1

)
Ay =

(
0 3 0

)
y = 3y2

In particular, B(v2, v2) = −3 6= 0 so we can carry on.
Now seek v3 among y such that B(v1, y) = B(v2, y) = 0, that is:

y1 + 2y2 + y3 = 0
3y2 = 0.

A solution is given by v3 = (1, 0,−1) and B(v3, v3) = −1.
We have therefore arrived at the diagonalising basis (1, 0, 0), (1,−1, 1), (1, 0,−1).
Note that such bases are far from unique: starting from a different v1 would give a different, equally
correct answer.

3Algebra 1B, Theorem 5.2.16.
4See question 1 on sheet 6.
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(2) The same calculation solves another problem: find P ∈ GL(3,R) such that PTAP is diagonal.
Solution: we take our diagonalising basis as the columns of P so that

P =

1 1 1
0 −1 0
0 1 −1

.
Exercise. Check that PTAP really is diagonal!

Remark. We could also solve this by finding an orthonormal basis of eigenvectors of A but this is
way more difficult because we would have to find the eigenvalues by solving a cubic equation.

(3) Now let us take

A =

1 2 3
2 4 6
3 6 9


and find a diagonalising basis for B = BA.
Solution: As before, we can take v1 = e1 and seek v2 among y with

0 = B(v1, y) = y1 + 2y2 + 3y3.

Let us try v2 = (3, 0,−1). Then

B(v2, y) =
(
3 0 −1

)
Ay = 0,

for all y. Otherwise said, v2 ∈ radB. We keep v2 and try again with v3 = (0,−3, 2). Again we
find that v3 ∈ radB and conclude that v1, v2, v3 are a diagonalising basis with B(v1, v1) = 1 and
B(v2, v2) = B(v3, v3) = 0.

(4) Here is a trick that can short-circuit these computations if there is a zero in an off-diagonal slot.
Take

A =

1 1 0
1 0 1
0 1 −1


and seek a diagonalising basis for B = BA.
We can exploit the zero in the (1, 3)-slot of A: observe that

B(e1, e1) = 1
B(e3, e3) = −1
B(e1, e3) = 0

so we are well on the way to getting a diagonalising basis starting with e1, e3. To get the last basis
vector, we seek y ∈ R3 with

0 = B(e1, y) = y1 + y2

0 = B(e3, y) = y2 − y3.

We solve these to get y = (−1, 1, 1), for example, and so that (1, 0, 0), (0, 0, 1), (−1, 1, 1) are a
diagonalising basis and

B(y, y) = 1 − 2 + 2 − 1 = 0.

5.2.3 Sylvester’s Theorem

Let B be a symmetric bilinear form on a real finite-dimensional vector space. We know that there is a
diagonalising basis v1, . . . , vn with each B(vi, vi) ∈ {±1, 0} and would like to know how many of each
there are. We give a complete answer.
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Definitions. Let B be a symmetric bilinear form on a real vector space V .

Say that B is positive definite if B(v, v) > 0, for all v ∈ V \ {0}.

Say that B is negative definite if −B is positive definite.

If V is finite-dimensional, the signature of B is the pair (p, q) where

p = max{dimU | U ≤ V with B|U×U positive definite}
q = max{dimW | W ≤ V with B|W ×W negative definite}.

Remark. A symmetric bilinear form B on V is positive definite if and only if it is an inner product on
V .

The signature is easy to compute:

Theorem 5.8 (Sylvester’s Law of Inertia). Let B be a symmetric bilinear form of signature (p, q) on a
finite-dimensional real vector space Then:

• p+ q = rankB;
• any diagonal matrix representing B has p positive entries and q negative entries (necessarily on

the diagonal!).

Proof. Set K = radB, r = rankB and n = dimV so that dimK = n− r.

Let U ≤ V be a p-dimensional subspace on which B is positive definite and W a q-dimensional subspace
on which B is negative definite.

First note that U ∩K = {0} since B(k, k) = 0, for all k ∈ K. Thus, by the dimension formula,

dim(U +K) = dimU + dimK = p+ n− r.

Moreover, if v = u+ k ∈ U +K, with u ∈ U and k ∈ K, then B(v, v) = B(u+ k, u+ k) = B(u, u) ≥ 0.

From this we see that W ∩ (U +K) = {0}: if w ∈ W ∩ (U +K) then B(w,w) ≥ 0 by what we just proved
but also B(w,w) ≤ 0 since w ∈ W . Thus B(w,w) = 0 and so, by definiteness on W , w = 0. Thus

dim(W + (U +K)) = dimW + dim(U +K) = q + n+ p− r ≤ dimV = n

so that p+ q ≤ r.

Now let v1, . . . , vn be a diagonalising basis ofB with p̂ positive entries on the diagonal of the corresponding
matrix representative A of B and q̂ negative entries. Then B is positive definite on the p̂-dimensional
space span{vi | B(vi, vi) > 0} (exercise5!). Thus p̂ ≤ p. Similarly, q̂ ≤ q.

However r = rankA is the number of non-zero entries on the diagonal, that is r = p̂ + q̂. We therefore
have

r = p̂+ q̂ ≤ p+ q ≤ r

so that p = p̂, q = q̂ and p+ q = r.

Example. Find the rank and signature of B = BA where

A =

1 2 1
2 0 1
1 1 0

.
Solution: we have already found a diagonalising basis v1 = (1, 0, 0), v2 = (1,−1, 1), v3 = (1, 0,−1) so we
need only count how many B(vi, vi) are positive and how many negative. In this case, B(v1, v1) = 1 > 0
while B(v2, v2) = −3 < 0 and B(v3, v3) = −1 < 0. Thus the signature is (1, 2) while rankB = 1 + 2 = 3.

5Question 2 on sheet 6.
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Remarks.

(1) Here is a useful sanity check: symmetric bilinear B of signature (p, q) on an n-dimensional V has
p, q, p + q ≤ n (since p, q are dimensions of subspaces of n-dimensional V while n − (p + q) =
dim radB ≥ 0).

(2) A symmetric bilinear form of signature (n, 0) on a real n-dimensional vector space is simply an
inner product.

(3) In physics, the setting for Einstein’s theory of special relativity is a 4-dimensional real vector space
(space-time) equipped with a symmetric bilinear form of signature (3, 1).

5.3 Application: Quadratic forms

Convention. We continue working with a field F where 1 + 1 6= 0.

We can construct a function on V from a bilinear form B (which is a function on V × V ).

Definition. A quadratic form on a vector space V over F is a function Q : V → F of the form

Q(v) = B(v, v),

for all v ∈ V , where B : V × V → F is a symmetric bilinear form.

Remark. For v ∈ V and λ ∈ F, Q(λv) = B(λv, λv) = λ2Q(v) so Q is emphatically not a linear function!

Examples. Here are two quadratic forms on F3:

(1) Q(x) = x2
1 + x2

2 − x2
3 = BA(x, x) where

A =

1 0 0
0 1 0
0 0 −1

.
(2) Q(x) = x1x2 = BA(x, x) where

A =

0 1
2 0

1
2 0 0
0 0 0

.
We can recover the symmetric bilinear form B from its quadratic form Q:

Lemma 5.9. Let Q : V → F be a quadratic form with Q(v) = B(v, v) for a symmetric bilinear form B.
Then

B(v, w) = 1
2
(
Q(v + w) −Q(v) −Q(w)

)
,

for all v, w ∈ V .

B is called the polarisation of Q.

Proof. Expand out to get

Q(v + w) −Q(v) −Q(w) = B(v, w) +B(w, v) = 2B(v, w).

Here is how to do polarisation in practice: any quadratic form Q : Fn → F is of the form

Q(x) =
∑

1≤i≤j≤n

qijxixj = xT

 q11
1
2qji

1
2qij qnn

x
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so that the polarisation is BA where

Aij = Aji =
{
qii if i = j;
1
2qij if i < j.

Example. Let Q : R3 → R be given by

Q(x) = x2
1 + 2x2

2 + 2x1x2 + x1x3.

Let us find the polarisation B of Q, that is, we find A so that B = BA: we have q11 = 1, q22 = 2, q12 = 2
and q13 = 1 with all other qij vanishing so

A =

1 1 1
2

1 2 0
1
2 0 0

.
Definitions. Let Q be a quadratic form on a finite-dimensional vector space V over F.

The rank of Q is the rank of its polarisation.

If F = R, the signature of Q is the signature of its polarisation.

What does the diagonalisation theorem mean for a quadratic form Q? We take a practical point of view
and let Q : Fn → F be a quadratic form on Fn with polarisation B. We have a diagonalising basis
v1, . . . , vn of B and let P be the change of basis matrix from the standard basis to v1, . . . , vn. Then,
with x =

∑
i xiei =

∑
j yjvj , we have

Q(x) =
n∑

i=1
B(vi, vi)y2

i =
n∑

i=1
B(vi, vi)(

n∑
j=1

P̂ijxj)2,

where P̂ij = (P−1)ij . Otherwise said, Q is a linear combination of squares of linear functions in the xi

and the linear functions have linearly independent coefficients (the rows of P−1).

Let us now apply the classification results of §5.2 and summarise the situation for quadratic forms on
vector spaces over our favourite fields:

Theorem 5.10. Let Q be a quadratic form with rank r polarisation on a finite-dimensional vector space
over F.

(1) When F = C, there is a basis v1, . . . , vn of V such that

Q(
n∑

i=1
xivi) = x2

1 + · · · + x2
r.

(2) When F = R and Q has signature (p, q), there is a basis v1, . . . , vn of V such that

Q(
n∑

i=1
xivi) = x2

1 + · · · + x2
p − x2

p+1 − · · · − x2
r.

Example. Find the signature of Q : R3 → R given by

Q(x) = x2
1 + x2

2 + x2
3 + 2x1x3 + 4x2x3.

Q has polarisation B = BA with

A =

1 0 1
0 1 2
1 2 1

.
Solution: exploit the zero in the (1, 2)-slot of A to see that e1, e2, y = (−1,−2, 1) is a diagonalising basis
and so gives us a diagonal matrix representing B with Q(e1) = Q(e2) = 1 > 0 and Q(y) = −4 < 0 along
the diagonal. So the signature is (2, 1).

Here are two alternative techniques:
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(1) Orthogonal diagonalisation yields a diagonal matrix representing B with the eigenvalues of A down
the diagonal so we just count how many positive and negative eigenvalues there are.
In fact, A has eigenvalues 1 and 1 ±

√
5. Since

√
5 > 2, 1 −

√
5 < 0 and we again conclude that

the signature is (2, 1).
Danger: this method needed us to solve a cubic equation which is already difficult. For an n× n
A with n ≥ 5, this could be impossible!

(2) Finally, we could try and write Q as a linear combination of linearly independent squares and then
count the number of positive and negative coefficients. In fact,

Q(x) = x2
1 + x2

2 + x2
3 + 2x1x3 + 4x2x3

= (x1 + x3)2 + x2
2 + 4x2x3 = (x1 + x3)2 + (x2 + 2x3)2 − 4x2

3.

We must check that the linear functions x1 +x3, x2 + 2x3, x3 have linearly independent coefficients
(that is, (1, 0, 1), (0, 1, 2), (0, 0, 1) are linearly independent) but that is easy. Now the coefficients
of these squares are 1, 1,−4 and so, once more, we get that the signature is (2, 1).
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