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Chapter 1

Linear algebra: key concepts

Let us warm up by revising some of the key ideas from Algebra 1B.

1.1 Vector spaces

Recall from Algebra 1B, §1.1:

Definition. A wvector space V' over a field F is a set V with two operations:

addition V xV — V : (v,w) — v + w such that:
e v4+w=w+w, forall v,w € V;
e u+ (v+w)=(u+v)+w, for all u,v,w € V;
e there is a zero element 0 € V for whichv+0=v =0+, for allv € V;

o ecach element v € V has an additive inverse —v € V for which v + (—v) =0 = (—v) + v.
In fancy language, V' with addition is an abelian group.
scalar multiplication F x V' — V : (A\,v) — Av such that

e A+ pv=+pv, forallveV, \ uekF.
e Mv+w)= v+ w, forallv,weV, A eF.
(A)v = AMpw), for allv e V, A, u € F.

e lv=w,forallveV.

We call the elements of F scalars and those of V' wvectors.
Examples.

(1) Take V =T, the field itself, with addition and scalar multiplication the field addition and multi-
plication.

(2) F", the n-fold Cartesian product of F with itself, with component-wise addition and scalar multi-
plication:

Ay An) + (1, ey i) = (A 4 1y o5 A+ )
ALy An) = (A, AN,



(3) Let M,,xn(F) denote the set of m by n matrices (thus m rows and n columns) with entries in F.
This is a vector space under entry-wise addition and scalar multiplication.
Special cases are the vector spaces of column wvectors M, «1(F) and row vectors Mix,(F). In
computations, we often identify F" with M, «1(F) by associating x = (z1,...,z,) € F™ with the

column vector
T

1.2 Subspaces

Definition. A vector (or linear) subspace of a vector space V over F is a non-empty subset U C V which
is closed under addition and scalar multiplication: whenever u,uy,us € U and A € F, then uq + us € U
and \u € U.

In this case, we write U < V.

Say that U is trivial if U = {0} and proper it U # V.

Of course, U is now a vector space in its own right using the addition and scalar multiplication of V.
Exercise.! U C V is a subspace if and only if U satisfies the following conditions:

(1) 0 e U;

(2) For all uj,us € U and A € F, ug + Aug € U.

This gives a efficient recipe for checking when a subset is a subspace.

1.3 Bases

Definitions. Let vq,...,v, be a list of vectors in a vector space V.
(1) The span of vy,...,v, is
span{vy,..., v} = { A1+ +F v [N EF1<i<n} <V
(2) v1,...,0p, span V (or are a spanning list for V) if span{vy,...,v,} = V.

(3) v1,...,v, are linearly independent if, whenever A\jvi +---+ A\v, =0, then each \; =0, 1 <i <mn,
and linearly dependent otherwise.

(4) v1,...,v, is a basis for V if they are linearly independent and span V.

Remark. Notice that any re-ordering of a basis is also a (different) basis. Example: if vq, vavs is a basis,
S0 is wo, w1, v3 and so on.

Definition. A vector space is finite-dimensional if it admits a finite list of vectors as basis and infinite-
dimensional otherwise.

If V is finite-dimensional, the dimension of V', dim V', is the number of vectors in a (any) basis of V.
Terminology. Let vy, ...,v, be a list of vectors.

(1) A vector of the form A\jvy + -+ + A,vy, is called a linear combination of the v;.
(2) An equation of the form Ajvy + - + Ay, = 0 is called a linear relation on the v;.
Example. Some lucky vector spaces come with a natural choice of basis. For instance, define e; :=

(0,...,1,...,0) e F*, 1 <4 < n with a single 1 in the i-th place and zeros elsewhere. Then ey, ..., e, is
a basis of F” called the standard basis

1Question 1 on sheet 1.



1.3.1 Useful facts

A very useful fact about bases that we shall use many times was proved in Algebra 1B:

Proposition 1.1 (Algebra 1B, Corollary 1.5.7). Any linearly independent list of vectors in a finite-
dimensional vector space can be extended to a basis.

Here is another helpful result :

Proposition 1.2 (Algebra 1B, Corollary 1.5.6). Let V' be a finite-dimensional vector space and U <V
Then
dimU < dimV

with equality if and only if U =V.

1.4 Linear maps

Definitions. A map ¢: V — W of vector spaces over F is a linear map (or, in older books, linear
transformation) if

$(v+w) = ¢(v) + p(w)
P(Av) = A(v),
for all v,w e V, A € F.
The kernel of ¢ isker¢ :={v eV |p(v) =0} <V.
The image of ¢ is im ¢ := {¢p(v) v €V} < W.

Remark. ¢ is linear if and only if

O(v+ Aw) = ¢(v) + Ap(w),

for all v,w € V, A € F, which has the virtue of being only one thing to prove.

Examples.

(1) A € My,xn(F) determines a linear map ¢4 : F™ — F™ by ¢4(z) = y where, for 1 <i < m,

n
j=1

Otherwise said, y is given by matrix multiplication: y = Ax.
(2) For any vector space V, the identity map idy : V — V is linear.
(3) If : V — W and ¢ : W — U are linear then sois o ¢: V — U.

Definition. A linear map ¢ : V. — W is a (linear) isomorphism if there is a linear map ¢ : W — V
such that
Yop=idy, Gov=idy.

If there is an isomorphism V' — W, say that V and W are isomorphic and write V = W.

In Algebra 1B, we saw:

Lemma 1.3 (Algebra 1B, lemma 1.3.3 (4)). ¢ : V — W is an isomorphism if and only if ¢ is a linear
bijection (and then ¢ = ¢~1).

Notation. For vector spaces V, W over F, denote by Lg(V, W) (or simply L(V,W)) the set {¢ : V —
W | ¢ is linear} of linear maps from V to W.



Theorem 1.4 (Linearity is a linear condition). L(V,W) is a vector space under pointwise addition and
scalar multiplication. Thus

forall g, € LV, W), veV and A € F.

Proof. There is a lot to do here but it is all easy. First we must show that ¢+ 1), as defined above, really
is a linear map when ¢, v € L(V,W):

<¢+w><v+m) (v + Mw) + (v + Aw)

(

$(v) + Ad(w) + P (v) + Ap(w)
(¢>(v) $(v)) + Ad(w) + ¢ (w))
= (¢ +P)(v) + A(¢ + 9)(w),

for all v,w € V, A € F. Here the first and last equalities are just the definition of pointwise addition
while the middle equalities come from the linearity of ¢, and the vector space axioms of W.

Similarly, it is a simple exercise to see that if u € F and ¢ € L(V, W) then u¢ is also linear.

Now we need a zero element for our proposed vector space: observe that the zero map 0:v+— 0 € W is

linear:
0(v 4+ Aw) =0=0+ A0 = 0(v) + A0O(w).

We also define —¢ by

for v € V and check that it is also linear.

Finally, we must check all the vector space axioms which all follow from those of W. For example, for
anyv eV,
(@ +9)(v) = d(v) +¢(v) = ¥(v) + d(v) = (¥ + ¢)(v),

so that ¢ + ¥ = ¢ + ¢. The remaining axioms are left as a (rather boring) exercise. O

A linear map of a finite-dimensional vector space is completely determined by its action on a basis. More
precisely:

Proposition 1.5 (Extension by linearity). Let V,W be vector spaces over F. Let vy,...,v, be a basis
of V and wy, ..., w, any vectors in W.

Then there is a unique ¢ € L(V, W) such that
o(vi) = w;, I<i<n. (1.1)
Proof. We need to prove that such a ¢ exists and that there is only one. We prove existence first.
Let v € V. From Algebra 1B?,we know there are unique \q,...,\, € F for which
V=AU + -+ A\,
and so we define ¢(v) to be the only thing it could be:
d(v) = Awy + - + Apwy,.

Let us show that this ¢ does the job. First, with A; =1 and A; = 0, for i # j, we see that

(v;) = Z()wj + lw; = w;
i#i

2Proposition 1.4.4



so that (1.1) holds. Now let us see that ¢ is linear: let v,w € V with

V=AU + -+ A\,
w = H1v1 + -+ HnUn.
Then, for A € T,
v+ Aw = (A1 4+ Aur)vr + -+ (An + Apin)vn

whence

d(v 4+ Aw) = (A + Apn)wr + -+ + (A + Aip)wy,
= (Mwr + -+ Apwn) + A(pawr + -+ pnwn)
= $(v) + Ap(w).

For uniqueness, suppose that ¢, ¢’ € L(V,W) both satisfy (1.1). Let v € V and write v = Ajvg + -+ +
AnUn. Then

P(v) = Mid(v1) + - + Aug(vn)
= MNwi + -+ A w,
=M (v1) + -+ Ad (vn)

=¢'(v),
where the first and last equalities come from the linearity of ¢, ¢’ and the middle two from (1.1) for first
¢ and then ¢’. We conclude that ¢ = ¢’ and we are done. O
Remark. In the context of Theorem 1.5, ¢ is an isomorphism if and only if wy,...,w, is a basis for W

(exercise?!).
Among the most important results in Algebra 1B is the famous rank-nullity theorem:

Theorem 1.6 (Rank-nullity). Let ¢ : V — W be linear with V' finite-dimensional. Then

dimim ¢ 4+ dimker ¢ = dim V.

Using this, together with the observation that ¢ is injective if and only if ker ¢ = {0} and surjective if
and only if im ¢ = W we have:

Proposition 1.7. Let ¢ : V. — W be linear with V,W finite-dimensional vector spaces of the same
dimension: dimV = dim W.
Then the following are equivalent:

(1) ¢ is injective.

(2) ¢ is surjective.

(3) ¢ is an isomorphism.

3This is question 6 on exercise sheet 1.



Chapter 2

Sums and quotients

We will discuss various ways of building new vector spaces out of old ones.

Convention. In this chapter, all vector spaces are over the same field F unless we say otherwise.

2.1 Sums of subspaces

Definition. Let Vi,...,V, < V. The sum V; + --- 4+ V}, is the set
i+ +Ve={vi+-4uv|v; €V, 1 <i <k}

Vi + -+ Vi is the smallest subspace of V' that contains each V;. More precisely:
Proposition 2.1. Let V;,..., Vi, < V. Then

(1) Vi+---+V, <V.
(2) W <VandVy,....,.Vi, <W then Vq,..., Vi, <Vi+-- -+ V, <W.

Proof. Tt suffices to prove (2) since (1) then follows by taking W = V.

For (2), first note that V4 4 -+ + V}, is a subset of W: if v; € V; then v; € W so that vy + -+ v, € W

since W is closed under addition.

Now observe that each V; < Vi +- - -+V}, since we can write any v; € V; as 0+- - -+v;+---4+0 € Vi +-- -4V

In particular, 0 € V4 + -+ 4+ V.

Finally, we show that V; + --- + Vj is a subspace. If vy + -+ 4+ vg, w1 + - +wg € Vi + -+ + Vi, with

v, w; € V;, for all 4, and X € F then
(14 Fok) FMwr+ - Fwp) = (v +Awr) + -+ (v + A wg) € Vi 4+ Vg

since each v; + A\w; € V;.

Remark. The union |J;_, V; is almost never a subspace of V' so we use sums as a substitute for unions

in Linear Algebra.

2.2 Direct sums

Let Vi,...,Vu < V. Any v € Vj + --- 4+ V}, can be written
v:v1+...+vk’

with each v; € V;. We distinguish the case where the v; are unique.



Definition. Let Vi,..., Vi < V. The sum Vi +-- -+ V}, is direct if each v € V; + - - - 4+ V}, can be written
V=1 + +Uk

in only one way, that is, for unique v; € V;, 1 <i < k.

In this case, we write V1 @ --- @ Vj, instead of V§ + - 4 V.

Figure 2.1: R2 =V, @ V%,

Example. Define V1, Va < F? by

Vi = {(x1,22,0) | 1,22 € F}
Vo = {(03071'3) | T3 € F}

Then F3 =V, @ Vs.

When is a sum direct? We begin with a useful reformulation of the property.

Proposition 2.2. LetViy,..., Vi, < V. Then Vi+---+Vj is direct if and only if whenever vi+- - -4v, = 0,
with v; € V;, 1 <i <k, thenv; =0, forall1 <i<k.

Proof. Suppose that Vi + --- + Vj, is direct and let v; + --- + v = 0, with each v; € V;. We can also
write 0 = 0+ - -+ + 0 so that the uniqueness in the direct sum property forces each v; = 0.

Conversely, if the “zero sum” property holds, suppose that, for some v € V3 + - -+ + Vi, we have
'U:U1+"'+’Uk:’(1)1+"'+’wk7

with each v;, w; € V;. Then
O=v—v=(vy —wy1)+ -+ (vp —wg)

and each v; — w; € V; so the zero sum property gives v; = w;. We conclude that the sum is direct. [

For the case of two summands this gives a very simple way to decide if a sum is direct:
Proposition 2.3. Let Vi, Vo, < V. Then Vi 4+ V3 is direct if and only if V1 N Vo = {0}.
Proof. Suppose first that V7 + V5 is direct and let v € V3 N V5. Then

0=v+(—v)

and v € V1, —v € V5 so that v = —v = 0 by Theorem 2.2.

Conversely, suppose that V3 N Vo = {0} and that v; + vy = 0, with v; € V;, i = 1,2. Then v; = —vg €
V1 NVa = {0} so that v1 = v3 = 0. Thus Vj + V5 is direct by Theorem 2.2. O

The special case V = Vj 4+ V5 is important and deserves some terminology:



Definition. Let V1, Vo < V. V is the (internal) direct sum of Vi and Vo if V.=V, @ V5.

In this case, say that V5 is a complement of V7 (and V; is a complement of V5).

Warning. This notion of the complement of the subspace Vi has nothing at all to do with the set-
theoretic complement V'\ V; which is never a subspace.

Remarks.

(1) From Theorem 2.3, we see that V =V, @ V5 if and only if V =V} + V5 and V3 N V2 = {0}. Many
people take these latter properties as the definition of internal direct sum.

(2) There is a related notion of external direct sum that we will not discuss.

Va

22" Vi

Figure 2.2: R? as a direct sum of a line and a plane

When there are many summands, the condition that a sum be direct is a little more involved:

Proposition 2.4. Let Vi,..., Vi, <V, k > 2. Then the sum Vi + --- + Vi is direct if and only if, for
each 1 <i <k, V;N(3,.V;)={0}.

Proof. This is an exercise in imitating the proof of Theorem 2.3. O

Remark. This is a much stronger condition than simply asking that each V; N'V; = {0}, for ¢ # j.

2.2.1 Induction from two summands

A convenient way to analyse direct sums with many summands is to induct from the two summand case.
For this, we need:

Lemma 2.5. Let Vi,..., Vi, < V. Then Vi + --- + Vi is direct if and only if Vi + -+ + Vi1 is direct
and (V1 + -+ Vi_1) + Vi (two summands) is direct.

Proof. Suppose first that Vj 4 - - -4V} is direct. We use Theorem 2.2 to see that V3 +-- -+ Vj_1 is direct:
let vi+---+vp_1 =0 witheachv; € V;, 1 <i < k—1. Write thisas v; +---4+vr =0 where v, =0 € V},
and deduce that each v; =0, 1 <<k —1.

Again, if v =v1 4+ -4+vg_1 € V1 +---+V;_1 and v € V, with v+ v, = 0, then we have v1+---+vp =0
so that each v; = 0 whence v = 0 also. Now Theorem 2.2 tells us that (V4 + --- + Vi_1) + V} is direct.

Conversely, suppose that both Vi +---4+Vj_q and (Vi +- - -4+Vj_1)+Vj are direct and that v1+- - -+vg = 0,
with each v; € V;. Let v=v1 +---4+vg_1 € V1 + -+ Vi_1 so that v + v = 0. Now Theorem 2.2 and
the directness of (V4 + -+ 4+ Vip_1) + Vi tell us that v = vy = 0. Thus v; + -+ + vx—1 = 0 and a final
application of Theorem 2.2 yields v; =0, 1 <i <k — 1 since V§ 4+ -+ + Vi_1 is direct. O]



2.2.2 Direct sums, bases and dimension

When a sum is direct, bases of the summands fit together to give a basis of the sum:

Proposition 2.6. Let Vi,Vo < V be subspaces with bases Bi: vy,...,v; and Bs: wy,...,w;. Then
Vi + Vs s direct if and only if the concatenation® BiBa: vi,..., vk, Wi, ..., w; 35 a basis of Vi + Va.
Proof. Clearly B1Bs spans V; + V5 and so will be a basis exactly when it is linearly independent.
Suppose that Vi + V5 is direct and that we have a linear relation Zle Aiv; + Zi-:l pijw; = 0. Then

Theorem 2.2 yields
k l
Z/\i’l}i = Z/,ijj =0
i=1 j=1

so that all the A\; and p; vanish since B; and B, are linearly independent. We conclude that BB, is
linearly independent and so a basis.

Conversely, if B1Bs is a basis and v + w = 0 with v € V5 and w € V,, write v = Zle \;v; and
w = Z;:l piw; to get a linear relation Zle Aiv; + 22:1 pjw; = 0. By linear independence of 518z,
all A\;, p; vanish so that v = w = 0. Thus V; + V3 is direct by Theorem 2.2. O

Again, this along with Theorem 2.5 and induction on k yields the many-summand version:

Corollary 2.7. Let Vi,..., Vi, <V be finite-dimensional subspaces with B; a basis of V;, 1 < i < k.
Then Vi + -+ -+ Vi, is direct if and only if the concatenation By ...By is a basis for Vi + -+ Vj.

Proof. Our induction hypothesis at k is that V3 + - -+ + V} is direct if and only if By ... By is a basis for
Vi+ -+ V. This is vacuous at k = 1 so let us suppose it is true for k£ and examine the case k + 1.

First suppose that Vi + -+ 4+ Vi1 is direct so that V4 + -+ + Vi and (V4 + -+ - + Vi) + Viq1 are direct
by Theorem 2.5. The induction hypothesis applies to both of these so that, first, By ... By is a basis of
Vi+---+Viand then (By...Bg)Bry1 = B1...Bppiisabasisof (Vi+- -+ Vi) +Vipr = Vi 4+ Viys.

Conversely, if By ... By is a basis of V3 + -+ Vi11, By ... By is linearly independent and so a basis of
Vi + -+ Vi. By the induction hypothesis, we learn that V3 + - -+ + V}, is direct. Similarly, we see that
(Vi + -+ + Vi) + Viy1 is direct whence, by Theorem 2.5, Vi + - - - + Vi1 is direct.

This establishes the induction hypothesis at k£ + 1 and so the result is proved. O

From this we see that dimensions add over direct sums:

Corollary 2.8. Let Vi,..., Vi <V be subspaces of a finite-dimensional vector space V- with Vi +---+Vj,
direct. Then
dimVi®--- Ve =dimV; +---+dim V.

Proof. Let B; be basis for V; so that B; ... By is a basis of V; + --- + Vi by Theorem 2.7. Then
O

Exercise.? Prove the converse of Theorem 2.8: if dim Vi + -+ Vj, = dim Vi + - - - + dim V}, then the
sum is direct.

1The concatenation of two lists is simply the list obtained by adjoining all entries in the second list to the first.
2Question 2 on sheet 2.



2.2.3 Complements

For finite-dimensional vector spaces, any subspace has a complement:
Proposition 2.9 (Complements exist). Let U <V, a finite-dimensional vector space. Then there is a

complement to U.

Proof. Let By : v1,...,vr be a basis for U and so a linearly independent list of vectors in V. By
Theorem 1.1, we can extend the list to get a basis B : vy,...,v, of V. Set W = span{vgi1,...,0,} < V:
this is a complement to U.

Indeed, Bs : vg41,. ..,y is a basis for W and B = B1Bs so that V =U & W by Theorem 2.6. O

In fact, as Figure 2.3 illustrates, there are many complements to a given subspace.

Figure 2.3: Each dashed line is a complement to the undashed subspace.

2.3 Quotients

Let U < V. We construct a new vector space from U and V which is an “abstract complement” to U.
The elements of this vector space are equivalence classes for the following equivalence relation:

Definition. Let U < V. Say that v,w € V are congruent modulo U if v —w € U. In this case, we write
v=w mod U.

Warning. This is emphatically not the relation of congruence modulo an integer n that you studied in
Algebra 1A: here the relation is between vectors in a vector space. However, both notions of congruence
are examples of a general construction in group theory.

Lemma 2.10. Congruence modulo U is an equivalence relation.
Proof. Exercise®! O

Thus each v € V lies in exactly one equivalence class [v] C V.

What do these equivalence classes look like? Note that w = v mod U if and only if w —v € U or,
equivalently, w = v + u, for some u € U.

Definition. For v € V, U <V, theset v+ U :={v+u|u € U} CV is called a coset of U and v is
called a coset representative of v+ U.

We conclude that the equivalence class of v modulo U is the coset v + U.

Remark. In geometry, cosets of vector subspaces are called affine subspaces. Examples include lines in
R? and lines and planes in R3 irrespective of whether they contain zero (as vector subspaces must).

3This is question 3 on exercise sheet 2.
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v+ U

Figure 2.4: A subspace U < R? and a coset v + U.

Example. Fibres of a linear map: let ¢ : V. — W be a linear map and let w € im ¢. Then the fibre of
¢ over w is defined by:
¢ Hw} == {veV|¢(v) =w}.
Unless w = 0, this is not a linear subspace but notice that v,v’ are in the same fibre if and only if
o(v) = ¢(v'), or, equivalently, ¢p(v—v') =0 or v—2v’ € ker ¢. We conclude that the fibres of ¢ are exactly
the cosets of ker ¢:
¢ Hwl = v+ ker ¢,

for any v € ¢~ H{w}.
We shall see below that any coset arises this way for a suitable ¢.

Definition. Let U < V. The quotient space V/U of V by U is the set V/U, pronounced “V mod U”, of
cosets of U:
V/IU:={v+Ul|veV}

This is a subset of the power set* P(V) of V.
The quotient map q : V — V/U is defined by

q(v) =v+U.

The quotient map ¢ will be important to us. It has two key properties:

(1) g is surjective.

(2) q(v) =q(v') if and only if v =9’ mod U, that is, v — v’ € U.
We can add and scalar multiply cosets to make V/U into a vector space and ¢ into a linear map:
Theorem 2.11. Let U < V. Then, forv,w eV, A€ F,

(w+U)+(w+U):=(v+w)+U
Av+U):=(A\)+U

give well-defined operations of addition and scalar multiplication on V/U with respect to which V/U is a
vector space and q : V — V/U is a linear map.
Moreover, kerq =U and imq = V/U.

Proof. We phrase everything in terms of g to keep the notation under control. Since ¢ surjects, we lose
nothing by doing this: any element of V/U is of the form ¢(v) for some v € V.

4Recall from Algebra 1A that the power set of a set A is the set of all subsets of A.

11



With this understood, the proposed addition and scalar multiplication in V/U read

so that ¢ is certainly linear so long as these operations make sense. Here the issue is that if g(v) = ¢(v")
and ¢(w) = g(w’), we must show that

q(v +w) = q(v +w'), q(\v) = q(\'). (2.1)
However, in this case, we have v — v’ € U and w — w’ € U so that
(v+w)— (W +u)=@w-2)+(w—-w)eU
Av— X' = Av—2") €U,
since U is a subspace, and this establishes (2.1).
As for the vector space axioms, these follow from those of V. For example:
q(v) + q(w) = q(v+w) = g(w +v) = q(w) + ¢(v).

Here the first and third equalities are the definition of addition in V/U and the middle one comes from
commutativity of addition in V. The zero element is ¢(0) = 0+ U = U while the additive inverse of ¢(v)
is g(—v).

The linearity of ¢ comes straight from how we defined our addition and scalar multiplication while

v € ker ¢ if and only if g(v) = ¢(0) if and only if v =v — 0 € U so that kerq = U. O
v+U . v+U
q
u : — 0+U
Vv V/U

Figure 2.5: The quotient map q.

Corollary 2.12. Let U < V. IfV is finite-dimensional then so is V/U and
dimV/U = dimV — dim U.

Proof. Apply rank-nullity to ¢ using ker¢q = U and im¢q = V/U. O
Remark. Theorem 2.11 shows that:
(1) Any U <V is the kernel of a linear map.
(2) Any coset v 4 U is the fibre of a linear map: indeed
v+ U =q Hq(v)}.

Commentary. Many people find the quotient space V/U difficult to think about: its elements are
(special) subsets of V' and this can be confusing.

An alternative, perhaps better way, to proceed is to concentrate instead on the properties of V/U in
much that same way that, in Analysis, we deal with real numbers via the axioms of a complete ordered
field without worrying too much what a real number actually is!

From this point of view, the quotient V/U of V by U is a vector space along with a linear map ¢ : V —
V/U such that

12



e ¢ surjects;
o kerg=U
and this is really all you need to know!
The content of Theorem 2.11, from this perspective, is simply that quotients exist!
Theorem 2.13 (First Isomorphism Theorem). Let ¢ : V. — W be a linear map of vector spaces.
Then V/ker ¢ = im ¢.
In fact, define ¢ : V/ker ¢ — im ¢ by

where q : V — V/ker ¢ is the quotient map.
Then ¢ is a well-defined linear isomorphism.
Proof. First we show that ¢ is well-defined: ¢(v) = ¢(v’) if and only if v — v’ € ker¢ if and only if

¢(v—1') = 0, or, equivalently, ¢(v) = ¢(v'). We also get a bit more: ¢ injects since if ¢(q(v)) = ¢(q(v"))
then ¢(v) = ¢(v') which implies that g(v) = g(v").

To see that ¢ is linear, we compute using the linearity of ¢ and ¢:
d(q(v1) + Ag(v2)) = d(g(v1 + X)) = $(v1 + Ava) = (v1) + Ad(v2) = d(g(v1)) + Ab(g(v2)),
for vi,v9 € V, A € F.

It remains to show that ¢ is surjective: but if w € im ¢, then w = ¢(v) = ¢(q(v)), for some v € V, and
we are done. O

Remarks.

(1) Let ¢ : V. — V/ker¢ be the quotient map and i : im¢ — W the inclusion. Then the First
Isomorphism Theorem shows that we may write ¢ as the composition i o ¢ o g of a quotient map,
an isomorphism and an inclusion.

(2) This whole story of cosets, quotients and the First Isomorphism Theorem has versions in many
other contexts such as group theory and ring theory (see MA22017).
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Chapter 3

Polynomials, operators and matrices

3.1 Polynomials

Recall from Algebra 1A (§3.2):

Definitions. A polynomial in a variable x with coefficients in a field F is a formal expression

oo
p= E akxk'
k=0

with coefficients aj, € F such that only finitely many aj are non-zero.

Two polynomials are equal if all their coefficients are equal.

The zero polynomial has all coefficients zero.

The degree of a polynomial p is deg p = max{k € N | ar # 0}. By convention, deg0 = —ooc.

The set of all polynomials in & with coefficients in F is denoted F[z].

When degp = n, we usually write
p=ap+ax+---+ a,z".

Thus we adopt the convention z° = 1,z' = z. Here a,z™ is the leading term of p and a,, the leading
coefficient.

Definition. A polynomial is monic if its leading coefficient is 1:

p=ag+---+a".

We can add and multiply polynomials: if

o0 o0
p= Zakxk, q:Zbk;vk
k=0 k=0

then
o0
p+aqi=y (a+by)a"
k=0
pq ‘= Z( Z aibj)xk'.
k=0 i+j=k

14



In particular, we multiply polynomials using z’2? = 2'*7 and collecting terms.

The usual rules of multiplication and addition apply (in the language of MA22017, F[z] is a ring) and,
in particular, F[z] is a vector space. Moreover we have:

deg(pgq) = degp + deggq,
deg(p + ¢q) < max{degp,degq}.

We can evaluate polynomials at elements of F. For p =ag + -+ + a,z™ and t € F, define p(t) € F by
p(t) = ap + a1t + - - + ant”,

where all the additions and multiplications take place in F. We say that ¢ € Fisa root of pif p(t) =0 € F.

Here are the main facts about evaluation:

e FEvaluation preserves addition and multiplication: for fixed ¢ € F, we have
(p+a)(t) = p(t) + q(t)
(pq)(t) = p(t)q(?).
In particular, p — p(¢) is a linear map F[z] — F.
o Evaluation defines functions on F: each p € F[x] defines a function ¢ — p(t) : F — F.

Remark. What is a polynomial? We are used to thinking of them as the functions they define but this
is not quite correct. Polynomials are simply lists of coefficients or, equivalently, sequences in F that are
eventually zero:

Flz] = {(ag,..-,an,0,0,...)}.

The role of the variable z is that of a placeholder to help keep track of things when we multiply polyno-
mials.

For some fields, different polynomials can define the same function. For example, with F = Zo, p = 22+
and the zero polynomial both define the zero function': p(t) = 0 for all t € Z,.

We will need three crucial results from Algebra 1A:

Theorem 3.1 (Algebra 1A, Proposition 3.19). Let p,q € F[x]. Then there are unique r,s € F[x] such
that
p=sq+r

with degr < deggq.

Theorem 3.1 holds for any field F but the next two results show that the field C of complex numbers is
special:

Theorem 3.2 (Fundamental Theorem of Algebra). Let p € C[z]| be a polynomial with degp > 1. Then
p has a root. Thus there is t € C with p(t) = 0.

Together with Theorem 3.1, this yields:

Theorem 3.3. Let p € Clz] and Ay, ..., N, the distinct roots of p. Then

for somea e Candn; € Zy,1<i<k.

n; s called the multiplicity of the root \;.

IThis is question 3 on exercise sheet 3.
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3.2 Linear operators, matrices and polynomials

3.2.1 Linear operators and matrices

Definition. Let V' be a vector space over F. A linear operator on V is a linear map ¢ : V — V.

The vector space of linear operators on V is denoted L(V') (instead of L(V,V)).

Notation. Write M, (F) for M, (F).

Recall from Algebra 1B §1.5 that, in the presence of a basis, there is a close relationship between linear
operators and square matrices:

Definition. Let V be a finite-dimensional vector space over F with basis B : v1,...,v,. Let ¢ € L(V).
The matriz of ¢ with respect to B is the matrix A = (A;;) € M, (IF) defined by:

P(v;) = ZAijvia (3.1)
i=1
forall 1 <j <n.

Thus the recipe for computing A is: expand ¢(v;) in terms of vi,...,v, to get the j-th column of A.

Equivalently, ¢(z1v1 4« -+ + Zpvy) = Y101 + - -+ + Ynv, where
y = Ax.

~

The map ¢ — A is a linear isomorphism L(V) = M, (F) which also plays well with composition and
matrix multiplication: if ¢» € L(V) has matrix B with respect to B then 1 o ¢ has matrix BA with
respect to B. This gives us a compelling dictionary between linear maps and matrices.

Remark. There is a fancy way to say all this: recall that a basis B : vq,...,v, of V gives rise to a linear
isomorphism ¢p : F* — V via

OB(A1, - ) =D A, (3.2)
i=1
Now the relation between ¢ and A is that
¢=dpodaody
or, equivalently, ¢p o ¢4 = ¢ o ¢5 so that the following diagram commutes:

V2.

W] T

F» $a F

(The assertion that such a diagram commutes is simply that the two maps one builds by following the
arrows in two different ways coincide. However, the diagram also helps us keep track of where the various
maps go!)

3.2.2 Polynomials in linear operators and matrices

A special feature of L(V) is that composition is a binary operation (¢, 1) — ¢otp : L(V)x L(V) — L(V).
Thus we can think of composition as a multiplication of operators which suggests the following notations:
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Notation. For ¢,v¢ € L(V) write ¢t for p o) € L(V).

Similarly, write ¢™ for the n-fold composition of ¢ with itself:

" =go 00
——

n times
and define ¢° := idy, ¢! := ¢.
Finally, for A € M,,(F), set A° =1I,,, Al = A.
With these notations and conventions, we have
¢n+m — Q/)n(bm, Aner — AnAm, (33)

for any ¢ € L(V), A € M,(F) and n,m € N.

Note that if ¢ has matrix A with respect to a basis B then ¢™ has matrix A™ with respect to B, for all
n €N

We can now evaluate polynomials on operators and matrices:
Definition. Let p € F[z], p = ap + -+ + apa™, ¢ € L(V) and A € M, (F). Then p(¢) € L(V) and
p(A) € M, (FF) are given by:

p(9) = apidy +a16+ -+ and” = > aret,
keN

p(A) = CLQIn + alA + -+ anA” = Z akAk.
keN

Remark. If ¢ has matrix A with respect to a basis B then p(¢) has matrix p(A) with respect to B.
This construction plays nicely with the algebra of polynomials:
Proposition 3.4. For p,q € Fz], ¢ € L(V) and A € M, (F),

(r+9)(¢) =p(®) +q(9) (r+q)(A) = p(A) + q(A) (3.4)
(rq)(¢) = p(#)q(d) = q(¢)p(¢) (rq)(A) = p(A)q(A) = q(A)p(A). (3.5)

Proof. We prove the formulae for ¢. The arguments for A are very similar.
Write p = >, o axa® and ¢ = >, o bra®. Then
(P+a)(9) =D (ar+be)o" = ard® + ) bpd"™ = p(¢) + q(0)
keN keN keN
which establishes (3.4) for ¢.
Now for (3.5). We have

(pg)(#) =D (D aiby)d = (Y aibjo'e’)

keN i+j=k keEN i+j=k
=D (@d) b)) = (O aig') O _bi¢’) = p()a(e).
keNi+j=k ieN JEN

Here we used (3.3) for the last equality on the first line and linearity of ¢’ to get b;¢'¢?’ = ¢(b;¢7).

Finally pg = gp so that
pa(9) = ap(¢) = a(d)p(¥)
by what we have already proved. O

Remark. The fancy way to say Theorem 3.4 is that the maps p — p(¢) : Flz] = L(V) and p — p(A4) :
Flx] = M, (F) are homomorphisms of rings (see MA22017).
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3.3 The minimum polynomial

Proposition 3.5. Let A € M,,(F). Then there is a monic polynomial p € F[z] such that p(A) = 0.
Similarly, if ¢ € L(V) is a linear operator on a finite-dimensional vector space over F then there is a
monic polynomial p € Flx] with p(¢) = 0.

Proof. We prove the result for A and then deduce that for ¢.

We know that dim M,,(F) = n? so that the n? + 1 elements I,,, 4, ..., A" of M, (F) must be linearly
dependent. We therefore have a linear relation

aol, + - JranzA"2 =0

with not all ay zero. Otherwise said, ¢(A) = 0, where

g=ag+ -+ apr? € Flx].
Let a,, be the leading term of ¢ (m could be less than n?). Then p := q/a,, is a monic polynomial with
p(A) =0.
Now let ¢ € L(V) and let A be its matrix with respect to some basis. Let p € F[z] be a monic polynomial
with p(4) = 0. Then p(¢) = 0 also. O
This prompts:

Definition. A minimum polynomial for ¢ € L(V), V a vector space over F is a monic polynomial
p € Flz] of minimum degree with p(¢) = 0: thus, if r € F[z] has r(¢) = 0 and degr < degp, then r = 0.

Similarly, a minimum polynomial for A € M, (F) is a monic polynomial p of least degree with p(A) = 0.

Remark. If ¢ has matrix A with respect to some basis, then p(¢) = 0 if and only if p(A) = 0 so that p
is a minimum polynomial for ¢ if and only if it is one for A.

Minimum polynomials exist and are unique:

Theorem 3.6. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over a field F.
Then ¢ has a unique minimum polynomial.

Similarly, any A € M, (F) has a unique minimum polynomial.

We denote these by mg and my4 respectively.

Proof. We prove this for ¢. The argument for A is the same.

By Theorem 3.5, the set of non-zero polynomials which vanish on ¢ is non-empty. Choose one of smallest
degree and divide by the leading term if necessary to get a monic one. This settles existence.

For uniqueness, suppose that we have p1, p2 in the set, both monic and of smallest degree. Set r = p; —pa.
Then degr < deg p;, since the leading terms of the p; cancel, while r(¢) = p1(¢) —p2(¢) =0. Thusr =0
and p; = ps. O]

Remark. Unless V = {0}, degmy > 1: the only monic polynomial of degree zero is 1 and 1(¢) = idy # 0!
Examples.
(1) mg ==.

(2) miq, =z — 1.

(3) More generally, for A € F, myiq, = © — A. Thus degmg = 1 if and only if ¢ = Aidy, for some
AeF.
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(4) Let m € L(V) be a projection? with 0 < dimker7 < dim V. Then m, = 2? — x (exercise!).

How can we compute m4? One method is to find it by brute force: for each & > 1 in turn, seek
ag, - .. ,ai_1 such that
aol + - +ap_1 A1+ AF = 0.

This is n? inhomogeneous linear equations in k& unknowns. They are either inconsistent, in which case
you move on to k + 1 or, the first time you find a solution, m4 = ag + - - - + z*.

Examples.

(1) Find ma where
A (12
—\3 4)

Solution. A # A so degm 4 > 2. First try to find ag,a; with agl + a1 A + A% = 0. This expands

out to
ap+a+7 0+ 2a,+10 —0
0+3a; +15 ag+4a; +22)

The equation in the (1,2)-slot gives a; = —5 and then that in the (1, 1)-slot gives ag = —2. These
also satisfy the other two equations and so m4 = —2 — 5z + z2.
(2) Find m 4 where

b

I
= O O
o O =
o = O

Solution. We have

A? =

o~ O
—_— o O
OO =

so that the (1,3)-slot of agls + a; A + A? = 0 gives the inconsistent equation ag0 + @10+ 1 = 0
and we conclude that degm 4 is at least three. Carrying on, we compute A? and find that A3 = I3
which short-circuits the whole story: A3 — Is = 0 so that m4 = 2% — 1.

We will see other ways to compute the minimum polynomial later.

One reason the minimum polynomial is important:

Proposition 3.7. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over F and
p € Flx].

Then p(¢) = 0 if and only if my divides p, that is, there is s € Flx] such that p = sm.

Proof. If p(¢) = 0 then, by Theorem 3.1, there are s,r € F[z] with degr < degmy such that p = smy+7.
But then

0=p(¢) = s(p)my(d) +1(8) =r(0)
so that » = 0 and p = smg by the smallest degree property of mg.
Conversely, if p = smg then p(¢) = s(¢)mg(¢) = 0. 0

Of course, the same statement (and proof!) holds for the minimum polynomial of a matrix A € M, (F).

2Thus T o = .
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3.4 Eigenvalues and the characteristic polynomial

Recall from Chapter 3 of Algebra 1B:

Definitions. Let V' be a vector space over F and ¢ € L(V).

An eigenvalue of ¢ is a scalar A € F such that there is a non-zero v € V with
o(v) = .

Such a vector v is called an eigenvector of ¢ with eigenvalue A.
The A-eigenspace Ey(X) of ¢ is given by

E4(N) :=ker(¢p — Aidy) < V.
Remark. Thus E4()\) consists of all eigenvectors of ¢ with eigenvalue A along with 0.
Definition. Let V be a finite-dimensional vector space over F and ¢ € L(V).
The characteristic polynomial Ay of ¢ is given by

Ay(X) :=det(¢ — Aidy) = det(A — AI),

where A is the matrix of ¢ with respect to some (any!) basis of V.

Thus deg Ay = dim V.

The characteristic polynomial is important to us because:

Lemma 3.8. A scalar A € F is an eigenvalue of ¢ if and only if A is a root of Ay.

This prompts:
Definitions. Let ¢ € L(V) be in a linear operator on a finite-dimensional vector space V over F and A

an eigenvalue of ¢. Then

(1) The algebraic multiplicity of A, am(X\) € Z, is the multiplicity of A as a root of A.
(2) The geometric multiplicity of A, gm(X\) € Z, is dim Ey4(A).

From Algebra 1B?,we know that am()\) > gm()\) and we will get a geometric understanding of am(\) in
the next chapter (see §4.3.2).

When F = C, Theorem 3.2, the Fundamental Theorem of Algebra, ensures that the characteristic
polynomial has at least one root so we conclude from Theorem 3.8:

Theorem 3.9. Let ¢ be a linear operator on a finite-dimensional vector space V over C. Then ¢ has
an eigenvalue.

Remark. This was crucial in Algebra 1B for the proof of the Spectral Theorem and will be equally crucial
for us in the next chapter.

Eigenvalues and eigenvectors play nicely with polynomials:

Proposition 3.10. Let ¢ € L(V) be a linear operator on a vector space over a field F and let v € V' be
an eigenvector of ¢ with eigenvalue \:

P(v) = Av. (3.6)
Let p € Flx]. Then
p(¢)(v) = p(A)v,

so that v is an eigenvector of p(¢) also with eigenvalue p(\).

3Proposition 3.4.6.
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Proof. The idea is to iterate (3.6):

and so, by induction, ¢*(v) = A\Fv, for all k € N.

Now, for p = Y"}_, axz”,

p(@) () = ard"(v) =D v = (D axA¥)v =pA)v.
k=0 k=0 k=0

This gives us something interesting: if p(¢) = 0 then

so that, since v # 0, p(A\) = 0. Thus any eigenvalue of ¢ is a root of p. In particular:

Corollary 3.11. Let ¢ be a linear operator on a finite-dimensional vector space V' over F. Then any
eigenvalue of ¢ is a root of my.

3.5 The Cayley—Hamilton theorem

Theorem 3.12 (Cayley-Hamilton* Theorem). Let ¢ € L(V) be a linear operator on a finite-dimensional
vector space over a field F.

Then Ag(¢) = 0.
Equivalently, for any A € M, (F), As(A) =0.

Before proving this, let us see what it tells us. Let

A= (CC‘ Z) € My(F).

Then
a—x b

Aa= c d—x

=22~ (a+d)r + (ad — be).

So the Cayley—Hamilton theorem is telling us that

A? —(a+d)A + (ad — be) I = 0,

a®>+bc ab+bd a b ad — bc 0 0 0
(ca+dc cb+d2> (‘”d)(c d) * ( 0 ad—bc> - (0 0)'
This is certainly true (check it!) but is far from obvious! If you are not yet convinced, work out what
the theorem says for A € M3(F).

that is,

Proof of Theorem 3.12. We will prove the matrix version. So let A € M, (F) and write
Ag=ao+--+apa™.
Thus, our mission is to show that

aoln, +a1A+ -+ a, A" = 0.

4 Arthur Cayley, 1821-1895; William Rowan Hamilton, 1805-1865.
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The key is the adjugate formula from Algebra 1B®:
adj(A — aI,)(A — al,) = det(A — a1,)I,. (3.7)
Each entry of adj(A — «1,,) is a polynomial in 2 of degree at most n — 1 so we write
adj(A — xI,) = Bo+ Byz + -+ + B,_12" !,
with each By € M, (F). Substitute this into (3.7) to get
(Bo+ Biz +--- 4 By 12" (A —xI,) = (ag + - - - + anz™)I,

and compare coefficients of 2* to get
ByA — Byp_1 = aplp, (3.8)

for 0 < k < n, where we have set B_; = B,, =0 € M, (F).
Multiply (3.8) by A* on the right to get

BkAk+1 - Bk_lAk = akAk

and sum: . .
Au(A) =" apAF = (BAM — By_1AY) = B, A" — B, =0
k=0 k=0
because nearly all terms in the penultimate sum cancel. O

Corollary 3.13. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over a field F.
(1) mg divides Ay. Equivalently, ma divides Ay, for any A € M, (F).
(2) The roots of my are exactly the eigenvalues of ¢.

Proof. By Theorem 3.12, Ay(¢) = 0 so my divides Ay by Theorem 3.7. As a result, any root of m is
a root of Ay and so an eigenvalue. Conversely, any eigenvalue is a root of mg by Theorem 3.11. O

Let us summarise the situation when F = C so that any polynomial is a product of linear factors. So
let ¢ € L(V) be a linear operator on a finite-dimensional complex vector space with distinct eigenvalues
AL,y Ag. Then

k
Ay =+]]@- )"
kz:l
me = H(l' - )‘1)81’
=1

where r; = am(\;) and 1 < s; <1y, for 1 < i < k.

This gives us another way to find my if we can factorise Ag: my will be of the form p = Hle(x — )%,
with each 1 < s; <1y, so evaluate p(¢) to find the one of lowest degree with p(¢) = 0.

Examples. Let us find m4 in the following cases:

(1) Take
1 1 2
A=1(0 1 1
0 0 2
Since A is upper triangular, we immediately see that Ay = —(x — 1)%(z — 2) so that m4 is either

(x —1)(z—2) or (z —1)%(z — 2).

5Theorem 2.4.6
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We try the first of these:

S OO
S O =

(A—I3)(A—-2I) = (
We conclude that ma = (z — 1)?(z — 2).

(2) Let us try again with

which also has Ay = —(x — 1)?(x — 2) so that m4 is either (z — 1)(z — 2) or (x — 1)?(x — 2).
However, this time

0 0 3
(A—IL)(A—-2;)=[0 0 2
00 1

so that ma = (z — 1)(z — 2).
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Chapter 4

The structure of linear operators

4.1 On normal forms

Question. Given ¢ € L(V), is there a basis with respect to which ¢ has a “nice” matrix?

Of course, this does not make much sense without some idea of what “nice” should mean for matrices
but a reasonable idea might be that there should be a low number of non-zero entries.

There is a matrix version of the same question. For this, recall:

Definition. Matrices A, B € M, (F) are similar if there is an invertible matrix P € M, (F) such that

B=P AP

We can then ask:

Question. Is A similar to a “nice” matrix?

and a very practical question:

Question (Similarity problem). When are A, B € M, (FF) similar?

A possible answer to this last question would be to compare “nice” matrices similar to A and B (recall
that similarity is an equivalence relation!).

We already know one situation where this sort of thing works out. Recall from Algebra 1B! that
A € M, (F) is diagonalisable if and only if it has an eigenbasis if and only if it is similar to a diagonal
matrix

A1 0
T (4.1)
0 A
Here A1,..., A, are the eigenvalues of A listed with their multiplicities, that is, each A; appears am(\;)

times. We say that (4.1) is a normal form of A.
We can conclude, after reordering eigenbases if necessary:
Theorem. Diagonalisable matrices A, B € M, (F) are similar if and only if they have the same eigen-

values and multiplicities up to order.

Our plan in this chapter is to try and generalise these ideas to arbitrary A € M, (F). We encounter two
difficulties almost immediately.

IDefinition 3.3.1
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(1) Not enough eigenvalues: Let
0 -1
4= )

Then A4 = 22 4+ 1 which has no eigenvalues at all in F = R. We solve this problem by working

over C.
0 1
)

Then Ay = x2 but ker A = span{(1,0)}. We therefore do not have enough eigenvectors to span
C?. To solve this problem will need a new idea (see §4.3).

(2) Not enough eigenvectors: Let

In this chapter, we will, among other things, completely solve the similarity problem for any A € M, (C).
This will take quite a bit of work but here is a sneak preview: any A € M, (C) is similar to a matrix of

the form
)\1 * 0

0 A
with eigenvalues with multiplicity on the diagonal, each * on the first super-diagonal either 0 or 1 and
zeros elsewhere.

4.2 Invariant subspaces

Definition. Let ¢ be a linear operator on a vector space V. A subspace U C V is ¢-invariant if and
only if ¢(u) € U, for all u € U.
The next lemma gives us lots of examples:

Lemma 4.1. Let ¢,v € L(V) be linear operators and suppose that ¢p1p = ¢ (say that ¢ and ¢ commute ).

Then kerp and im are ¢p-invariant.

Proof. Let v € kerv so that ¢(v) = 0. Then

so that ¢(v) € ker also.
Again, if v € im ), there is w € V with ¥ (w) = v and now

as required. O

As a consequence, the following are ¢-invariant:

o ker¢ and im ¢ (since ¢ commutes with itself!).

o kerp(¢), imp(¢), for any p € F[x] (since xp = px so that ¢p(¢) = p(¢)d).
Also, we have

o spanf{v}, for any eigenvector v of ¢, since ¢(v) = A € span{v}. Thus:
o Any U < E4()) is ¢-invariant.
Remark. If U <V is ¢-invariant then ¢y : U — U is in L(U).
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Definition. Let Vi,..., V3 <V with V=V, & --- &V} and let ¢; € L(V;), for 1 < i < k.

Define ¢ : V — V by
o(v) = pr(v1) + -+ - + i (vr),
where v = vy +--- + v withv; € V;, for 1 <i < k.

Call ¢ the direct sum of the ¢; and write ¢ = ¢1 D -+ D Py

There is a related notion for matrices:
Definition. Let Ay, ..., Ay be square matrices with A; € M,,,(F). The direct sum of the A; is
Ay 0
A& B A, = € My (F),
0 Ag
where n =nq + - - + ng.
A matrix of this type is said to be block diagonal.

Example.

€ M;5(R).

O OO = N
O OO o O
_ =0 O
== oo O

N\
w
= DN
N~
5>}
—
ot
SN—
®
7N\
— =
— =
N~
Il
O OO W =

Proposition 4.2. Let Vq,..., Vi, <V withV =V1 ®---® V; and let ¢; € L(V;), for 1 <i < k. Let
d=b1 D D ¢. Then

(1) ¢ is linear so that ¢ € L(V).
(2) Each V; is ¢-invariant and ¢y, = ¢;, 1 <i < k.

(3) Let B; be a basis of V; and ¢; have matriz A; with respect to B;, 1 < i < k. Then ¢ has matriz
AL & - D Ay with respect to the concatenated basis B = By ... By.

Proof. For (1), let v,w € V and write

V=01 + -+ U w=wi + -+ Wk,
with each v;, w; € V;. Then

v+ dw = (v1 + dwy) + -+ (v + Awg)
with each v; + \w; € V.

Then
k k k

k
G+ Aw) =D ivi + dwi) = D (di(vi) + Ags(wi)) = D di(vi) + XY di(wi) = (v) + Ap(w),

i=1 i=1 i=1 i=1
where we used the linearity of ¢; in the second equality.

For (2), let v € V; so that we can write v = vy + - - - + v}, with v; = v and v; = 0, for ¢ # j. Then
o) =h1(0) + -+ i (v) + -+ + dr(0) = i (v) € V;
so that V; is ¢-invariant and ¢y, = ¢;.

Finally, for (3), let B = By ... B = v1,...,v, with B; = vq41,...,0q4+r. Let ¢ have matrix A with
respect to B. Then, for 1 < j <r,

S(va+s) = Y Avatjvs.
b=1
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On the other hand,

(s

(b(va-i-j) = <ﬁi(va-i-j) = Z(Ai)cjva-i-o

c=1

Now compare coefficients to see that
Aa+c,a+j = (Ai)cj7 1 S ,] S r

Apatrj =0 otherwise.

Otherwise said, the a+ j-th column of A has the j-th column of the r X r matrix A; in rows a+1,...,a4+r
and zeros elsewhere. This settles (3). O
Conversely, any direct sum decomposition into ¢-invariant subspaces arises this way:

Proposition 4.3. Let Vq,...,. Vi, <V withV =V, & --- &V, and let ¢ € L(V). Suppose that each V;
s ¢p-invariant.

Then ¢ = ¢1 & -+ - B ¢, where ¢; := ¢|w € L(V;).

Proof. This is almost obvious: write v € V as v = vy + -+ - + v, with each v; € V;. Then

() = d(v1) + -+ + (vg) = d1(v1) + -+ + Pr(vr) = o1 D -+ - D Pr(v),

where the first equality comes from linearity of ¢ and the last from the definition of ¢1 & --- & ¢p. [
The usefulness of such a decomposition comes from the fact that nearly all properties of ¢ reduce to
properties of the simpler ¢;:
Proposition 4.4. LetVy,..., Vi <V withV =V1®--- @V, ¢, € L(V;), 1 <i<kanddp = 1D - Dy.
Then:

(1) ker¢p = ker ¢y @ - - - @ ker ¢y,.

(2) im¢ =im¢py B - ®im ¢y.

(3) p(¢) =p(¢1) & - ®p(dr), for any p € Fla].

k

(4) Ap =TIi=1 A,

Note that the sums in (1) and (2) are direct thanks to:

Exercise.? Let V=V, ®---®V, and let U; < V;, 1 <i < k. Then the sum U; + - - - + Uy, is direct.

Proof of Theorem 4.4. For (1), write v € ker ¢ as v = vy + -+ - + v}, with each v; € V;. Then
¢(U) :¢1(U1)+~~+¢k(vk) =0=0+---+0,

with ¢;(v;),0 € V;. The direct sum property tells us that each ¢;(v;) = 0 so that v € ker ¢1 B - - - D ker ¢.
Thus ker ¢ < ker ¢ @ - - - & ker ¢.

Conversely, if v =v1 + -+ v € ker ¢1 @ - - - @ ker ¢y, then each ¢;(v;) = 0 and
p(v) = ¢1(v1) + -+ + dr(vr) = 0.
The argument for item (2) is very similar and so left as an exercise®.

For item (3), note that, for v; € V;, ¢(v;) = ¢:(v;) € V; so that

¢ (vi) = B(di(vi)) = Gi(di(vi)) = &7 (v7)

2Exercise sheet 4, question 2(a)
3Question 2(b) on exercise sheet 4.
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and so on.

Finally, for item (4), let A; be the matrix of ¢; with respect to some basis B; of V;. Then ¢ has matrix
A1 @ -+ @ Ag with respect to By ... By by Theorem 4.2(3). Now Theorem 2.1.4 of Algebra 1B tells us

Al—LI,‘I' 0 k k
Ay = det(A —aI) = = [[ det(A: — =1) = ] A
0 Ay — x| =1 i=1

Exercise.* In this situation, what can you say about me?

Here is a first example of these ideas in action:

Proposition 4.5. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over a field F
and let A1, ..., \; be the distinct eigenvalues of ¢.

Then ¢ is diagonalisable if and only if
k
V=EDEs\). (4.2)
i=1

Proof. Suppose that (4.2) holds and let B; be a basis of E4();). Then, by Theorem 2.7, By ... By is a
basis of V' which consists of eigenvectors and so is an eigenbasis. Thus ¢ is diagonalisable.

Conversely, suppose that B = v1,...,v, is an eigenbasis for ¢ so that each ¢(v;) = pjv;, for some
My € {)\1,...,)\k}.
We claim: for A an eigenvalue,
Uy :=span{v; | p; = A} = Eg(N).
Given this, B; := {v; | p; = A} is a basis for E4(\;) and then B = By ... By so that (4.2) holds, again
by Theorem 2.7.
It remains to prove the claim. Clearly Uy < E4(\). Conversely, if v € E4(X), write v = Z?Zl a;v;.
Then
0= (= ANd)(v) = Y (nj = Najv; + Y (g —Najo; = > (1; — Najv;.
Flui=Xx Flms#X Gl #X

Since the v; are linearly independent, we see that (u; — X)a; = 0, for all j with u; # A, and so all such
a; vanish. Thus

v = g ajvj € Uy.
lug=x

O

To summarise the situation: when ¢ is diagonalisable, then with V; := Ey()\;) and ¢; := ¢yy,, we have
V=& Vi, ¢d=¢1 - D¢ and

¢i =\ idVi .

Thus the ¢; are as simple as they possibly can be!

We now turn to what we can say about general ¢.

4Exercise sheet 4, question 3.
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4.3 Jordan decomposition

4.3.1 Powers of operators and Fitting’s Lemma
Proposition 4.6 (Increasing kernels, decreasing images). Let V' be a vector space over a field F and
¢ € L(V). Then

(1) ker ¢* < ker ¢**1, for all k € N. That is,

{0} =ker¢” < kerp < kero? <....
If ker % = ker ¢**1! then ker ¢* = ker *+™, for all n € N.
(2) im¢* > im ¢**1, for all k € N. That is,
V=im¢®>im¢>imep? > ....

If im ¢F = im ¢F*+1 then im ¢F = im ¢F*", for all n € N.

Proof. We prove (1) and leave (2) as an exercise’.
If v € ker ¢* then ¢*(v) = 0 so that ¢¥*1(v) = ¢(¢*(v)) = ¢(0) = 0. Thus v € ker ¢* ! as required.

Now suppose that ker ¢¥ = ker ¢*T1 and induct to prove that ker ¢* = ker *+7, for n € N. We already
have the n = 1 case by assumption so suppose ker ¢¥ = ker ¢**7, for some n and let v € ker gFt7+1,
Then

0= ¢"*H(v) = 6" (9" (v))

so that ¢"(v) € ker p**! = ker¢¥. Thus ¢"+*(v) = 0 and v € ker ¢"** = ker ¢* by the induction
hypothesis. Induction now tells us that ker ¢* = ker ¢**+™, for all n € N. O

Corollary 4.7. Let V be finite-dimensional with dimV =n and ¢ € L(V). Then, for all k € N,

ker ¢" = ker ¢" ¥

im ¢" = im ¢" .

Proof. By Theorem 4.6, we need to prove ker ¢™ = ker "1 and im ¢" = im ¢"+!.

If ker ¢™ # ker ¢" 1! then, by Theorem 4.6, we have subspaces
{0} Skergp S - S ker "t

of strictly increasing dimension so that dimker ¢"*! > n + 1 > dim V: a contradiction. Thus ker ¢" =
ker ¢pn 1,

Rank-nullity now tells us that dimim ¢” = dimim ¢! whence im ¢" = im ¢" ! also. O

Theorem 4.8 (Fitting®’s Lemma). Let ¢ € L(V) be a linear operator on a finite-dimensional vector
space over a field F. Then, with n = dim V', we have

V =ker ¢" @ im ¢".

Proof. From Theorem 4.7, we know that ker ¢" = ker ¢" 1% im ¢" = im ¢"**, for all k € N.

We start by proving that ker ¢™ Nim ¢™ = {0}. For this, let v € ker ¢™ N im ¢™ so that ¢™(v) = 0 and
there is w € V such that v = ¢"(w). Then 0 = ¢"(v) = ¢*"(w) so that w € ker $** = ker ¢". Thus
v = ¢"(w) = 0 as required.

It follows that V' > ker ¢™ @ im ¢" but, by rank-nullity, the dimensions of these spaces coincide whence
V =ker ¢" @ im ¢". [

5Question 5 on exercise sheet 4.
SHans Fitting, 1906-1938.
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4.3.2 Generalised eigenspaces

Let us revisit the example of Section 4.1 of an operator with not enough eigenvectors: contemplate
¢ = ¢4 € L(C?) where
0 1
A_(OO)

We know that ¢ has only zero as eigenvalue and the corresponding eigenspace Ey(0) = span{(1,0)} # C?.
However, A% = 0 so that ker(¢ — 0id)? = C2.

This gives us a new idea: for ¢ € L(V) and A € F look for non-zero v € V' such that
(¢ = Aid)*(v) =0,

for some k € N. Thanks to Theorem 4.6 and Theorem 4.7, this amounts to demanding that
(6= Xid)"(v) = 0,

where n =dim V.

Observe that this means that (¢ — Aid)* is not injective (it has non-trivial kernel) so that ¢ — Aid is not
injective either (and so has non-trivial kernel) and therefore A is an eigenvalue of ¢.

This prompts:

Definition. Let ¢ € L(V) be a linear operator on an n-dimensional vector space over a field F. A
generalised eigenvector of ¢ with eigenvalue A is a non-zero v € V such that

(¢ — Aid)"(v) = 0. (4.3)

The set of all such along with 0 is called the generalised eigenspace of ¢ with eigenvalue A\ and denoted
Gg(N). Thus
Gp(A) =ker(p — Aidy)" < V.

Lemma 4.9. E4(\) < Gy(N) <V and G4(X) is ¢p-invariant.

Proof. There are two things to prove:
(1) Ey(X) < Gy(A). This is straight from Theorem 4.6: E(X) = ker(¢ — Aidy) < ker(¢ — Nidy)” =
Go(A)-
(2) Gg(N) is ¢-invariant. G(\) = ker p(¢) where p = (z — \)™ which is ¢-invariant (see the examples
after Theorem 4.1).

O

Lemma 4.10. Let ¢ € L(V) be a linear operator on an n-dimensional vector space over F and Ay, A\ € F
distinct eigenvalues of ¢. Then Gy(A1) N Gy(A2) = {0}.

Proof. The assertion amounts to the fact that (¢ — A\ id)‘"Gd) (\,) 18 injective (having trivial kernel). Tt is
enough then to prove that (¢—A1id)|g, (x,) is injective, or, equivalently, that Ey(A\1)NGg(A2) = {0}. For
this, let v € Eg(A1)NGy(A2). Then ¢(v) = Av and, from Theorem 3.10, (¢—A2id)"”(v) = (A1—X2)™v = 0.
We conclude that v = 0 and we are done. O

We now arrive at the promised generalisation of Theorem 4.5.

Theorem 4.11 (Jordan” decomposition). Let ¢ € L(V) be a linear operator on a finite-dimensional
vector space over C with distinct eigenvalues A\, ..., \g. Then

k

V=P GsN).

=1

7Camille Jordan, 1838-1922.
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Proof. We induct on n :=dim V.
When n =1, ¢ = Aid, for some A € C, so that V = E4(\) = G4(A). This settles the base case.

For the induction step, suppose that the theorem holds for spaces of dimension < n and that dim V' = n.
Now, by Theorem 3.9, ¢ has an eigenvalue A;, say (this is where we use F = C). Then Gg(\) =
ker(¢ — A1 id)™ so that, by Theorem 4.8, we have

V =Gy(M) ®im(¢ — A id)".
Set U :=im(¢ — A1id)™ and write b= ¢jv- We claim:

1. (]3 has eigenvalues Ao, ..., .

Given the claim, since dim U < n, the induction hypothesis applies to give

k
U= @ Go(Mi)
i=2
whence
k
V=G¢(/\1)@U= G¢()\Z)

i=1
as required. The magic of induction now proves the theorem.

It remains to prove the claim. For this, first note that if A is an eigenvalue of QAS with eigenvector u € U
then

Au = @(u) = d(u)
so that \ is an eigenvalue of ¢.

Next, observe that
Ey(M)NU <Gyp(M)NTU = {0}

so that \; is not an eigenvalue of g@

On the other hand, for ¢ > 2, Theorem 4.4 tells us that
Go(M) = ker(é — A idy )" = (Go(A) N Gs(M)) & (Go(A) NU) = Go(A) N,
where the last equality comes from Theorem 4.10. From this we learn that Gy (\;) < U so that, first, \;
is an eigenvalue of ¢ and also that G4(Ni) = Gg(Ni) (since it is always true that G;(A;) = G4(Ai) NU).
This settles the claim and so the whole proof. O
Let us summarise the situation. With V; = G4(\;) and ¢; = v, we have V=V @ --- & Vj and
¢i = A\iidy, +N;,

where we have set N; = ¢; — \;idy, € L(V;). The key point is that N* = 0 which prompts some
terminology.

Definition. A linear operator ¢ on a vector space V is nilpotent if ¢* = 0, for some k € N. or,
equivalently, if ker ¢* = V.

Remark. If V is finite-dimensional, we may take k = dim V' by Theorem 4.7.

Our remaining task is to understand nilpotent operators. As a useful first pass at this, we have:

Proposition 4.12. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space V' over F.
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Then ¢ is nilpotent if and only if there is a basis with respect to which ¢ has a strictly upper triangular
matriz A (thus A;; = 0 whenever i > j):

Proof. Begin by observing that ¢ has strictly upper triangular matrix with respect to B : vy,..., v, if
and only if ¢(v1) =0 and ¢(v;) € span{vy,...,vj_1}, for j > 1.

Thus, if ¢ has strictly upper triangular matrix A € M, (F) with respect v1,...,v,, we can iterate to
see that ¢* vanishes on v1,...,v; and qbk(vj) € span{vy,...,vj_x}, for j > k. In particular ¢" = 0.
Alternatively, A¥ has zeros on the first k — 1 super-diagonals:

O....... 0. *
k
A% = 0
0 0

In particular, A™ = 0 so that ¢™ = 0 also.

For the converse, if ¢ is nilpotent, we consider the subspaces
{0} <kerp < ker¢? < --- <kergpd™V =V,

Note that, if v € ker ¢¥, 0 = ¢¥(v) = ¢*~1(¢(v)) so that ¢(v) € ker p*~1, for k > 1.

Now take a basis vy,. .., vy of ker ¢, extend it successively to one of ker ¢, for each k, until we arrive
at a basis vy, ..., v, of V with the property that each ¢(v;) € span{v1,...,v;_1}. This means precisely
that the matrix of ¢ with respect to vy, ..., v, is strictly upper triangular. O

Apply Theorem 4.12 to each N; to get a basis of V; for which ¢; has a matrix of the form
/\i *

0 i

so that, in particular, Ay, = (A; — 2)4™ Vi, In view of Theorem 4.4(4), we conclude that

k
A¢ = H A@. =4+ H(l’ — )\i)dim Vi.
i=1 i=1

Otherwise said, am()\;) = dim V; and we have proved:

Proposition 4.13. Let A\ € C be an eigenvalue of a linear operator ¢ on a complex finite-dimensional

vector space. Then
am(A) = dim Gy4(A).

Remark. Since E4()\) < Gy()), this explains the Algebra 1B result®that gm(\) < am().

Finally, we can say something useful about the minimal polynomial of ¢: it is the product of the minimal
polynomials of the ¢;:

Proposition 4.14. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over C with
distinct eigenvalues A1, ..., Ag. Set ¢; = @|g,(x,)- Then

8Proposition 3.4.6
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(1) Each my, = (x — X\;)%, for some s; < dim Gg(N;).
k k s
(2) mg = [Tizy me; = [Tiza (& = Mi)™.
Proof. We know from Theorem 3.13(1) that mg, divides Ay, = (\; — 2)3m G2 g0 (1) is immediate.

For (2), let p = Hle(x — A;)®. Then p(¢) = @lep(qbi) = 0 since each p(¢;) = 0. Thus my divides p
and we see conclude that

with each 1 <t; < s;.

On the other hand, each mgy, = (x — X)* divides mgy since mg(¢;) = mg(o)y, = 0. Thus s; < t;, for

1<¢<k,and mg = p. O

As a corollary, we get an efficient (in the sense of low powers of (¢ — A;idy)) expression for Gg(\;):

Corollary 4.15. Let ¢ € L(V) be a linear operator with minimum polynomial Hle(x —X;)%. Then
G¢(>\i) = ker(qS — )\z ldv)‘”

Proof. By definition, ker(¢ — A;idy)** < Gg(X;). On the other hand, with V; = G(\;) and ¢; = ¢y,

we know that 0 = my, (¢;) = (¢; — Aiidy,)*. Otherwise said, (¢ — A;idy)fy, = 0 so that Gy(\i) <
ker(¢ - )‘i ldv)ql O]

Example. Let ¢ = ¢4 € L(C?) where
1 11
A=10 1 1
0 0 2
Find my, the eigenspaces and generalised eigenspaces of ¢.

Solution: A being upper triangular, we see at once that A, = Ay = (1 — z)%(2 — x) so that m4 is
either (x — 1)(z — 2) or (z — 1)?(z — 2) by Theorem 3.13. We check the first possibility:

01 1\ /-1 1 1 0 -1 1
(A-—I3)(A—-2L;)=[0 0 1 0 -1 1]=(0 o0 o] #o0.
00 1 0 00 0 0 0

We conclude that my = (z — 1)?(z — 2) and immediately deduce from Theorem 4.15 that G4(1) =
ker(¢ — id)? while G4(2) = ker(¢ — 2id) = Ey(2).

It remains to compute these:

01 1
Ey(1) =ker(¢p —id) =ker | 0 0 1| =span{(1,0,0)}
0 0 1
01 1\° 00 2
Gy(1) =ker(¢—id)2 =ker [0 0 1| =ker [0 0 1] =span{(1,0,0),(0,1,0)}
0 0 1 0 0 1
-1 11
Ey(2) = Gy(2) =ker(¢ — 2id) =ker [ 0 —1 1| =span{(2,1,1)}.
0 0 0

4.4 Jordan normal form

We complete our analyis of linear operators by improving on Theorem 4.12.

First we introduce the key ingredient.
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4.4.1 Jordan blocks

Definition. The Jordan block of size n € Z4 and eigenvalue \ € F is J(A,n) € M, (F) with X\’s on the
diagonal, 1’s on the super-diagonal and zeros elsewhere. Thus

A1 0....... 0

JO‘?”): 0
'._-1

0 A

Notation. Set J,, := J(0,n) so that J(A\,n) = A, + J,.

We have:

. C
Exercises.”

1) ker J& = span{ey,...,ex}. In particular, J, is nilpotent: J* = 0.
2) im J¥ = span{er,...,en_i}.
)
)

We are going to prove that any nilpotent operator ¢ € L(V') on a finite-dimensional vector space has a
basis for which the matrix of ¢ is a direct sum of Jordan blocks: J,, ®---®J,, withn;+---+n; =dim V.

We start by spelling out what it means for an operator to have a Jordan block as matrix:

Lemma 4.16. Let vy,...,v, be a basis for a vector space V and ¢ € L(V).
Then the following are equivalent:

(1) ¢ has matriz J,, with respect to vy,...,vy,.
(2) ¢(v1) =0 and ¢(v;) = vi—1, for 2 <i<n.
(3) v;i =" H(vy,), 0<i<n—1and ¢"(v,) = 0.

Proof. The equivalence of (1) and (2) comes straight from the definitions since (J,,);—1,; = 1 and all
other entries in the i-th column vanish.

The equivalence of (2) and (3) is an easy exercise!”. O

We will work with characterisation (3) and prove:

Theorem 4.17. Let ¢ € L(V) be a nilpotent operator on a finite-dimensional vector space over F. Then
there are vy, ...,vx € V and ny,...,ng € Z4 such that

¢n171(vl)7 .. _,QZ/)(’U1>,1)17 . '7¢nk71(vk)7 . .,¢(Uk),vk

is a basis of V and ¢™i (v;) =0, for 1 <i<k.

Using this basis and Theorem 4.16 we immediately conclude:

Corollary 4.18. Let ¢ € L(V) be a nilpotent operator on a finite-dimensional vector space over F. Then
there is a basis for which ¢ has matriz J,, ® - ® J,, .

9Exercise sheet 5, question 1.
10Question 2 on sheet 5.
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Remark. Note that direct sums of the J,, are characterised by having 1’s and zeros (at the joins of
successive blocks) on the super-diagonal and zeros elsewhere.

Proof of Theorem 4.17. Once again we induct on dim V.
If dim V = 1, the only nilpotent operator is the zero operator and any basis v; will do.

For the induction step, suppose that the theorem is true when dim V' < n and suppose that dimV = n.
We prove the theorem for V in three steps.

Step 1: apply the induction hypothesis to im ¢. We let r = rank ¢ and k = n — r = dim ker ¢. Since ¢
is nilpotent, k > 0 so that r = dimim ¢ < n. We therefore apply the induction hypothesis to ¢y ¢ to
get wi,...,wy € ime, mq,...,my € Z4 such that

ULy .oy Up 1= ¢m1—l(w1)7 LR} ¢(w1)7 Wiy ey qu’[_l(wé)) o 7¢(w€)7w€
is a basis of im ¢ and ¢™ (w;) = 0, for 1 < i < . Observe that each ¢(u;) is either u;_; or zero.
Step 2: Find the first £ of the v;. Each w; € im ¢ so choose vy, ..., vy such that ¢(v;) = w;, for 1 < i < 2.

We claim that wuq,...,u,,v1,...,v, are linearly independent. For this, suppose that we have a linear

relation ,
j=1 i=1
and take ¢ of this to get
r ¢
D Xdlug) + D mid(vi) =0
j=1 i=1

which reads

£
Z Ajui—1 + Zu,»wi =0. (4.5)
1

Jlo(u;)#0 i=

Since these u;_1 and w; are distinct, (4.5) is still a linear relation on the linearly independent u; and so,
in particular, each p; = 0. Now (4.4) becomes a linear relation on the u; and so all A\; = 0 also. This
proves the claim.

Step 3: extend uy,...,u,,v1,...,v to a basis of V by adding elements of ker ¢. Define U <V by
U = span{uy, ..., U, v1,..., 00} > im ¢

and note that im ¢ = ¢(U) since any w; = ¢™(v;), for some 1 < j < £ and 1 < m < m;. We extend to
get a basis
ULy ooy Upy, U1y oo, Vg, Tp 1y -+ Tk

of V. Now, for £+1 < j <k, there is some y; € U such that ¢(y;) = ¢(z;) whence v; := z; —y; € ker ¢.
By construction
span{uy, ..., Up, V1, ..., Uk} = SpAn{ui, ..., Up, U1y ..,V Tog1y-e, T =V

so that uy,...,u,,v1,..., v is a basis of V. Moreover, setting

m;+1 1<i</
n; =
1 (+1<i<k

we have ¢™i(v;) = 0, for all 1 <i < k and our basis, reordered to slot the first ¢ v; into the right places,
is
"), (1), 01,0, 0T (), D(Ve), Ve, Vet e, Uk,

which is of the required form. O
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The only question left is how unique are the n;? We already know from the proof of Theorem 4.17 that
there are k = dimker ¢ of them!! but we can do better. For this, set A = J,,, & -+ @ J,, so that, for
seN, A°=J; @&---@J, . Now

dimker J; = s,
for s < n; so that
1 1<s<ny

4.6
0 s>n;. ( )

dimker J;;  — dim ker Jf;;l = {

Now ker A°* = @le ker J;; so summing (4.6) over i yields:
#{i | n; > s} = dimker A® — dim ker A5,
This proves:

Proposition 4.19. Let ¢ € L(V) be nilpotent with matrixz J,, @ -+ ® Jyn, for some basis of V. Then
ny,..., N, are unique up to order. Indeed,

#{i | n; > s} = dimker ¢° — dimker ¢° ',
for each s > 1.
Exercise.'? In the situation of Theorem 4.19, show that

#{i | ni = s} = 2dimker ¢° — dimker ¢* ' — dim ker ¢***.

In another direction:
Proposition 4.20. In the situation of Theorem 4.19, we have
mey = 2°,

where s = max{ni,...,ng}.

Proof. Exercise'! O

4.4.2 Jordan normal form

We put §4.4.1 together with Theorem 4.11 to prove the ultimate structure theorem for linear operators
on a finite-dimensional complex vector space.

Theorem 4.21. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space V' over C. Then
there is a basis of V' for which ¢ has as matriz a direct sum of Jordan blocks which are unique up to
order.

Such a basis is called a Jordan basis and the direct sum of Jordan blocks is called the Jordan normal

form (JNF) of ¢.

Proof. Let A1, ..., A\, be the distinct eigenvalues of ¢. By Theorem 4.11, V = @ V;, for V; = G4(\;) and
then ¢; := ¢y, can be written
¢i = Niidy, +N;,

with N, nilpotent. Apply Theorem 4.18 to get a basis of V; for which N; has matrix J,, ®---® J,,. By
Theorem 4.19, the nq,...,ny are unique up to order. Now ¢; has matrix

J(Aiyn1) @ -+ @ J(Ai, ng).

We then concatenate these bases to get the required Jordan basis of V. O

11 Alternatively, if you have not read the proof: if there are k Jordan blocks Jn;, we have dim ker ¢ = Zle dimker J(n;) =
k since dimker J(n;) = 1.

12Question 3 on sheet 5.

13Question 4 on sheet 5.
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From this, Theorem 4.14 and Theorem 4.20, we get a complete account of the minimum polynomial:
Corollary 4.22. Let ¢ € L(V) be a linear operator on a finite-dimensional vector space V' over C with

distinct eigenvalues A1, ..., \p. Then
k

My = H(x — )%

i=1

where s; is the size of the largest Jordan block of ¢ with eigenvalue \;.

Exercise.!? ¢ is diagonalisable if and only if my = Hf:l(x — ;) (that is, all s; =1).

We can apply all this to matrices and solve the similarity problem.

Corollary 4.23. Any A € M, (C) is similar to a direct sum of Jordan blocks, that is, there is an
invertible matriz P € M,,(C) such that

PlAP=A1®---® A,,
with each A; a Jordan block.

A1 @ - @ A, is called the Jordan normal form (JNF) of A and is unique up to the order of the A;.

Proof. Apply Theorem 4.21 to ¢4 : C* — C™ and let P be the change of basis matrix from the standard
basis to the Jordan basis of ¢4 (so that the columns of P are the Jordan basis). O

This gives:

Theorem 4.24. Matrices A, B € M, (C) are similar if and only if they have the same Jordan normal
form, up to reordering the Jordan blocks.

4.4.3 Examples

Example. Let ¢ = ¢4 : C* — C* where

2 -4 2 2

-2 01 3

A= -2 -2 3 3
-2 -6 3 7

let us find the Jordan normal form of A and a Jordan basis of ¢.

Step 1: compute A,4. This turns out to be (2 — z)%(4 — x)? so that we have eigenvalues 2,4 and
Theorem 4.13 tells us that
dim Gy(2) = dim G4(4) = 2.

Step 2: compute my by trial and error. It must be (z — 2)%*(z — 4)%2 with 1 < s; < 2 so first try
(x —2)(xz —4):

0 0 0 0

0 —4 2 2
(A-2D(A-al)= |, _, 5 5| #0

0 —4 2 2

Next try (x — 2)(x — 4)2:
(A —2I)(A —4I)* =0 € My(C)

so that ma = (z — 2)(z — 4)2.

Step 3: deduce the shape of the Jordan normal form using Theorem 4.22:

14Question 5 on sheet 5.
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Since 51 = 1, all Jordan blocks with eigenvalue 2 have size 1, Fy(2) = G4(2).

Since s = 2, there is at least one Jordan block of size 2 with eigenvalue 4 and since dim G4(4) = 2 there
is no room for any other block.

We conclude that A has JNF J(2,1) & J(2,1) & J(4,2):

We find a Jordan basis by finding one for each generalised eigenspace in turn. Any basis of E4(2) will
do for the 2-generalised eigenspace so solve (A — 2I)v = 0 to find one. I found (2,1,0,2), (0,1,2,0).

For the 4-generalised eigenspace, we need a basis of the form (¢ — 4id)v, v with (¢ — 4id)?(v) = 0. For
this we work backwards:

(a) Find an eigenvector with eigenvalue 4 by solving Aw = 4w. One solution is w = (0,1,1,1).
(b) Find v by solving (A — 4I)v = w. One solution is (1, 0,0, 1).

We therefore have a Jordan basis (2,1,0,2), (0,1,2,0), (0,1,1,1), (1,0,0,1).

It follows that

N O =N
oSN = O
e =)
_= O O =

satisfies

PlAP =

Example. Let ¢ € L(V) with A, = (z — 5)* and my = (z — 5)2. What can be said about the JNF of
@7
Solution: We see from A, that 5 is the only eigenvalue of ¢ and that dimV = deg Ay = 4.
From mg, we see that there must be at least one Jordan block of size 2. This gives two possibilities:
J(5,2) ® J(5,2)
J(5,2)® J(5,1)® J(5,1).
In the first case, dim E4(5) = 2 and, in the second, dim E4(5) = 3.
Example. What is the JNF of A given by

Find a Jordan basis for A.

Solution: One readily checks that A4 = 23, and A% = 0 whence A is nilpotent with m4 = 2%. Thus A
has at least one Jy = J(0,2) block of size two so the JNF must be Jo @ J.

A Jordan basis is vy, v, v3 with Ave = vi and Avy = Avsz = 0 so we seek v; € im A Nker A and work
backwards from there.

Solve linear equations to see that

ker A = {(z,2,y) | #,y € F}
imA={(z,z,z) | x € F}
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so take v; = (1,1,1) and solve Avy = v to get, for example, vy = (0,1,0). Finally take any v3 € ker A
that is linearly independent of vy: (0,0,1) will do.

Thus we have arrived at the Jordan basis (1,1,1), (0,1,0), (0,0,1).

Remark. We see from these computations that Jordan bases of ¢ are far from unique: many choices are
made when finding one.
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Chapter 5

Symmetric bilinear forms and
quadratic forms

We give describe a generalisation of real inner products to vectors spaces V over an arbitrary field F and
use this to study the simplest non-linear functions on V.

5.1 Bilinear forms and matrices

Definition. Let V' be a vector space over a field F. A map B : V x V — F is bilinear if it is linear in
each slot separately:

B(Avy + va,v) = AB(v1,v) + B(va,v)
B(’U,)\Ul -+ ’UQ) = )\B(’U,Ul) + B(’U,’UQ)7

for all v,v1,v2 € V, v,v1,v9 € V and X € F.

A bilinear map V x V — F is called a bilinear form on V.

Remark. A bilinear form B : V x V — F has B(v,0) = B(0,v) = 0, for all v € V. Indeed,
B(v,0) = B(v,0+ 0) = B(v,0) + B(v,0)

and similarly for B(0,v).

Examples.

(1) Any real inner product is a bilinear form (what goes wrong for complex inner products?).
(2) Let A € M,,(F) and define a bilinear form By : F* x F" — F by

Ba(z,y) =x"Ay.
This gives us a new use for matrices.

There is a converse to this last example:

Definition. Let V be a vector space over F with basis B = v1,...,v, and let B : V xV — F be a
bilinear form. The matriz of B with respect to B is A € M, (F) given by

Aij = B(Ui,’l)j),

for 1 <i,5 <n.
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The matrix A along with B tells the whole story:

Proposition 5.1. Let B: V xV — F be a bilinear form with matriz A with respect to B = vy,...,v,.
Then B is completely determined by A: if v =" z;v; and w = 2?21 y;v; then

B(v,w) = Z zy; Ay = x" Ay.
i,j=1
Proof. We simply expand out using the bilinearity of B:

B(U,U}) = Z .’Eiij('Ui,Uj) = Z l'zyjA”

4,j=1 4,j=1
O

Remark. When V =TF" and B : eq,...,e, is the standard basis, this tells us that any bilinear form on
Vis BA where AU = B(ei,ej).

How does A change when we change basis of V7

Proposition 5.2. Let B:V x V — T be a bilinear form with matrices A and A’ with respect to bases
B:vy,...,v, and B' : v, ... v, of V. Then

A = PTAP
where P is the change of basis matriz' from B to B': thus v} = 31"y Pyjv;, for 1 < j <mn.
Proof. Using the bilinearity to expand things out, we compute:
Agj = B(Ug, 1}3) = B(Z Pkivk, Z Phjvh)
k h

= PuiB(vk,vn)Prj = Y (PT)ix ApnPaj = (PTAP),;.
k,h k,h

This prompts:
Definition. We say that matrices A, B € M,,(IF) are congruent if there is P € GL(n,F) such that

B=PTAP.

5.2 Symmetric bilinear forms

Definition. A bilinear form B : V x V — F is symmetric if, for all v,w € V,
B(v,w) = B(w,v)

Exercise. If V is finite-dimensional, B is symmetric if and only if B(v;,v;) = B(vj,v;), 1 < 4,5 < n,
for some basis v1,...,v, of V.

Thus B is symmetric if and only if its matrix A with respect to some (and then any) basis is a symmetric
matrix: AT = A.

Example. A real inner product is a symmetric bilinear form. Thinking of symmetric bilinear forms as
a generalisation of inner products is a good source of intuition.

L Algebra 1B, Definition 1.7.1.
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5.2.1 Rank and radical

Definitions. Let B : V x V — F be a symmetric bilinear form.
The radical rad B of B is given by
rad B:={v eV | B(v,w) =0, for all w € V'}.

We shall shortly see that rad B < V.
We say that B is non-degenerate if rad B = {0}.

If V is finite-dimensional, the rank of B is dimV — dimrad B (so that B is non-degenerate if and only
if rank B = dim V).

Remark. A real inner product B is non-degenerate since B(v,v) > 0 when v # 0.
Lemma 5.3. Let B: V XV — F be a symmetric bilinear form with matriz A with respect to a basis

Viy.ooyUp. Then v =" xv; € rad B if and only if Ax =0 if and only if x* A = 0.

Proof. Since the v; span V, we see that B(v,w) = 0, for all w € V, if and only if B(v,v;) = 0 for
1 <1 <mn. Thus, v € rad B if and only if Z?:I x;Aj; = 0, for each i. Otherwise said, v € rad B if and

only if xT A = 0 or, taking transposes and remembering that A7 = A, Ax = 0. O
This enables us to compute rank B:

Corollary 5.4. Let B:V xV — F be a symmetric bilinear form on a finite-dimensional vector space
V' with matriz A with respect to some basis of V.. Then

rank B = rank A.

In particular, B is non-degenerate if and only if det A #£ 0.

Proof. We have, for n = dim V:
rank B =n — dimrad B =n — dimker A = rank A,

where the last equality is rank-nullity. O
Examples. We contemplate some symmetric bilinear forms on F3:

(1) B(x,y) = 191 + 22y2 — x3y3. With respect to the standard basis, we have

1 0 0
A=[0o 1 o0
00 -1
so that rank B = 3.

(2) B(z,y) = z1y2 + x2y1. Here the matrix with respect to the standard basis is
0 10
A=1[(1 0 0
0 0 0

so that B has rank 2 and radical span{es}.
(3) In general, B(z,y) = 3.°

i j=1 Aijriy; so we can read off A from the coefficients of the z;y;.
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5.2.2 Classification of symmetric bilinear forms

Convention. In this section, we work with a field F where 141 # 0 so that 3 = (1+1)~* makes sense.
This excludes, for example, the 2-element field Zs.

We can always find a basis with respect to which B has a diagonal matrix. First a lemma:

Lemma 5.5. Let B: V xV = F be a symmetric bilinear form such that B(v,v) = 0, for all v € V.
Then B = 0.

Proof. Let v,w € V. We show that B(v,w) = 0. We know that B(v + w,v + w) = 0 and expanding out
gives us
0 = B(v,v) + 2B(v,w) + B(w,w) = 2B(v, w).

Since 2 # 0 in F, B(v,w) = 0. O

We can now prove:

Theorem 5.6 (Diagonalisation Theorem). Let B be a symmetric bilinear form on a finite-dimensional
vector space over F. Then there is a basis vi,...,v, of V with respect to which the matriz of B is
diagonal:

B(Ui, ’Uj) = O7

foralll1 <i#j<n. Wecall vy,...,v, a diagonalising basis for B.

Proof. This is reminiscent of the spectral theorem?® and we prove it in a similar way by inducting on
dim V.

So our inductive hypothesis is that such a diagonalising basis exists for symmetric bilinear forms on a
vector space of dimension n.

Certainly the hypothesis holds vacuously if dimV = 1. Now suppose it holds for all vector spaces of
dimension at most n — 1 and that B is a symmetric bilinear form on a vector space V with dimV = n.

There are two possibilities: if B(v,v) = 0, for all v € V, then, by Theorem 5.5, B(v,w) = 0, for all
v,w € V, and any basis is trivially diagonalising.

Otherwise, there is v1 € V' with B(vy,v1) # 0 and we set
U := span{v }, W :={v| B(v,v) =0} < V.
We have:
(1) UnW = {0}: if vy € W then 0 = B(v1, Av1) = AB(v1,v;) forcing A = 0.
(2) V=U+W: forv eV, write

_ B(vi,v) B(v1,v)
V= Bloron U1 + (v — 43(1;11,1;;) v1).

The first summand is in U while

B(vy,v— g((qjjllv’:l)) v1) = B(vy,v) — B(v1,v) =0

so the second summand is in W.

We conclude that V = U @ W. We therefore apply the inductive hypothesis to By xw to get a basis
v, ..., U, of W with B(v;,v;) =0, for 2 <i# j <n.

Now vy, ..., v, is a basis of V and, further, since v; € W, for j > 1, B(v1,v;) = 0 so that
B(vi,vj) = O,
forall 1 <i#j <n.

Thus the inductive hypothesis holds at dim V' = n and so the theorem is proved. O]

2Theorem 5.2.11 from Algebra 1B
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Remark. We can do a little better if F is C or R: when B(v;,v;) # 0, either
(1) If F = C, replace v; with v;/+/B(v;,v;) to get a diagonalising basis with each B(v;,v;) either 0 or

1.
(2) If F = R, replace v; with v;/+/|B(v;,v;)| to get a diagonalising basis with each B(v;,v;) either 0,
1 or —1.

Corollary 5.7. Let A € My,un(F) be symmetric. Then there is an invertible matriz P € GL(n,F) such
that PT AP is diagonal.

Proof. We apply Theorem 5.6 to B4 to get a diagonalising basis B and then let P be the change of basis

matrix from the standard basis to B. Now apply Theorem 5.2. O]
Remark. When F = R, Theorem 5.7 also follows from the spectral theorem for real symmetric matrices?,
which assures the existence of P € O(n) with P~*AP = PT AP diagonal.

Theorem 5.6 also gives us a recipe for computing a diagonalising basis: find v; with B(vy,v1) # 0,
compute W = {v | B(vy,v) = 0} and iterate. In more detail:
(1) Find vy € V with B(vy,v1) # 0.
(2) Suppose we already have found vy, ...,vk—1. Now find non-zero y € V' solving
B(vy,y) =+ = B(vg-1,y) = 0. (5.1)

(3) If k = dim V, take vi = y and we are done. Otherwise:

(4) Inspect B(y,y). There are three possibilities:
(i) If B(y,y) # 0, then set vy = y, and return to step 2 to find vg41.

(ii) If B(y,y) = 0 and y € rad B (so that B(y,v) = 0 for all vinV'), then again set v; = y, and
return to step 2 to find vg1.

(iii) Otherwise reject y (it cannot be a member of a diagonalising basis*) and try another solution
of (5.1).

Here are some examples:

Examples.

(1) Problem: find a diagonalising basis for B = B4 : R? x R?® — R where
1 2 1
A=12 0 1
1 1 0
Solution: First note that A7 # 0 so take v; = e;. We seek vy among y such that
We try vg = (1, —1,1) for which

Blvg,y) = (1 -1 1)Ay=(0 3 0)y =3y,

In particular, B(va,v2) = —3 # 0 so we can carry on.
Now seek vz among y such that B(v1,y) = B(ve,y) = 0, that is:

Y1 +2y2 +y3 =0
3y2:0.

A solution is given by v = (1,0, —1) and B(vs,v3) = —1.

We have therefore arrived at the diagonalising basis (1,0,0),(1,—1,1),(1,0,—1).

Note that such bases are far from unique: starting from a different v; would give a different, equally
correct answer.

3 Algebra 1B, Theorem 5.2.16.
4See question 1 on sheet 6.
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(2) The same calculation solves another problem: find P € GL(3,R) such that PT AP is diagonal.
Solution: we take our diagonalising basis as the columns of P so that

1 1 1
P=10 -1 0
0o 1 -1

Exercise. Check that PT AP really is diagonal!

Remark. We could also solve this by finding an orthonormal basis of eigenvectors of A but this is
way more difficult because we would have to find the eigenvalues by solving a cubic equation.

(3) Now let us take
1 2 3
A=12 4 6
3 69

and find a diagonalising basis for B = By.
Solution: As before, we can take v; = e; and seek vy among y with

0= B(vi,y) = y1 + 2y2 + 3ys.
Let us try vg = (3,0,—1). Then
B(va,y)=(3 0 —1)Ay =0,

for all y. Otherwise said, vy € rad B. We keep v2 and try again with vs = (0,—3,2). Again we
find that vz € rad B and conclude that vy, v, v3 are a diagonalising basis with B(vy,v1) = 1 and
B(va,v) = B(vs,vs) = 0.

(4) Here is a trick that can short-circuit these computations if there is a zero in an off-diagonal slot.

Take
0

11
A=1|1 0 1
01 -1
and seek a diagonalising basis for B = By4.
We can exploit the zero in the (1, 3)-slot of A: observe that

B(el,el) =1
B(€3763) =-1
B(61,63) —O

so we are well on the way to getting a diagonalising basis starting with e, e3. To get the last basis
vector, we seek y € R? with

0=DB(e1,y) =y1 +¥2
0= Bles,y) = y2 — ys-

We solve these to get y = (—1,1,1), for example, and so that (1,0,0),(0,0,1),(—1,1,1) are a
diagonalising basis and
B(y,y)=1—-2+2-1=0.

5.2.3 Sylvester’s Theorem
Let B be a symmetric bilinear form on a real finite-dimensional vector space. We know that there is a

diagonalising basis vy, ..., v, with each B(v;,v;) € {£1,0} and would like to know how many of each
there are. We give a complete answer.
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Definitions. Let B be a symmetric bilinear form on a real vector space V.
Say that B is positive definite if B(v,v) > 0, for all v € V' \ {0}.

Say that B is negative definite if —B is positive definite.

If V is finite-dimensional, the signature of B is the pair (p, q) where

p=max{dimU | U <V with Bjyy positive definite}
q = max{dim W | W <V with B}y .w negative definite}.

Remark. A symmetric bilinear form B on V' is positive definite if and only if it is an inner product on
V.

The signature is easy to compute:

Theorem 5.8 (Sylvester’s Law of Inertia). Let B be a symmetric bilinear form of signature (p,q) on a
finite-dimensional real vector space Then:

e p+q=rank B;

o any diagonal matriz representing B has p positive entries and q negative entries (necessarily on
the diagonal!).

Proof. Set K =rad B, r =rank B and n = dim V' so that dim K =n —r.

Let U <V be a p-dimensional subspace on which B is positive definite and W a g-dimensional subspace
on which B is negative definite.

First note that U N K = {0} since B(k,k) = 0, for all £k € K. Thus, by the dimension formula,
dim(U + K) =dimU +dmK =p+n—r.

Moreover, if v =u+k € U + K, with uw € U and k € K, then B(v,v) = B(u+ k,u+ k) = B(u,u) > 0.

From this we see that WN(U+ K) = {0}: if w € WN (U + K) then B(w,w) > 0 by what we just proved
but also B(w,w) < 0 since w € W. Thus B(w,w) = 0 and so, by definiteness on W, w = 0. Thus

dim(W+ (U4 K))=dimW +dim(U+ K)=g+n+p—r <dimV =n

sothat p4+¢q <.

Now let v1, ..., v, be a diagonalising basis of B with p positive entries on the diagonal of the corresponding
matrix representative A of B and § negative entries. Then B is positive definite on the p-dimensional
space span{v; | B(v;,v;) > 0} (exercise®!). Thus p < p. Similarly, § < g.

However r = rank A is the number of non-zero entries on the diagonal, that is » = p + §. We therefore
have
r=p+q<p+q<r

sothat p=p,g=gand p+q=r. O

Example. Find the rank and signature of B = B4 where

1
A=12
1

—= O N
O = =

Solution: we have already found a diagonalising basis v; = (1,0,0),v2 = (1,—1,1),v3 = (1,0, —1) so we
need only count how many B(v;,v;) are positive and how many negative. In this case, B(vy,v1) =1 >0
while B(vg,v2) = —3 < 0 and B(vs,v3) = —1 < 0. Thus the signature is (1,2) while rank B =1+2 = 3.

5Question 2 on sheet 6.
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Remarks.

(1) Here is a useful sanity check: symmetric bilinear B of signature (p, ¢) on an n-dimensional V' has
p,¢,p + q < n (since p,q are dimensions of subspaces of n-dimensional V' while n — (p + ¢q) =
dimrad B > 0).

(2) A symmetric bilinear form of signature (n,0) on a real n-dimensional vector space is simply an
inner product.

(3) In physics, the setting for Einstein’s theory of special relativity is a 4-dimensional real vector space
(space-time) equipped with a symmetric bilinear form of signature (3, 1).

5.3 Application: Quadratic forms

Convention. We continue working with a field F where 1 + 1 # 0.

We can construct a function on V' from a bilinear form B (which is a function on V' x V).
Definition. A quadratic form on a vector space V over F is a function @ : V — F of the form
Q(v) = B(v,v),
for all v € V, where B : V x V — F is a symmetric bilinear form.
Remark. For v € V and A € F, Q(\v) = B(Av, \) = A2Q(v) so Q is emphatically not a linear function!

Examples. Here are two quadratic forms on F3:

(1) Q(z) = 22 + 2% — 22 = Ba(z, ) where

1 0 O
A=10 1 O
00 -1
(2) Q(z) =z = Ba(x,x) where
0 3 0
A=13 0 0
0 0 0

We can recover the symmetric bilinear form B from its quadratic form Q:

Lemma 5.9. Let Q : V — F be a quadratic form with Q(v) = B(v,v) for a symmetric bilinear form B.
Then

B(v,w) = 3(Qv +w) — Q(v) — Q(w)),
for allv,w e V.

B is called the polarisation of Q.

Proof. Expand out to get

Qv+ w)— QW) — Qw) = B(v,w) + B(w,v) = 2B(v,w).

Here is how to do polarisation in practice: any quadratic form @ : F" — F is of the form

g1 %sz'
Qz) = Z Gijriv; =X x

1<i<j< 1 -
=tsIsn fqij dnn
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so that the polarisation is B4 where
g ifi=7;
Ay = Ay = 1” e
54ij if i < 7-
Example. Let Q : R3 — R be given by
Q(z) = 23 4 223 + 21129 + 173

Let us find the polarisation B of @, that is, we find A so that B = B: we have ¢11 = 1, gos = 2, q12 = 2
and g3 = 1 with all other ¢;; vanishing so

11 3
A={1 2 0
100

Definitions. Let @ be a quadratic form on a finite-dimensional vector space V' over F.

The rank of @ is the rank of its polarisation.

If F = R, the signature of () is the signature of its polarisation.

What does the diagonalisation theorem mean for a quadratic form Q7 We take a practical point of view
and let Q : F™ — F be a quadratic form on F" with polarisation B. We have a diagonalising basis

v1,...,0, of B and let P be the change of basis matrix from the standard basis to v1,...,v,. Then,
with z =), ie; = Zj y;v;, we have

n n

Qz) = ZB(%W)%? = Z B(vivui)(z Pijx;)?,
=1

i=1 i=1

where [f’ij = (P71);;. Otherwise said, @ is a linear combination of squares of linear functions in the ;
and the linear functions have linearly independent coefficients (the rows of P~1).

Let us now apply the classification results of §5.2 and summarise the situation for quadratic forms on
vector spaces over our favourite fields:

Theorem 5.10. Let Q be a quadratic form with rank r polarisation on a finite-dimensional vector space
over .

(1) WhenTF = C, there is a basis vy, ...,v, of V such that
Q(ixivi) =2+ -+ a2
i=1
(2) WhenF =R and Q has signature (p,q), there is a basis v,...,v, of V such that
Q(ix’ivi) :If+~-~+zz2,—xf,+1 — a2,
i=1

Example. Find the signature of Q : R?® — R given by
Q(z) = 22 + 22 + 22 + 2x123 + 4woxs.
Q has polarisation B = B4 with
1 0 1
A=1(0 1 2
1 2 1

Solution: exploit the zero in the (1,2)-slot of A to see that e1,e2,y = (—1,—2,1) is a diagonalising basis
and so gives us a diagonal matrix representing B with Q(e;) = Q(e2) =1 > 0 and Q(y) = —4 < 0 along
the diagonal. So the signature is (2, 1).

Here are two alternative techniques:
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(1)

Orthogonal diagonalisation yields a diagonal matrix representing B with the eigenvalues of A down
the diagonal so we just count how many positive and negative eigenvalues there are.

In fact, A has eigenvalues 1 and 1 £+ /5. Since /5 > 2,1 — Vb < 0 and we again conclude that
the signature is (2, 1).

Danger: this method needed us to solve a cubic equation which is already difficult. For an n x n
A with n > 5, this could be impossible!

Finally, we could try and write () as a linear combination of linearly independent squares and then
count the number of positive and negative coefficients. In fact,

Q(z) = 3 + 23 + x5 + 2x173 + 4913
= (z1 + 23)% + 23 + daows = (z1 + 23)% + (20 + 223)? — 422

We must check that the linear functions x1 4+ x3, 2 + 223, 3 have linearly independent coefficients
(that is, (1,0,1), (0,1,2), (0,0,1) are linearly independent) but that is easy. Now the coefficients
of these squares are 1,1, —4 and so, once more, we get that the signature is (2,1).
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