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Chapter 1

Linear algebra: key concepts

Let us warm up by revising some of the key ideas from Algebra 1B.

1.1 Vector spaces

Recall from Algebra 1B, §1.1:

Definition. A vector space V over a field F is a set V' with two operations:

addition V xV -V : (v,w) — v+ w such that:
e v+w=w+v, forall v,weV;
* ut (v+w)=(u+v)+w, forall u,v,weV;
e there is a zero element 0 ¢V for which v+0=v=0+wv, forall veV;

* each element v € V has an additive inverse —v € V' for which v+ (—v) =
0=(—v)+wv.

In fancy language, V with addition is an abelian group.
scalar multiplication FxV — V : (\,v) = Av such that

e M+pwv= +uv,forall veV, \peF.
* Mv+w)=X+w, forall v,weV, NeF.
o (Awv=Aww),forall veV, \peF.

e lv=vo,forall veVv.

We call the elements of F scalars and those of V vectors.

Examples.



(1) Take V =T, the field itself, with addition and scalar multiplication the field addi-
tion and multiplication.

(2) F™, the n-fold Cartesian product of F with itself, with component-wise addition
and scalar multiplication:

()\la"'a)‘n) + (/’[/17'-'7/’(‘1'7,) = (Al +/j/1a"'7)‘n +/J’n)
Ao A) = (A, A,

(3) Let M,,«,(F) denote the set of m by n matrices (thus m rows and n columns)
with entries in F. This is a vector space under entry-wise addition and scalar
multiplication.

Special cases are the vector spaces of column vectors M, .;(F) and row vec-

tors M., (F). In computations, we often identify F* with M, «,(F) by associating
x = (x1,...,2,) € F* with the column vector

T1

1.2 Subspaces

Definition. A vector (or linear) subspace of a vector space V over F is a non-
empty subset U C V which is closed under addition and scalar multiplication: when-
ever u,uj,us €U and AN e F,then u; +ux €U and \ueU.

In this case, we write U <V .

Say that U is trivial if U = {0} and proper if U £V .

Of course, U is now a vector space in its own right using the addition and scalar
multiplication of V.

Exercise.! U CV is a subspace if and only if U satisfies the following conditions:

(1) ocU,;
(2) Forall uj,us €U and X€F, us + ug €U .

This gives a efficient recipe for checking when a subset is a subspace.

1.3 Bases

Definitions. Let v,...,v, be a list of vectors in a vector space V.

1Question 1 on sheet 1.



(1) The span of vy,...,v, is
span{vy,...,vpt = { o1+ -+ Ao [N EFI<i<n} <V

(2) v1,...,v, span V (or are a spanning list for V') if span{vy,...,v,} =V .

(3) v1,...,v, arelinearly independent if, whenever \jv;+---+\,v, =0, then each
A =0, 1<i<n,and linearly dependent otherwise.

(4) v1,...,v, is a basis for V if they are linearly independent and span V.

Remark. Notice that any re-ordering of a basis is also a (different) basis. Example: if
v1,v2u3 IS @ basis, so is wvq,v1,v3 and so on.

Definition. A vector space is finite-dimensional if it admits a finite list of vectors
as basis and infinite-dimensional otherwise.

If V is finite-dimensional, the dimension of V', dimV, is the number of vectors in a
(any) basis of V.

Terminology. Let vy,...,v, be a list of vectors.

(1) A vector of the form \jv; +---+ \,v,, is called a linear combination of the v, .

(2) An equation of the form Ajv1 +---+ A\,v, = 0 is called a linear relation on the

Vi .

Example. Some lucky vector spaces come with a natural choice of basis. For instance,
define ¢; :=(0,...,1,...,0) € F*, 1 <i < n with a single 1 in the i-th place and zeros
elsewhere. Then eq,...,e, is a basis of F" called the standard basis

1.3.1 Useful facts

A very useful fact about bases that we shall use many times was proved in Algebra
1B:

Proposition 1.1 (Algebra 1B, Corollary 1.5.7).
Any linearly independent list of vectors in a finite-dimensional vector space can be
extended to a basis.

Here is another helpful result :

Proposition 1.2 (Algebra 1B, Corollary 1.5.6).

Let V be a finite-dimensional vector space and U <V . Then
dimU < dimV

with equality ifand only if U=V,



1.4 Linear maps

Definitions. A map ¢: V — W of vector spaces over F is a linear map (or, in older
books, linear transformation) if

o(v+w) = ¢(v) + ¢(w)
P(Av) = Ao (v),

forall v,w eV, NeF.
The kernel of ¢ is ker¢p:={veV |¢w)=0} <V.
The image of ¢ is im¢ :={¢(v) |veV} <W.
Remark. ¢ is linear if and only if
O(v + Aw) = ¢(v) + Ap(w),
forall v,w eV, X eF, which has the virtue of being only one thing to prove.
Examples.

(1) A € M,,,x,(F) determines a linear map ¢ : F* — F™ by ¢a(z) = y where, for
1< <m,

n
Y; = Z Aijwj-
j=1

Otherwise said, y is given by matrix multiplication: y = Ax.
(2) For any vector space V, the identity map idy : V — V is linear.
3)If¢p:V—-Wand ¢p: W — U arelinearthensois ¢po¢:V —U.

Definition. A linear map ¢ : V — W is a (linear) isomorphism if there is a linear
map ¢ : W — V such that

Yop=idy,  ¢oy =idw.

If there is an isomorphism V — W, say that V and W are isomorphic and write
Vew.

In Algebra 1B, we saw:

Lemma 1.3 (Algebra 1B, lemma 1.3.3 (4)).
¢:V — W is an isomorphism if and only if ¢ is a linear bijection (and then  =¢~1).

Notation. For vector spaces V,WW over F, denote by Ly(V,W) (or simply L(V,W))
the set {¢:V — W | ¢ is linear} of linear maps from V to W .



Theorem 1.4 (Linearity is a linear condition).
L(V,W) is a vector space under pointwise addition and scalar multiplication. Thus

(¢ +9¥)(v) == 9(v) +¥(v)
(AP)(v) := Ad(v),
forall ¢, e L(V,W), veV and A eF.

Proof. There is a lot to do here but it is all easy. First we must show that ¢ + ¢, as
defined above, really is a linear map when ¢,¢ € L(V,W):

(64 ¥) (v + Mw) = (v + Aw) + (v + Mw)
= ¢(v) + Ad(w) + P (v) + Ap(w)
= (¢(v) +¥(v)) + A(w) + Y (w))
= (@ +¥)(v) + Ao + ¢)(w),

for all v,w € V, A € F. Here the first and last equalities are just the definition of
pointwise addition while the middle equalities come from the linearity of ¢,¢ and the
vector space axioms of W.

Similarly, it is a simple exercise to see that if y € F and ¢ € L(V,W) then u¢ is also
linear.

Now we need a zero element for our proposed vector space: observe that the zero
map 0:v—0e W is linear:
0(v 4+ Aw) =0=0+ A0 = 0(v) + A\0O(w).

We also define —¢ by
(=0)(v) = =o(v),

for v € V and check that it is also linear.

Finally, we must check all the vector space axioms which all follow from those of W .
For example, forany v eV,

(@ + ) (v) = 6(v) +¢P(v) = P(v) + ¢(v) = (¥ + ¢)(v),

so that ¢+ =4 + ¢ . The remaining axioms are left as a (rather boring) exercise. [

A linear map of a finite-dimensional vector space is completely determined by its ac-
tion on a basis. More precisely:

Proposition 1.5 (Extension by linearity).
Let V,W be vector spaces over F. Let vy,...,v, be a basisof V and wy,...,w, any
vectors in W.

Then there is a unique ¢ € L(V,W) such that

o(v;) = wy, 1<i<n. (1.1)



Proof. We need to prove that such a ¢ exists and that there is only one. We prove
existence first.

Let v € V. From Algebra 1B2,we know there are unique \,...,\, € F for which
v=ANv1 4+ A,
and so we define ¢(v) to be the only thing it could be:
d(v) := Mwy + -+ Apw.

Let us show that this ¢ does the job. First, with \; =1 and X, =0, for i # j, we see
that

(;5(1)1) = ZO”LU] + 1w1 = w;
i
so that (1.1) holds. Now let us see that ¢ is linear: let v,w € V' with
V=AU + -+ A\
W = (101 + -+ UpUn.
Then, for A eTF,
U4 Aw = (A1 4+ Apr)vr + -+ (A + A )vn

whence

P(v+ Aw) = (A1 + Adpn)wr + -+ + (Ao + Apn )y,
— 6(v) + Ab(w).

For uniqueness, suppose that ¢,¢’ € L(V,W) both satisfy (1.1). Let v € V and write
v=Mv1+ -+ Mv,. Then

P(v) = Mo(v1) + -+ + And(vn)
=\Nw; + -+ Aw,
= Mg (v1) + - + Mg (vn)
= ¢'(v),

where the first and last equalities come from the linearity of ¢,¢’ and the middle two
from (1.1) for first ¢ and then ¢’. We conclude that ¢ = ¢’ and we are done. O

Remark. In the context of Theorem 1.5, ¢ is an isomorphism if and only if ws,...,w,
is a basis for W (exercise3!).

Among the most important results in Algebra 1B is the famous rank-nullity theorem:

2proposition 1.4.4
3This is question 6 on exercise sheet 1.



Theorem 1.6 (Rank-nullity).
Let ¢:V — W be linear with V finite-dimensional. Then

dimim ¢ 4+ dimker ¢ = dim V.

Using this, together with the observation that ¢ is injective if and only if ker¢ = {0}
and surjective if and only if im¢ =W we have:

Proposition 1.7.

Let ¢ : V — W be linear with V,W finite-dimensional vector spaces of the same
dimension: dimV =dim W .

Then the following are equivalent:

(1) ¢ is injective.
(2) ¢ is surjective.

(3) ¢ is an isomorphism.



Chapter 2

Sums and quotients

We will discuss various ways of building new vector spaces out of old ones.

Convention. In this chapter, all vector spaces are over the same field F unless we
say otherwise.

2.1 Sums of subspaces

Definition. Let V;,....V, <V . Thesum V; +..--+V, is the set

i+ +Ve={vi+- 4o |v; €V, 1 <i<k}.
Vi +---+V, is the smallest subspace of V' that contains each V;. More precisely:

Proposition 2.1.
Let Vi,....V,, <V. Then

(1) i+ 4+ Ve <V.
Q) If wW<Vvand Vq,...,V, <W then Vi,..., Vi, <Vi+- -+ V. <W.
Proof. It suffices to prove (2) since (1) then follows by taking W =V

For (2), first note that V; 4+ --- + V. is a subset of W: if v; € V; then v; € W so that
vi +---+v, €W since W is closed under addition.

Now observe that each V; <V, +---+V, since we can writeany v, € V; as 0+---+uv; +
o4+0€Vi+--+Vi. Inparticular, 0 e Vi +--- + V.

Finally, we show that V;+-.-+V} is asubspace. If vy +---+vg, w1+ +wp € Vi+---+ Vi,



with v;,w; € V;, forall i, and X € F then
(v 4 o)+ Mwy + - Fwg) = (V1 +Awy) + -+ (v + Awg) € Vi +---+ Vg
since each v; + \w; € V;. O

Remark. The union |J_, V; is almost never a subspace of V so we use sums as a
substitute for unions in Linear Algebra.

2.2 Direct sums

Let Vi,...,Vp, <V.Any veV; +---+V, can be written
v=v1+ "+ U,
with each v; € V; . We distinguish the case where the v; are unique.

Definition. Let V;,...,V, <V . Thesum V; +---+V, isdirectifeach ve Vi +---+V,
can be written

V=v1+" -+ Vg

in only one way, that is, for unique v; e V;, 1 <i<k.

In this case, we write Vi ®--- @V, instead of V; +---+ V.

Figure 2.1: R2=V, oV,

Example. Define V3,5, < F? by

‘/1 = {(x17x270) | T1,T2 € ]F}
Vo= {(0707333) | T3 € IF}

Then FP=V, & V5.

When is a sum direct? We begin with a useful reformulation of the property.

Proposition 2.2.
Let V1,...,V, <V.Then Vi +.--+V, is direct if and only if whenever v; +---+v, =0,
with v; €V, 1<i<k,then v,=0,forall 1<:<k.



Proof. Suppose that Vi +---+ 1V} is direct and let vy +--- + v, =0, with each v; € V.
We can also write 0 = 0+ --- + 0 so that the uniqueness in the direct sum property
forces each v, =0.

Conversely, if the “zero sum” property holds, suppose that, forsome ve Vi +---+Vj,
we have

U:U1+"'+Uk:w1+"'+Wk7
with each v;,w; € V;. Then
O=v—v=(v;—wy)+- -+ (vp —wg)

and each v; — w; € V; so the zero sum property gives v; = w; . We conclude that the
sum is direct. O

For the case of two summands this gives a very simple way to decide if a sum is direct:

Proposition 2.3.
Let V4,V < V. Then V; 4+ V4 is direct if and only if Vi NV, ={0}.

Proof. Suppose first that Vi + V5, is direct and let v € V, N 15 . Then
0=v+(—v)

and veV;, —v eV, sothat v=—-v=0 by Theorem 2.2.

Conversely, suppose that V;NnV, = {0} and that vy +v, =0, with v; € V;, i =1,2. Then
vy = —vy € V1NV, ={0} sothat vy =vy=0. Thus V; +V; is direct by Theorem 2.2. O

The special case V =V, + V, is important and deserves some terminology:

Definition. Let V;,V, < V. V is the (internal) direct sum of V; and 1, if VV =
ieVs;.

In this case, say that 7, is a complement of V; (and V; is a complement of 15).

Warning. This notion of the complement of the subspace V; has nothing at all to
do with the set-theoretic complement V' \ V; which is never a subspace.

Remarks.
(1) From Theorem 2.3, we seethat V=V, @V, ifandonly if V =V +V, and VinV, =

{0} . Many people take these latter properties as the definition of internal direct
sum.

(2) There is a related notion of external direct sum that we will not discuss.

When there are many summands, the condition that a sum be direct is a little more
involved:

10



Vs

22" Vi

Figure 2.2: R? as a direct sum of a line and a plane

Proposition 2.4.
Let Vi,...,V, <V, k>2. Then the sum V; +--- +V; is direct if and only if, for each
1<i<k, Vin(X;, V) ={0}.

Proof. This is an exercise in imitating the proof of Theorem 2.3. O

Remark. This is a much stronger condition than simply asking that each V;nV; = {0},
for i #£j.

2.2.1 Induction from two summands

A convenient way to analyse direct sums with many summands is to induct from the
two summand case. For this, we need:

Lemma 2.5.
Let V4,...,V, <V.Then Vi +---+V, isdirectifand only if V; +---+V,_; is direct and
(Vi+---+Vi_1)+ Vi (two summands) is direct.

Proof. Suppose first that V5 + --- + V; is direct. We use Theorem 2.2 to see that
Vi+---+V,_, isdirect: let v; +---+v_;1 =0 witheach v; € V,, 1 <i<k-1. Write
thisas vy +---+ v, =0 where v, =0¢ V;, and deduce thateach v; =0, 1<i<k-1.

Again,if v=v;+---+v,_1€Vi+---+V,_; and v, € V,, with v+ v, =0, then we have
v1 +---+ v =0 sothat each v; =0 whence v =0 also. Now Theorem 2.2 tells us that
(V14 + V1) + Vi is direct.

Conversely, suppose that both V; +---+V,_; and (Vi +---+Vi_1) +V, are direct and
that vy +---+v, =0, witheach v; e V;. Let v=v; +---+vi_1 € Vi +---+V_1 so that
v+ v, = 0. Now Theorem 2.2 and the directness of (V; +---+ Vi,_1) + Vi tell us that

11



v=wvr=0.Thus v;+---+vx_; =0 and a final application of Theorem 2.2 yields v; =0,
1<:<k-—1since Vi +---+Vi_ is direct. O

2.2.2 Direct sums, bases and dimension
When a sum is direct, bases of the summands fit together to give a basis of the sum:

Proposition 2.6.
Let V1,V, <V besubspaces with bases B;: v1,...,v, and By: wy,...,w;. Then Vi+V; is
direct if and only if the concatenation! B,5s: vy,..., vy, wi,...,w; is a basis of V; +15.

Proof. Clearly BB, spans V; + V5 and so will be a basis exactly when it is linearly
independent.

Suppose that V; +V; is direct and that we have a linear relation %, )\ivﬂrzzzl pjw; =
0. Then Theorem 2.2 yields

k l
Z/\i’l}i = Zujwj =0
=1 j=1

so that all the X; and p; vanish since B, and B, are linearly independent. We con-
clude that B;B, is linearly independent and so a basis.

Conversely, if B1B; is a basis and v +w = 0 with v € V; and w € V5, write v =
SE A and w = Yo' pyw; to get a linear relation Y7 Av; + Y., pjw; = 0. By
linear independence of BB, , all A;,;; vanish sothat v =w=0. Thus V; +V, is direct
by Theorem 2.2. O

Again, this along with Theorem 2.5 and induction on % yields the many-summand
version:

Corollary 2.7.

Let Vi,..., Vi <V be finite-dimensional subspaces with B; a basisof V;, 1 <i <k.
Then Vi + --- + V} is direct if and only if the concatenation B;...B, is a basis for
i+ +V;.

Proof. Ourinduction hypothesis at k£ isthat V;+---+V}, isdirectifand onlyif B;...B;
is a basis for V; +--- + V.. This is vacuous at & =1 so let us suppose it is true for &
and examine the case k+1.

First suppose that V; +---+ V4 isdirectsothat Vi +---+V, and (Vi +---+ Vi) + Vs
are direct by Theorem 2.5. The induction hypothesis applies to both of these so that,

IThe concatenation of two lists is simply the list obtained by adjoining all entries in the second list to the
first.

12



first, By...B; is a basis of V; +---+V; and then (By...Bg)Bri1 =By ...Byy1 is a basis
of Vi 4+ Vi) +Vari=Vi+ -+ Viy1.

Conversely, if By...Byxy1 is abasisof Vi +---+ Vi, By...B is linearly independent
and so a basis of V; +---+ V. By the induction hypothesis, we learn that V; +---+ 1}
is direct. Similarly, we see that (Vi +---4+ Vi) + Vi41 is direct whence, by Theorem 2.5,
Vi+ -+ Vi is direct.

This establishes the induction hypothesis at £+ 1 and so the result is proved. O

From this we see that dimensions add over direct sums:

Corollary 2.8.
Let V1,...,V, <V besubspaces of a finite-dimensional vector space V with Vi+---+V;,
direct. Then

dmVi®--- Ve =dimV; +---+dim V.

Proof. Let B; be basis for V; sothat B;...B; isa basisof V;+---+V, by Theorem 2.7.
Then
dlmV1++W:|BlBk‘=‘Bl|—|—+|Bk‘:dlm‘/1+—‘rdlka

O

Exercise.? Prove the converse of Theorem 2.8: if dim Vi +---+V;, =dim Vi +- - -+dim V}, ,
then the sum is direct.

2.2.3 Complements

For finite-dimensional vector spaces, any subspace has a complement:

Proposition 2.9 (Complements exist).
Let U <V, a finite-dimensional vector space. Then there is a complementto U .

Proof. Let B; :vy,...,v; be a basis for U and so a linearly independent list of vectors
in V. By Theorem 1.1, we can extend the list to get a basis B : vy,...,v, of V. Set
W = span{vg41,...,v,} <V thisis a complementto U.

Indeed, B : vii1,...,v, iS @ basis for W and B = Bi1B; so that V = U @ W by Theo-
rem 2.6. O

In fact, as Figure 2.3 illustrates, there are many complements to a given subspace.

2Question 2 on sheet 2.
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Figure 2.3: Each dashed line is a complement to the undashed subspace.

2.3 Quotients

Let U < V. We construct a new vector space from U and V which is an “abstract
complement” to U . The elements of this vector space are equivalence classes for the
following equivalence relation:

Definition. Let U < V. Say that v,w € V are congruent modulo U if v—weU. In
this case, we write v =w mod U .

Warning. This is emphatically not the relation of congruence modulo an integer n
that you studied in Algebra 1A: here the relation is between vectors in a vector space.
However, both notions of congruence are examples of a general construction in group
theory.

Lemma 2.10.
Congruence modulo U is an equivalence relation.

Proof. Exercise3! O

Thus each v € V lies in exactly one equivalence class [v] C V.

What do these equivalence classes look like? Note that w = v mod U if and only if
w—wv e U or, equivalently, w=v+u, forsome uveU.

Definition. For v eV, U<V ,theset v+ U :={v+u|uecU} CV is called a coset
of U and v is called a coset representative of v + U .

We conclude that the equivalence class of v modulo U is the coset v+ U .

Remark. In geometry, cosets of vector subspaces are called affine subspaces. Ex-
amples include lines in R? and lines and planes in R? irrespective of whether they
contain zero (as vector subspaces must).

Example. Fibres of a linear map: let ¢ : V. — W be a linear map and let w € im¢.
Then the fibre of ¢ over w is defined by:

¢ Hw} = {veV|e() =w}

3This is question 3 on exercise sheet 2.
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v+U

Figure 2.4: A subspace U <R? and a coset v+ U.

Unless w = 0, this is not a linear subspace but notice that v,+’ are in the same fibre
if and only if ¢(v) = ¢(v’), or, equivalently, ¢(v—v') =0 or v —v' € ker¢. We conclude
that the fibres of ¢ are exactly the cosets of ker¢:

¢~ Hw} = v +kerg,

forany v e ¢ Hw}.

We shall see below that any coset arises this way for a suitable ¢.

Definition. Let U < V. The quotient space V/U of V by U is the set V/U,
pronounced “V mod U ", of cosets of U:

V/IU.={v+U|veV}

This is a subset of the power set* P(V) of V.

The quotient map ¢:V — V/U is defined by

q(v) =v+U.

The quotient map ¢ will be important to us. It has two key properties:

(1) g is surjective.
(2) q(v) =q(v') ifandonly if v=v" mod U, thatis, v—v' €U.

We can add and scalar multiply cosets to make V/U into a vector space and ¢ into a
linear map:

Theorem 2.11.
Let U<V.Then, for v,weV, XeF,

w4+ +(w+U):=@w+w)+U
Av+U):=A\)+U

4Recall from Algebra 1A that the power set of a set A is the set of all subsets of A.
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give well-defined operations of addition and scalar multiplication on V/U with respect
to which V/U is a vector space and ¢: V — V/U is a linear map.

Moreover, kerg=U and imqg=V/U.

Proof. We phrase everything in terms of ¢ to keep the notation under control. Since
q surjects, we lose nothing by doing this: any element of V/U is of the form ¢(v) for
some veV.

With this understood, the proposed addition and scalar multiplication in V/U read

q(v) +q(w) = q(v + w)
Aq(v) := q(Av)

so that ¢ is certainly linear so long as these operations make sense. Here the issue is
that if ¢(v) =¢q(v") and ¢(w) = q(w’), we must show that

q(v+w) = q(v +w'), q( M) = g(\'). (2.1)
However, in this case, we have v —v' ¢ U and w —w' € U so that

wtw)— W +uw)=@w-V)+(w—-w")eU
Av— M = Av—") e,

since U is a subspace, and this establishes (2.1).
As for the vector space axioms, these follow from those of V. For example:

q(v) + q(w) = (v + w) = g(w +v) = g(w) + q(v).

Here the first and third equalities are the definition of addition in V/U and the middle
one comes from commutativity of addition in V. The zero elementis ¢(0) =04+U =U
while the additive inverse of ¢(v) is ¢(—v).

The linearity of ¢ comes straight from how we defined our addition and scalar multi-
plication while v € kerq if and only if ¢(v) = ¢(0) if and only if v = v —0 € U so that

kerg=U. O
y+ U H v+U
q
U (=) — 0+U
v VU

Figure 2.5: The quotient map ¢.
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Corollary 2.12.
Let U <V . If V is finite-dimensional then so is V/U and

dimV/U = dimV — dim U.

Proof. Apply rank-nullity to ¢ using kerq=U and imq=V/U. O

Remark. Theorem 2.11 shows that:

(1) Any U <V is the kernel of a linear map.

(2) Any coset v+ U is the fibre of a linear map: indeed

v+U =q q(v)}.

Commentary. Many people find the quotient space V/U difficult to think about: its
elements are (special) subsets of V' and this can be confusing.

An alternative, perhaps better way, to proceed is to concentrate instead on the prop-
erties of V/U in much that same way that, in Analysis, we deal with real numbers via
the axioms of a complete ordered field without worrying too much what a real number
actually is!

From this point of view, the quotient V/U of V by U is a vector space along with a
linear map ¢:V — V/U such that

e ¢ surjects;
* kerq=U

and this is really all you need to know!

The content of Theorem 2.11, from this perspective, is simply that quotients exist!

Theorem 2.13 (First Isomorphism Theorem).
Let ¢:V — W be a linear map of vector spaces.

Then V/ker¢ = im¢.

In fact, define ¢: V/ker¢ — im¢ by

where ¢:V — V/ker¢ is the quotient map.

Then ¢ is a well-defined linear isomorphism.

Proof. First we show that ¢ is well-defined: ¢(v) = ¢(v') if and only if v — v’ € ker¢
if and only if ¢(v —v') = 0, or, equivalently, ¢(v) = ¢(v'). We also get a bit more: ¢
injects since if ¢(q(v)) = ¢(q(v')) then ¢(v) = ¢(v') which implies that ¢(v) = q(v').
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To see that ¢ is linear, we compute using the linearity of ¢ and ¢:

d(q(v1) + Aq(v2)) = (q(v1 + Avz)) = d(v1 + Ava) = ¢(v1) + Ap(v2) = G(q(v1)) + Ad(q(v2)),

for vi,v, €V, XeF.

It remains to show that ¢ is surjective: but if w € im¢, then w = ¢(v) = ¢(q(v)), for
some v € V, and we are done. O

Remarks.

(1) Let ¢: V — V/ker¢ be the quotient map and i : im¢ — W the inclusion. Then
the First Isomorphism Theorem shows that we may write ¢ as the composition
io¢oq of a quotient map, an isomorphism and an inclusion.

(2) This whole story of cosets, quotients and the First Isomorphism Theorem has ver-
sions in many other contexts such as group theory and ring theory (see MA22017).
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Chapter 3

Polynomials, operators and
matrices

3.1 Polynomials

Recall from Algebra 1A (§3.2):

Definitions. A polynomial in a variable z with coefficients in a field F is a
formal expression

o
p= g apz®
k=0

with coefficients a, € F such that only finitely many a; are non-zero.
Two polynomials are equal if all their coefficients are equal.
The zero polynomial has all coefficients zero.

The degree of a polynomial p is degp = max{k € N | ay # 0} . By convention, deg0 =

—0.

The set of all polynomials in = with coefficients in F is denoted F[z].

When degp = n, we usually write
p=ao+az+- -+ apx".

Thus we adopt the convention 2° = 1,2' = 2. Here a,z" is the leading term of p
and a, the leading coefficient.

Definition. A polynomial is monic if its leading coefficient is 1:

p=ag+---+a".
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We can add and multiply polynomials: if

oo oo
p=> ax®,  g=) bat
k=0 k=0

then

[e.e]

p+aqi= Yy (a+by)a"
k=0

pq = Z( Z aibj)xk.

k=0 i+j=k

In particular, we multiply polynomials using ziz? = ¥/ and collecting terms.

The usual rules of multiplication and addition apply (in the language of MA22017, F|x]
is a ring) and, in particular, F[z] is a vector space. Moreover we have:
deg(pg) = degp + deggq,
deg(p + q) < max{degp, degq}.

We can evaluate polynomials at elements of F. For p=ag+---+a,z"™ and t € F,
define p(t) e F by
p(t) = ap + a1t + - - + ant”,

where all the additions and multiplications take place in F. We say that ¢t e F is a
root of p if p(t)=0€F.

Here are the main facts about evaluation:

» Evaluation preserves addition and multiplication: for fixed t € F, we have
(p+q)(t) = p(t) +q(t)
(pq)(t) = p(t)q(2).
In particular, p+— p(t) is a linear map Flz] — F.

* Evaluation defines functions on F: each p € F[z] defines a function ¢ — p(t) : F —
F.

Remark. What is a polynomial? We are used to thinking of them as the functions
they define but this is not quite correct. Polynomials are simply lists of coefficients or,
equivalently, sequences in F that are eventually zero:

Fla] = {(ao,- - -,an,0,0,...)}.
The role of the variable z is that of a placeholder to help keep track of things when

we multiply polynomials.

For some fields, different polynomials can define the same function. For example, with
F =Zy, p= 2?42 and the zero polynomial both define the zero function!: p(t) =0 for
all te Zs .

IThis is question 3 on exercise sheet 3.
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We will need three crucial results from Algebra 1A:

Theorem 3.1 (Algebra 1A, Proposition 3.19).
Let p,q € Flz]. Then there are unique r, s € F[z] such that

p=sq+r

with degr < degq .

Theorem 3.1 holds for any field F but the next two results show that the field C of
complex numbers is special:

Theorem 3.2 (Fundamental Theorem of Algebra).
Let p € C[z] be a polynomial with degp > 1. Then p has a root. Thus thereis ¢t € C
with p(t) =0.

Together with Theorem 3.1, this yields:

Theorem 3.3.
Let p € Clz] and Aq,...,\; the distinct roots of p. Then

forsome aeC and n; €2, , 1 <i<k.

n; is called the multiplicity of the root ).

3.2 Linear operators, matrices and polynomials

3.2.1 Linear operators and matrices

Definition. Let V be a vector space over F. A linear operator on V is a linear
map ¢:V -V,

The vector space of linear operators on V is denoted L(V) (instead of L(V,V)).

Notation. Write M, (F) for M,y (F).

Recall from Algebra 1B §1.5 that, in the presence of a basis, there is a close relationship
between linear operators and square matrices:

Definition. Let V be a finite-dimensional vector space over F with basis B:vy,...,v,.
Let ¢ € L(V). The matrix of ¢ with respect to 5 is the matrix A = (4;;) € M, (F)
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defined by:
P(v;) = ZAijUiy (3.1)
=1

forall 1<j<n.

Thus the recipe for computing A is: expand ¢(v;) in terms of v;,...,v, to get the
j-th column of A.

Equivalently, ¢(xiv1 + -+ + zpv,) = y1v1 + -+ - + yuv, Where

y = Ax.

The map ¢ — A is a linear isomorphism L(V) = M,(F) which also plays well with
composition and matrix multiplication: if ¢ € L(V) has matrix B with respect to B
then ) o ¢ has matrix BA with respect to B. This gives us a compelling dictionary
between linear maps and matrices.

Remark. There is a fancy way to say all this: recall that a basis B : vy,...,v, of V
gives rise to a linear isomorphism ¢z : F* — V via

d)B()\la"'a)\n):ZAivi- (32)
=1

Now the relation between ¢ and A is that

¢=¢popaody

or, equivalently, ¢z o ¢a = ¢ o ¢ so that the following diagram commutes:

v RVAIEN
9B T T o8
P o2,

(The assertion that such a diagram commutes is simply that the two maps one builds
by following the arrows in two different ways coincide. However, the diagram also
helps us keep track of where the various maps go!)

3.2.2 Polynomials in linear operators and matrices

A special feature of L(V) is that composition is a binary operation (¢,¢) — ¢o 4 :
L(V)x L(V) — L(V) . Thus we can think of composition as a multiplication of operators
which suggests the following notations:

Notation. For ¢,¢ € L(V) write ¢y for ¢oy € L(V).
Similarly, write ¢™ for the n-fold composition of ¢ with itself:

¢" =go-0
——

n times
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and define ¢° :=idy, ¢! :=¢.

Finally, for A€ M,(F),set A°=1,, A'=A.

With these notations and conventions, we have
¢n+m — ¢n¢m, Aner — AnAm’ (33)
forany ¢ € L(V), Ae M,(F) and n,m e N.

Note that if ¢ has matrix A with respect to a basis B then ¢" has matrix A™ with
respectto B, forall neN.

We can now evaluate polynomials on operators and matrices:

Definition. Let p € F[z], p=ao+---+anz™, ¢ € L(V) and A € M, (F). Then p(¢) € L(V)
and p(A) € M, (F) are given by:

p(¢) = Qg ldV +al¢ + -+ and)n = Z ak¢k7
keN

p(A) = aoly + m A+ +an A" =Y ap A"
keN

Remark. If ¢ has matrix A with respect to a basis B then p(¢) has matrix p(A4) with
respect to B.

This construction plays nicely with the algebra of polynomials:

Proposition 3.4.
For p,q € Flz], ¢ € L(V) and A € M, (F),
(p+a)(9) =p(®) +q(9) (p+q)(A) = p(A) + q(A) (3.4)
(rq)(¢) = p(#)a(9) = q(#)p(9) (pg)(A) = p(A)q(A) = q(A)p(A). (3.5)

Proof. We prove the formulae for ¢. The arguments for A are very similar.
Write p =", cyarz® and ¢=3,brz”. Then

(P+q)(®) =D (ar+be)¢" = arg™ + Y bud® = p(¢) + ¢(0)

keN keN keN

which establishes (3.4) for ¢.

Now for (3.5). We have

(Pa)(®) =D (Y aibj)e* => (Y aibj¢'e?)

keN it+j—k keN itj=k
= Z Z (a:ip")(bj¢") = (Z a;¢") (Z bj¢’) = p($)a(e).
keN i+j=k ieN jeN
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Here we used (3.3) for the last equality on the first line and linearity of ¢’ to get

bid'd? = ¢'(b;j¢’) .

Finally pq = gp so that

by what we have already proved. O

Remark. The fancy way to say Theorem 3.4 is that the maps p — p(¢) : Flz] — L(V)
and p+— p(A) : Flz] » M, (F) are homomorphisms of rings (see MA22017).

3.3 The minimum polynomial

Proposition 3.5.
Let A € M, (F). Then there is a monic polynomial p € Flz] such that p(4) =0.

Similarly, if ¢ € L(V) is a linear operator on a finite-dimensional vector space over F
then there is a monic polynomial p € F[z] with p(¢) =0.

Proof. We prove the result for A and then deduce that for ¢.

2

We know that dim M, (F) =n? so that the n*+1 elements I,,4,..., A" of M,(F) must
be linearly dependent. We therefore have a linear relation

aoly + -+ ap A" =0
with not all a; zero. Otherwise said, ¢(4) =0, where
g=aop+ -+ apa” € Flz].

Let a,, be the leading term of ¢ (m could be less than »?). Then p:= q/a,, is a monic
polynomial with p(4) =0.

Now let ¢ € L(V) and let A be its matrix with respect to some basis. Let p € F[z] be
a monic polynomial with p(4) =0. Then p(¢) =0 also. O

This prompts:

Definition. A minimum polynomial for ¢ € L(V), V a vector space over F is a
monic polynomial p € F[z] of minimum degree with p(¢) = 0: thus, if r € F[z] has
r(¢) =0 and degr < degp, then r=0.

Similarly, a minimum polynomial for A € M,(F) is a monic polynomial p of least
degree with p(4)=0.

Remark. If ¢ has matrix A with respect to some basis, then p(¢) = 0 if and only if
p(A) =0 so that p is a minimum polynomial for ¢ if and only if it is one for A.
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Minimum polynomials exist and are unique:

Theorem 3.6.
Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over a field F.
Then ¢ has a unique minimum polynomial.

Similarly, any A € M, (F) has a unique minimum polynomial.

We denote these by m, and ma respectively.

Proof. We prove this for ¢. The argument for A is the same.

By Theorem 3.5, the set of non-zero polynomials which vanish on ¢ is non-empty.
Choose one of smallest degree and divide by the leading term if necessary to get a
monic one. This settles existence.

For uniqueness, suppose that we have p;,ps in the set, both monic and of smallest
degree. Set r = p; —p>. Then degr < degp; , since the leading terms of the p; cancel,
while r(¢) = p1(¢) — pa(¢) =0. Thus r =0 and p; =ps. O

Remark. Unless V = {0}, degm, > 1: the only monic polynomial of degree zero is 1
and 1(¢) =idy #0!

Examples.

(1) mo==x.
(2) mig, =2z —1.

(3) More generally, for A € F, myiq, =x—AX. Thus degmy =1 if and only if ¢ = Xidy,
forsome M cF.

(4) Let 7 € L(V) be a projection? with 0 < dimkerm < dimV . Then m, = 22 — z
(exercise!).

How can we compute m,4 ? One method is to find it by brute force: for each £ >1 in
turn, seek ag,...,ar_1 such that

aol + -+ + ap_1 A1+ AF = 0.

This is n? inhomogeneous linear equations in k unknowns. They are either incon-
sistent, in which case you move on to k£ + 1 or, the first time you find a solution,

my =ag+ -4z,

Examples.

(1) Find m4 where

2Thus momr=1.
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Solution. A # A so degmy > 2. First try to find ag,a; with agl + a1 A+ A2 =0.

This expands out to
(a0+a1+7 0—|—2a1+10) .

0+3a1+15 ag+4ay +22

The equation in the (1,2)-slot gives a; = —5 and then that in the (1,1) -slot gives
ap = —2. These also satisfy the other two equations and so m = —2 — 5z + 22.

(2) Find m4 where

01 0
A=10 0 1
1 0 0
Solution. We have
0 0 1
A*=110 0
0 1 0

so that the (1,3)-slot of agl3+a;A+ A% =0 gives the inconsistent equation a,0 +
a10+1 = 0 and we conclude that degm 4 is at least three. Carrying on, we compute
A3 and find that A3 = I3 which short-circuits the whole story: A% —I; =0 so that

ma=a%—1.

We will see other ways to compute the minimum polynomial later.

One reason the minimum polynomial is important:

Proposition 3.7.
Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over F and
p € Flz].

Then p(¢) =0 if and only if my4 divides p, that s, there is s € F[z] such that p = smy .

Proof. If p(¢) =0 then, by Theorem 3.1, there are s,r € F[z] with degr < degm, such
that p = smy +r. But then

0 =p(¢) = s(¢)me(¢) +1r(p) = ()

so that =0 and p = smy by the smallest degree property of my .

Conversely, if p = sm, then p(¢) = s(¢)my(¢) =0. O

Of course, the same statement (and proof!) holds for the minimum polynomial of a
matrix A € M, (F).
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3.4 Eigenvalues and the characteristic polynomial

Recall from Chapter 3 of Algebra 1B:

Definitions. Let V' be a vector space over F and ¢ € L(V).
An eigenvalue of ¢ is a scalar A € F such that there is a non-zero » € V with
o(v) = .
Such a vector v is called an eigenvector of ¢ with eigenvalue ).
The X-eigenspace E,()\) of ¢ is given by
Ey(\) == ker(¢ — Nidy) < V.

Remark. Thus E4(\) consists of all eigenvectors of ¢ with eigenvalue A along with
0.

Definition. Let V' be a finite-dimensional vector space over F and ¢ € L(V).
The characteristic polynomial A, of ¢ is given by

Ag(N) := det(¢ — Aidy) = det(A — AI),
where A is the matrix of ¢ with respect to some (any!) basis of V.

Thus degAy =dimV .
The characteristic polynomial is important to us because:

Lemma 3.8.
A scalar X € F is an eigenvalue of ¢ if and only if A is a root of A,.

This prompts:
Definitions. Let ¢ € L(V) be in a linear operator on a finite-dimensional vector space
V over F and X\ an eigenvalue of ¢. Then
(1) The algebraic multiplicity of A\, am()\) € Z, , is the multiplicity of A as a root
of A¢.
(2) The geometric multiplicity of \, gm(\) € Z; , is dim E,(A).

From Algebra 1B3,we know that am()\) > gm()\) and we will get a geometric under-
standing of am()\) in the next chapter (see §4.3.2).

When F = C, Theorem 3.2, the Fundamental Theorem of Algebra, ensures that the
characteristic polynomial has at least one root so we conclude from Theorem 3.8:

3Proposition 3.4.6.
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Theorem 3.9.
Let ¢ be a linear operator on a finite-dimensional vector space V over C. Then ¢
has an eigenvalue.

Remark. This was crucial in Algebra 1B for the proof of the Spectral Theorem and will
be equally crucial for us in the next chapter.

Eigenvalues and eigenvectors play nicely with polynomials:

Proposition 3.10.
Let ¢ € L(V) be a linear operator on a vector space over a field F and let v € V be
an eigenvector of ¢ with eigenvalue X:

o(v) = M. (3.6)

Let p € Flz]. Then
p(9)(v) = p(A)v,

so that v is an eigenvector of p(¢) also with eigenvalue p()).

Proof. The idea is to iterate (3.6):
¢*(v) = ¢(p(v)) = ¢(Av) = Ap(v) = \v

and so, by induction, ¢*(v) = A\¥v, for all k€ N.

Now, for p=>"7_, ara®,

p(o)(v) = Zakgbk(v) = Zak)\kv = (Z ak)\k)v =p(\)v.
k=0 k=0 k=0

This gives us something interesting: if p(¢) =0 then

0=p()(v) =pA)v

so that, since v #0, p(\) =0. Thus any eigenvalue of ¢ is a root of p. In particular:

Corollary 3.11.
Let ¢ be a linear operator on a finite-dimensional vector space V over F. Then any
eigenvalue of ¢ is a root of m, .

3.5 The Cayley-Hamilton theorem

Theorem 3.12 (Cayley-Hamilton* Theorem).
Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over a field F.

4Arthur Cayley, 1821-1895; William Rowan Hamilton, 1805-1865.
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Then Ay(¢) =0.

Equivalently, forany A e M, (F), Aa(4)=0.

Before proving this, let us see what it tells us. Let

)
A= S MQ(F)
c d

=2* — (a+d)z + (ad — be).

Then

c d—x

So the Cayley-Hamilton theorem is telling us that

A? —(a+d)A + (ad — be) I, = 0,

a?+bc ab+bd a b ad — be 0 0 0
—(a+4d) + = .
ca+dc cb+d? c d 0 ad — be 0 0

This is certainly true (check it!) but is far from obvious! If you are not yet convinced,
work out what the theorem says for A € M3(F).

that is,

Proof of Theorem 3.12. We will prove the matrix version. So let A € M, (F) and
write
Ag=ag+---+ax™.

Thus, our mission is to show that
aol, + a1A+---+a, A" =0.

The key is the adjugate formula from Algebra 1B>:

adj(A — zI,)(A — zI,) = det(A — z1,)I,. (3.7)
Each entry of adj(A —zI,) is a polynomial in =z of degree at most n — 1 so we write

adj(A —zI,) = Bo+ Bix + -+ B, 12" 1,
with each By € M, (F). Substitute this into (3.7) to get
(Bo+ Biz + -+ By, 12" N (A —xl,) = (ap + - - - + apz™)I,
and compare coefficients of z* to get
BrA — Bi_1 = agl,, (3.8)

for 0 <k <n,where we haveset B_; =B, =0¢ M,(F).

5Theorem 2.4.6
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Multiply (3.8) by A* on the right to get
BkAk+1 - kalAk == akAk

and sum:
Ay (A) = ZakAk = Z(BkAk“ — Bp1 A" =B, A" —B_, =0
k=0 k=0
because nearly all terms in the penultimate sum cancel. O

Corollary 3.13.
Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over a field F.

(1) m, divides A, . Equivalently, m, divides Ay, forany A e M,(F).

(2) The roots of my are exactly the eigenvalues of ¢.

Proof. By Theorem 3.12, A,(¢) =0 so m, divides A, by Theorem 3.7. As a result,
any root of m, is a root of A, and so an eigenvalue. Conversely, any eigenvalue is a
root of my by Theorem 3.11. O

Let us summarise the situation when F = C so that any polynomial is a product of
linear factors. So let ¢ € L(V) be a linear operator on a finite-dimensional complex
vector space with distinct eigenvalues A{,..., ;. Then

k
=1

k

mge = H(l‘ — )\i)si7

=1
where r; =am()\;) and 1 <s; <r;,for 1<i<k.

This gives us another way to find m, if we can factorise A,: m, will be of the form
p= H,’le(x —\)%, with each 1 < s; < r;, so evaluate p(¢) to find the one of lowest
degree with p(¢) =0.

Examples. Let us find m,4 in the following cases:

(1) Take
1 1 2
A=10 1 1
0 0 2
Since A is upper triangular, we immediately see that Ay = —(z — 1)?(x — 2) so

that m, is either (z —1)(z —2) or (z —1)%(x —2).
We try the first of these:

0 1 2 -1 -1 2 0 -1 1
(A-L)A-23)=]0 0 1 0 -1 1[=]0 o0 0]#0.
00 1 0 00 0 0 0
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We conclude that my = (z — 1)%(z — 2).
(2) Let us try again with

1 0 3
A=10 1 2
0 0 2
which also has Ay = —(z — 1)?(x — 2) so that m, is either (z —1)(z —2) or (z —
1)%(z—2).
However, this time
0 0 3 -1 0 3

(A-IL)A-2I)=|0 0 2 0 -1 2|=0
0 0 1 0 0 0

so that ma = (z—-1)(z—2).
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Chapter 4

The structure of linear
operators

4.1 On normal forms

Question. Given ¢ € L(V), is there a basis with respect to which ¢ has a “nice”
matrix?

Of course, this does not make much sense without some idea of what “nice” should
mean for matrices but a reasonable idea might be that there should be a low number
of non-zero entries.

There is a matrix version of the same question. For this, recall:

Definition. Matrices A, B € M, (F) are similar if there is an invertible matrix P €
M, (F) such that
B=P AP

We can then ask:

Question. Is A similar to a “nice” matrix?

and a very practical question:

Question (Similarity problem). When are A, B € M, (F) similar?

A possible answer to this last question would be to compare “nice” matrices similar to
A and B (recall that similarity is an equivalence relation!).

We already know one situation where this sort of thing works out. Recall from Algebra
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1B! that A € M, (F) is diagonalisable if and only if it has an eigenbasis if and only if
it is similar to a diagonal matrix
Ar 0
' (4.1)
0 A

Here )\i,...,)\, are the eigenvalues of A listed with their multiplicities, that is, each
A; appears am()\;) times. We say that (4.1) is a normal form of A.

We can conclude, after reordering eigenbases if necessary:

Theorem.
Diagonalisable matrices A, B € M, (F) are similar if and only if they have the same
eigenvalues and multiplicities up to order.

Our plan in this chapter is to try and generalise these ideas to arbitrary A € M, (F).
We encounter two difficulties almost immediately.

(1) Not enough eigenvalues: Let

Then A4 = z2+1 which has no eigenvalues atall in F = R. We solve this problem
by working over C.

(2) Not enough eigenvectors: Let

Then A4 = 2? but ker A = span{(1,0)}. We therefore do not have enough eigen-
vectors to span C2. To solve this problem will need a new idea (see §4.3).

In this chapter, we will, among other things, completely solve the similarity problem
forany A € M,(C). This will take quite a bit of work but here is a sneak preview: any
A € M, (C) is similar to a matrix of the form

)\1' * 0

0 M

with eigenvalues with multiplicity on the diagonal, each * on the first super-diagonal
either 0 or 1 and zeros elsewhere.
1Definition 3.3.1
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4.2 Invariant subspaces

Definition. Let ¢ be a linear operator on a vector space V. A subspace U CV is
¢ -invariant if and only if ¢(u) e U, forall ue U.

The next lemma gives us lots of examples:

Lemma 4.1.
Let ¢,v € L(V) be linear operators and suppose that ¢y = ¥¢ (say that ¢ and ¢
commute).

Then kerty and im1) are ¢-invariant.

Proof. Let v € kery so that ¢(v) =0. Then

so that ¢(v) € ker¢ also.

Again, if v €imy, thereis w e V with ¢(w) =v and now

SR
=
I
SN
=
£
I

P(¢(w)) € imp,

as required. O

As a consequence, the following are ¢ -invariant:

* ker¢ and im¢ (since ¢ commutes with itself!).

* kerp(¢), imp(¢), for any p € F[z] (since zp = pz so that ¢p(¢) = p(d)¢).
Also, we have

* span{v}, for any eigenvector v of ¢, since ¢(v) = Av € span{v}. Thus:
* Any U < E4(A) is ¢-invariant.
Remark. If U <V is ¢-invariant then ¢, : U = U isin L(U).

Definition. Let V,.... V, <V with V=V ®--- @V, andlet ¢, € L(V;), for 1 <i<k.

Define ¢:V — V by
P(v) = d1(v1) + -+ + b (vk),

where v=v; +---+v; With v; €V,,for 1 <i<k.

Call ¢ the direct sum of the ¢, and write ¢ =¢1 & --- © ¢4, .

There is a related notion for matrices:
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Definition. Let A;,..., A; be square matrices with A; € M,,.(F). The direct sum of
the Al is
Ay 0

Al@@Ak = EMH(F)7

where n=ny +---+ny.

A matrix of this type is said to be block diagonal.

Example.

1 2/0/0 0
3 4/0[0 0

1 2 11

@(5)@ =10 0|5|0 0 | €MR)

3 4 11
0 0|01 1
0 0|01 1

Proposition 4.2.
Let Vi,...,Vx <V with V =Vi®---®dV, and let ¢, € L(V;), for 1 < i < k. Let
d=¢1 D D¢r. Then

(1) ¢ islinear sothat ¢ € L(V).
(2) Each V; is ¢-invariantand ¢y, = ¢;, 1 <i<k.

(3) Let B; be abasis of V; and ¢; have matrix A; with respectto B;, 1<i<k. Then
¢ has matrix A4; @ --- @ A, with respect to the concatenated basis B=58;...8;.

Proof. For (1), let v,w € V and write

V=v1+ -+ U w=wi + -+ Wk,
with each v;,w; € V;. Then

v+ dw = (v1 + dwy) + -+ -+ (v + Awy)

with each v; +  w; € V.

Then
k

k k k
P(v+ Aw) = Z@'(Ui + Aw;) = Z(@(Uz) + Api(w;)) = Z@(w) + )\Z(bi(wi) = ¢(v) + Ap(w),
i=1 i=1

i=1 i=1
where we used the linearity of ¢; in the second equality.
For (2), let v € V; so that we can write v = vy +--- 4+ v, with v; = v and v; =0, for

1# j. Then
() = ¢1(0) + -+ ¢i(v) + - + ¢(0) = ¢i(v) € V;

so that V; is ¢-invariant and ¢y, = ¢; .
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Finally, for (3), let B=B;...By, =v1,...,v, With B; = v.41,...,v.1 . Let ¢ have matrix
A with respectto B. Then, for 1 <j<r,

¢(va+j) = Z Ab,a+jvb~
b=1

On the other hand,

¢(Ua+j) = ¢; (Ua+j) = Z(Ai)cjva+c~
c=1

Now compare coefficients to see that

AaJrc,aJrj = (Ai)cj7 1< ] <r

Ap.atrj =0 otherwise.
Otherwise said, the a + j-th column of A has the j-th column of the r x »r matrix A4;
inrows a+1,...,a+r and zeros elsewhere. This settles (3). O

Conversely, any direct sum decomposition into ¢ -invariant subspaces arises this way:

Proposition 4.3.
Let Vi,...,Va <V with V=Vi®.---®V, and let ¢ € L(V). Suppose that each V; is
¢ -invariant.

Then ¢ =¢1 @ --- © ¢ Where ¢; := ¢y, € L(V;) .

Proof. This is almost obvious: write v €V as v =wv; +---+ v, with each v; € V;. Then

() = d(v1) + -+ P(vg) = d1(v1) + -+ + r(v) = 1 B -+ - D Pr(v),

where the first equality comes from linearity of ¢ and the last from the definition of
D1 DD Py O

The usefulness of such a decomposition comes from the fact that nearly all properties
of ¢ reduce to properties of the simpler ¢; :

Proposition 4.4.
Let Vi,..., Vi <V with V=Vig---aV,, ¢, cL(V;), 1<i<kand ¢ =01 @ D s .

Then:

(1) ker¢ =kero; & --- P ker ¢y, .

(2) im¢p=im¢, @ ©imey .

(3) p(¢) =p(¢1) & - ®p(¢x), forany p e Flz].
(4) Ay =TI, Ay, -

Note that the sums in (1) and (2) are direct thanks to:
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Exercise.? Let V=V, ¢---®V, andlet U; <V;, 1<i<k.Thenthesum U, +---+ U,
is direct.

Proof of Theorem 4.4. For (1), write v € ker¢ as v =wv; +--- + v, with each v; € V.
Then
¢(U):¢1(U1)+"'+¢k(vk,):O:O+...+0’

with ¢;(v;),0 € V;. The direct sum property tells us that each ¢;(v;) = 0 so that v €
ker g @ --- @ ker ¢y, . Thus ker¢ < ker ¢ @ - - - @ ker ¢y, .

Conversely, if v=v; +- -+ v, €ker¢y & --- dker ¢, then each ¢;(v;) =0 and

o(v) = ¢1(v1) + -+ + P (vg) = 0.

The argument for item (2) is very similar and so left as an exercise3.
For item (3), note that, for v; € V;, ¢(v;) = ¢;(v;) € V; so that

$*(vi) = d(¢i(vi)) = bi(di(vi)) = 7 (v3)
and so on.

Finally, for item (4), let A; be the matrix of ¢; with respect to some basis B; of V;.
Then ¢ has matrix A4, @ --- @ A, with respect to B;...B; by Theorem 4.2(3). Now
Theorem 2.1.4 of Algebra 1B tells us

Al—xl. 0 k &
Ay = det(A—zl) = = [ det(4; — 1) =[] Aq.-
’ i=1

i=1

0 CAp— a2l

Exercise.* In this situation, what can you say about m, ?
Here is a first example of these ideas in action:

Proposition 4.5.
Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over a field F
and let \,...,\; be the distinct eigenvalues of ¢.

Then ¢ is diagonalisable if and only if

k
V=EDEs\). (4.2)
i=1

2Exercise sheet 4, question 2(a)
3Question 2(b) on exercise sheet 4.
4Exercise sheet 4, question 3.
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Proof. Suppose that (4.2) holds and let B; be a basis of E4();). Then, by Theorem 2.7,
By ...B is a basis of V which consists of eigenvectors and so is an eigenbasis. Thus
¢ is diagonalisable.

Conversely, suppose that B = v;,...,v, is an eigenbasis for ¢ so that each ¢(v;) =
piv;, forsome ;e {A, ..., A},

We claim: for X an eigenvalue,
Uy :=span{v; | p; = A} = Eg(N).

Given this, B; :={v; | u;j = \;} is a basis for E4()\;) and then B = B;...B; so that (4.2)
holds, again by Theorem 2.7.

It remains to prove the claim. Clearly U, < E,()\). Conversely, if v € E4(\), write
v=>"_a;jv;. Then

0=(¢—Aid)(v) = Z (1j — Najvj + Z (15 — Najv; = Z (i — N)a;v;.

Jlpi=x Il #X Jlpi#X

Since the v; are linearly independent, we see that (u; —\)a; =0, forall j with u; # X,
and so all such a; vanish. Thus

v = Z a;jvj € Uy.

lug=A

O

To summarise the situation: when ¢ is diagonalisable, then with V; := E,;();) and
¢i =, , wehave V=Vi®---®Vi, ¢=01® - ¢ and

¢ = \;idy, .

Thus the ¢; are as simple as they possibly can be!

We now turn to what we can say about general ¢.

4.3 Jordan decomposition

4.3.1 Powers of operators and Fitting’s Lemma

Proposition 4.6 (Increasing kernels, decreasing images).
Let V be a vector space over a field F and ¢ € L(V). Then

(1) ker¢® <ker¢ft!l, forall ke N. Thatis,
{0} =ker¢” <kerp < kero? <....

If ker ¢F = ker ¢**1 then ker ¢* = ker ¢*™" , for all n € N.
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(2) im¢* >ime¢*t!, forall k€ N. That s,
V=im¢®>im¢>ime¢? > ....

If im ¢* = im ¢**! then im¢* = im ¢**t", for all n € N.

Proof. We prove (1) and leave (2) as an exercise>.

If v €ker¢® then ¢*(v) =0 so that ¢*+1(v) = ¢(¢*(v)) = ¢(0) = 0. Thus v € ker ¢**! as
required.

Now suppose that ker ¢* = ker ¢**1 and induct to prove that ker ¢* = ker ¢+, for n € N.
We already have the n =1 case by assumption so suppose ker ¢* = ker ¢**", for some
n and let v € ker p**"+1 . Then

0= ¢**" 1 (v) = ¢F1 (¢" (v))
so that ¢"(v) € ker ¢**! = ker¢*. Thus ¢"**(v) = 0 and v € ker¢"** = ker¢* by the
induction hypothesis. Induction now tells us that ker ¢* = ker ¢**", for all n € N. O
Corollary 4.7.

Let V be finite-dimensional with dimV =n and ¢ € L(V). Then, forall ke N,

ker ¢" = ker ¢"+F

im (bn —im ¢n+k:.

Proof. By Theorem 4.6, we need to prove ker¢" = ker ¢"*! and im ¢" = im ¢"*+! .

If ker " # ker "' then, by Theorem 4.6, we have subspaces
{0} Sker¢ -+ S ker o™t

of strictly increasing dimension so that dimker¢"*! > n +1 > dimV : a contradiction.
Thus ker ¢" = ker ¢"*1 .

Rank-nullity now tells us that dimim ¢” = dimim ¢**! whence im¢™ = im¢"t! also. O

Theorem 4.8 (Fitting®’s Lemma).
Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over a field F.
Then, with n =dimV, we have

V =ker¢" @ im ¢".

Proof. From Theorem 4.7, we know that ker¢™ = ker¢"t*, im¢" = im¢"t*, for all
keN.

5Question 5 on exercise sheet 4.
6Hans Fitting, 1906-1938.
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We start by proving that ker¢™ Nnim¢™ = {0}. For this, let v € ker¢™ Nim¢™ so that
¢"(v) = 0 and there is w € V such that v = ¢"(w). Then 0 = ¢"(v) = ¢*"(w) so that
w € ker ¢*" = ker ¢" . Thus v = ¢"(w) = 0 as required.

It follows that V > ker ¢” @ im ¢™ but, by rank-nullity, the dimensions of these spaces
coincide whence V = ker ¢" ® im ¢™ . O

4.3.2 Generalised eigenspaces

Let us revisit the example of Section 4.1 of an operator with not enough eigenvectors:
contemplate ¢ := ¢4 € L(C?) where

We know that ¢ has only zero as eigenvalue and the corresponding eigenspace E4(0) =
span{(1,0)} # C?. However, A% =0 so that ker(¢ — 0id)? = C?.

This gives us a new idea: for ¢ € L(V) and X\ € F look for non-zero v € V such that
(6 — Mid)*(v) = 0,

for some k € N. Thanks to Theorem 4.6 and Theorem 4.7, this amounts to demanding
that
(¢ — Aid)™(v) =0,

where n=dimV .

Observe that this means that (¢ — Aid)* is not injective (it has non-trivial kernel) so
that ¢ — \id is not injective either (and so has non-trivial kernel) and therefore X is
an eigenvalue of ¢.

This prompts:

Definition. Let ¢ € L(V) be a linear operator on an n-dimensional vector space over
a field F. A generalised eigenvector of ¢ with eigenvalue )\ isanon-zero v eV
such that

(¢ — Aid)™(v) = 0. (4.3)

The set of all such along with 0 is called the generalised eigenspace of ¢ with
eigenvalue )\ and denoted G,4()\). Thus

Gy(N) = ker(¢ — Aidy)" < V.

Lemma 4.9.
Ey(N) < Gg(A) <V and Gg(\) is ¢-invariant.

Proof. There are two things to prove:
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(1) E4(N) < Gy(N). This is straight from Theorem 4.6: E,;()\) = ker(¢ — Aidy) < ker(¢ —
Aidy )™ = Gy(N) .

(2) G4(N) is ¢-invariant. Gg4(\) = kerp(¢) where p = (z — X\)™ which is ¢-invariant
(see the examples after Theorem 4.1).

Lemma 4.10.
Let ¢ € L(V) be a linear operator on an n-dimensional vector space over F and
A1, A2 € F distinct eigenvalues of ¢. Then G4(\) NGy(X2) = {0}.

Proof. The assertion amounts to the fact that (¢ — )\, id)\ncd,(m is injective (having triv-
ial kernel). It is enough then to prove that (¢—A\;id)|e, . IS injective, or, equivalently,
that E4(A1) NGg(r2) = {0} . For this, let v € E4(A1) NGy(X2). Then ¢(v) = A;v and, from
Theorem 3.10, (¢ — A2id)™(v) = (A1 — X2)"v = 0. We conclude that v = 0 and we are
done. L)

We now arrive at the promised generalisation of Theorem 4.5.

Theorem 4.11 (Jordan’ decomposition).
Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over C with
distinct eigenvalues \i,...,\;. Then

.
V= @G¢(Ai).

Proof. We induct on n:=dimV .

When n =1, ¢ = Aid, for some X € C, so that V = E4(\) = G4(\). This settles the
base case.

For the induction step, suppose that the theorem holds for spaces of dimension < n
and that dimV =n. Now, by Theorem 3.9, ¢ has an eigenvalue ), say (this is where
we use F=C). Then G4(\1) = ker(¢ — A;id)™ so that, by Theorem 4.8, we have

Set U :=im(¢ — A\ id)" and write ¢ = ¢,y . We claim:

1. 4 has eigenvalues \,,...,\;.
2. For i>2, Gy(\) = Gs(\).

Given the claim, since dimU < n, the induction hypothesis applies to give

k
U= @ Go(X)

7Camille Jordan, 1838-1922.
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whence

k
V=Gy(\)aU =GN\

i=1

as required. The magic of induction now proves the theorem.

It remains to prove the claim. For this, first note that if \ is an eigenvalue of ¢ with
eigenvector u € U then

so that X is an eigenvalue of ¢.

Next, observe that
Ed)()\l) NU < G¢(>\1) NnNU = {0}

so that \; is not an eigenvalue of g?)

On the other hand, for i > 2, Theorem 4.4 tells us that
Gy(Ai) = ker(6 — Aiidy)" = (Gy(Ai) N Gy(M)) @ (G(Ai) NU) = G(A) N U,

where the last equality comes from Theorem 4.10. From this we learn that G4(\;) <U
so that, first, \; is an eigenvalue of ¢ and also that G4(Ai) = Gy(N;) (sinceitis always
true that G;(\;) = G4(\i) NU ). This settles the claim and so the whole proof. O

Let us summarise the situation. With V; = G4(\;) and ¢; = ¢, , we have V = 11@---aV}
and
@i = Niidy, +1V;,

where we have set N; = ¢;—\;idy, € L(V;) . The key pointis that N/* =0 which prompts
some terminology.

Definition. A linear operator ¢ on a vector space V is nilpotent if ¢* =0, for some
k € N. or, equivalently, if ker¢* =V

Remark. If V is finite-dimensional, we may take k =dimV by Theorem 4.7.

Our remaining task is to understand nilpotent operators. As a useful first pass at this,
we have:

Proposition 4.12.
Let ¢ € L(V) be a linear operator on a finite-dimensional vector space V over F.

Then ¢ is nilpotent if and only if there is a basis with respect to which ¢ has a strictly
upper triangular matrix A (thus A4;; =0 whenever i > j):



Proof. Begin by observing that ¢ has strictly upper triangular matrix with respect to
B:vi,...,v, ifand only if ¢(v;) =0 and ¢(v;) € span{vy,...,v;_1}, for j > 1.

Thus, if ¢ has strictly upper triangular matrix A € M, (F) with respect v4,...,v,, we can
iterate to see that ¢* vanishes on vy,...,v, and ¢*(v;) € span{vy,...,v;_}, for j > k.
In particular ¢” = 0. Alternatively, A* has zeros on the first k£ — 1 super-diagonals:

0........ 0 *
Ak = 0
0 0

In particular, A" =0 so that ¢" =0 also.
For the converse, if ¢ is nilpotent, we consider the subspaces
{0} <ker¢ < ker¢? < .. <kergimV =V,
Note that, if v € ker¢k, 0= ¢*(v) = ¢*~1(4(v)) so that ¢(v) € kerg¢*~1, for k> 1.

Now take a basis vq,...,v, of ker¢, extend it successively to one of ker ¢*, for each &,
until we arrive at a basis vy,...,v, of V with the property that each ¢(v;) € span{vy,...,v;_1}.
This means precisely that the matrix of ¢ with respect to v,...,v, is strictly upper
triangular. O

Apply Theorem 4.12 to each N; to get a basis of V; for which ¢; has a matrix of the
form

so that, in particular, A, = (\; —2)4™Vi | In view of Theorem 4.4(4), we conclude that

k
A¢ = HA@ =+ H(l’ — )\i)dimVi.
i=1 i=1

Otherwise said, am()\;) = dimV; and we have proved:

Proposition 4.13.
Let A € C be an eigenvalue of a linear operator ¢ on a complex finite-dimensional
vector space. Then

am(A) = dim Gy (A).

Remark. Since E4(\) < Gy()\), this explains the Algebra 1B result®that gm()\) < am()).

8Proposition 3.4.6
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Finally, we can say something useful about the minimal polynomial of ¢: it is the
product of the minimal polynomials of the ¢;:

Proposition 4.14.
Let ¢ € L(V) be a linear operator on a finite-dimensional vector space over C with
distinct eigenvalues Ay,..., .. Set ¢; = ¢, (r,) - Then

(1) Each my, = (z — \;)%, for some s; < dim G4()\;) .

(2) mg =1 me, =10 (@ — \)* .

Proof. We know from Theorem 3.13(1) that m,, divides Ay, = (\; — 2)d™ &%) so (1)
is immediate.

For (2), let p = Hle(x —X)% . Then p(¢) = @lep(@) = 0 since each p(¢;) =0. Thus
me divides p and we see conclude that

with each 1 <¢; <s;.

On the other hand, each my, = (z —A)* divides my since mg(¢;) = my()y, =0. Thus
si <t;,for 1<i<k,and mgy=p. 0

As a corollary, we get an efficient (in the sense of low powers of (¢—\;idy ) ) expression
for Gy(\):

Corollary 4.15.
Let ¢ € L(V) be a linear operator with minimum polynomial Hle(x —X)% . Then
Gy(Ni) = ker(¢ — A;idy)*e.

¢i = Py, » we know that 0 =mg, (¢:) = (¢ — Aiidy,)* . Otherwise said, (¢ — Aiidy)}y, =0
so that Gg(\;) < ker(¢ — A;idy ) . -

Proof. By definition, ker(¢—X\;idy )% < G4(X;). On the other hand, with V; = G,(\;) and

Example. Let ¢ = ¢4 € L(C?) where

1 11
A=10 1 1
0 0 2

Find m, , the eigenspaces and generalised eigenspaces of ¢.

Solution: A being upper triangular, we see at once that Ay = A, = (1 —2)?(2—=z) so
that m, is either (z —1)(z —2) or (z—1)%(z —2) by Theorem 3.13. We check the first
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possibility:

01 1\ (-1 11 0 -1 1
(A-I)(A-2I3)=]0 0 1 0 -1 1[=|0 o0 0]#0.
00 1 0 00 0 00

We conclude that my = (z — 1)?(z — 2) and immediately deduce from Theorem 4.15
that G,(1) = ker(¢ —id)? while G4(2) = ker(¢ —2id) = E,(2) .

It remains to compute these:

0 1 1
E4(1) =ker(¢p —id) =ker [0 0 1| =span{(1,0,0)}
0 0 1
2
01 1 0 0 2
Gys(1) =ker(p—id)>* =ker |0 0 1| =ker|0 0 1| =span{(1,0,0),(0,1,0)}
0 0 1 0 0 1
-1 1 1

Ey(2) = Gy(2) =ker(¢p—2id) =ker | 0 —1 1| =span{(2,1,1)}.
0 0 0

4.4 Jordan normal form

We complete our analyis of linear operators by improving on Theorem 4.12.

First we introduce the key ingredient.

4.4.1 )Jordan blocks

Definition. The Jordan block of size n € Z, and eigenvalue )\ € F is J(\,n) €
M, (F) with X\’s on the diagonal, 1's on the super-diagonal and zeros elsewhere. Thus

A1 0. 0
J(\n)= 0
5

0 A

Notation. Set J, := J(0,n) so that J(\,n) =\, + J, .
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We have:

Exercises.®

ker J¥ = span{es,...,ex} . In particular, J, is nilpotent: J» =0.

(1)

(2) im J* =span{er,...,en_k}-

(3) X is the only eigenvalue of J(\,n) and E; ) (\) =span{ei}, Gyon(A) =F".
(4)

My = TAs0m) = (2 = A)".

We are going to prove that any nilpotent operator ¢ € L(V) on a finite-dimensional
vector space has a basis for which the matrix of ¢ is a direct sum of Jordan blocks:
Iy @D Jp, With ny+---+np=dimV .

We start by spelling out what it means for an operator to have a Jordan block as matrix:

Lemma 4.16.
Let vy,...,v, be a basis for a vector space V and ¢ € L(V).

Then the following are equivalent:

(1) ¢ has matrix J, with respectto vy,...,v,.
(2) &¢(v1) =0 and ¢(v;) =v;—1,for 2<i<n.
(3) vi=¢""(v,), 0<i<n—1and ¢"(v,) =0.

Proof. The equivalence of (1) and (2) comes straight from the definitions since (J,,);—1,; =
1 and all other entries in the i-th column vanish.

The equivalence of (2) and (3) is an easy exercisel?. O
We will work with characterisation (3) and prove:

Theorem 4.17.
Let ¢ € L(V) be a nilpotent operator on a finite-dimensional vector space over F.
Then there are vy,...,vx, € V and ny,...,n; € Z, such that

¢n171(v1)7 <. 'a¢(v1>7vlv .. '7¢nk71(vk)7 .. ’7¢(vk)avk

is a basis of V and ¢™(v;) =0, for 1 <i<k.

Using this basis and Theorem 4.16 we immediately conclude:

9Exercise sheet 5, question 1.
10Question 2 on sheet 5.
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Corollary 4.18.
Let ¢ € L(V) be a nilpotent operator on a finite-dimensional vector space over F.
Then there is a basis for which ¢ has matrix J,, @ --- & J,, .

Remark. Note that direct sums of the J,, are characterised by having 1’s and zeros
(at the joins of successive blocks) on the super-diagonal and zeros elsewhere.

Proof of Theorem 4.17. Once again we induct on dimV .
If dimV =1, the only nilpotent operator is the zero operator and any basis v; will do.

For the induction step, suppose that the theorem is true when dim V' < n and suppose
that dimV =n. We prove the theorem for V in three steps.

Step 1: apply the induction hypothesis to im¢. We let r = rank¢ and k =n —r =
dimker ¢ . Since ¢ is nilpotent, k£ > 0 so that r =dimim¢ < n. We therefore apply the
induction hypothesis to ¢;, 4 to get wi,...,w, € im¢, mq,...,my € Zy such that

ULy ooy Uy 1= ¢m1—1(w1)7 ey dlwy),wy, . .,(b"“f_l(wg), coy O(wy), we

is a basis of im¢ and ¢™i(w;) =0, for 1 <i <¢. Observe that each ¢(u;) is either u,;_;
or zero.

Step 2: Find the first ¢ of the v;. Each w; € im¢ so choose v1,...,v, such that
P(v;) =w;, for 1 <i< (.

We claim that uq,...,u,,v1,...,v, are linearly independent. For this, suppose that we
have a linear relation

T 4
Z)\ju]‘ —l—Zuivi =0 (4.4)
j=1 i=1
and take ¢ of this to get

r L
STNo(u) + 3 pi(vi) =0
j=1 i=1

which reads ,

Z )\juj—l =+ Zuiwi =0. (45)
Jle(u;)#0 i=1

Since these u;_; and w; are distinct, (4.5) is still a linear relation on the linearly
independent «; and so, in particular, each p; = 0. Now (4.4) becomes a linear relation
on the u; and so all A\; =0 also. This proves the claim.

Step 3: extend uy,...,u,,v1,...,v, to a basis of V by adding elements of ker ¢. Define
U<V by
U =span{uy,...,up,v1,..., 00} > ime

and note that im¢ = ¢(U) since any u; = ¢™(v;), forsome 1 <j </ and 1 <m <m;.
We extend to get a basis

ULy ooy Up, U1y oo, Vg, Y15 -+ Tk
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of V. Now, for ¢+ 1 < j <k, there is some y; € U such that ¢(y;) = ¢(z;) whence
vji=x; —y; Ekerg.

By construction
span{uy, ..., Up, U1, .., Uk} = Span{uy, ..., Up, U1, ..., 00, Tot1,---, Tk} =V
so that uq,...,u,,v1,...,v; iS @ basis of V. Moreover, setting

m;+1 1<i</
n; =
1 (+1<i<k

we have ¢™i(v;) =0, forall 1 <i <k and our basis, reordered to slot the first ¢ v; into
the right places, is

qb"l*l(vl), e (1), 01, - .,¢”‘71(v4), ey O(Ve), Ve, Vet - -, U,

which is of the required form. O

The only question left is how unique are the n; ? We already know from the proof of
Theorem 4.17 that there are k = dimker ¢ of them?!! but we can do better. For this, set
A=Jp, @©---@Jp, sothat,for seN, A*=J> ©---dJ; . Now

dimker J; = s,
for s <n; so that

dimker J2, — dimker J3~! = o (4.6)

Now ker A* = @} ker J§, so summing (4.6) over i yields:
#{i | n; > s} = dimker A* — dim ker A*™*.

This proves:

Proposition 4.19.
Let ¢ € L(V) be nilpotent with matrix J,,,®---®J,, forsome basisof V. Then ny,...,ng
are unique up to order. Indeed,

#{i | n; > s} = dimker ¢° — dim ker (bs—l’
foreach s> 1.
Exercise.!? In the situation of Theorem 4.19, show that

#{i | n; = s} = 2dimker ¢* — dimker ¢*~' — dim ker ¢**.

In another direction:

L Alternatively, if you have not read the proof: if there are k Jordan blocks J,, , we have dimker¢ =
ZI,C:I dimker J(n;) = k since dimker J(n;) =1.
12Question 3 on sheet 5.
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Proposition 4.20.
In the situation of Theorem 4.19, we have

me = 2°,

where s = max{ny,...,ng} .

Proof. Exercisel3! O

4.4.2 Jordan normal form

We put §4.4.1 together with Theorem 4.11 to prove the ultimate structure theorem for
linear operators on a finite-dimensional complex vector space.

Theorem 4.21.

Let ¢ € L(V) be a linear operator on a finite-dimensional vector space V over C.
Then there is a basis of V' for which ¢ has as matrix a direct sum of Jordan blocks
which are unique up to order.

Such a basis is called a Jordan basis and the direct sum of Jordan blocks is called the
Jordan normal form (JNF) of ¢.

Proof. Let )\,..., \; be the distinct eigenvalues of ¢. By Theorem 4.11, V =pV;,
for Vi = G4(\i) and then ¢; := ¢y, can be written

@i = A;iidy, +N;,

with N; nilpotent. Apply Theorem 4.18 to get a basis of V; for which N; has matrix
Jp, ® - @ J,, . By Theorem 4.19, the ny,...,n, are unique up to order. Now ¢; has
matrix

JAiyn1) @ - @ J( N, mp).

We then concatenate these bases to get the required Jordan basis of V. O

From this, Theorem 4.14 and Theorem 4.20, we get a complete account of the mini-
mum polynomial:

Corollary 4.22.
Let ¢ € L(V) be a linear operator on a finite-dimensional vector space V over C with
distinct eigenvalues \q,...,\;. Then

k

me = H(.I - )\7)81

i=1

where s; is the size of the largest Jordan block of ¢ with eigenvalue J;.

13Question 4 on sheet 5.
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Exercise.'* ¢ is diagonalisable if and only if m, =[], (z — \;) (thatis, all s; =1).
We can apply all this to matrices and solve the similarity problem.

Corollary 4.23.
Any A e M, (C) is similar to a direct sum of Jordan blocks, that is, there is an invertible
matrix P € M, (C) such that

PlAP=A¢---® A,,
with each A; a Jordan block.

A1 ®---® A, is called the Jordan normal form (JNF) of A and is unique up to the
order of the 4,.

Proof. Apply Theorem 4.21to ¢, : C* — C™ and let P be the change of basis matrix
from the standard basis to the Jordan basis of ¢4 (so that the columns of P are the
Jordan basis). O

This gives:

Theorem 4.24,
Matrices A,B € M,(C) are similar if and only if they have the same Jordan normal
form, up to reordering the Jordan blocks.

4.4.3 Examples

Example. Let ¢ = ¢4 : C* — C* where

2 -4 2 2
-2 01 3
A =
-2 -2 3 3
-2 -6 3 7

let us find the Jordan normal form of A and a Jordan basis of ¢.

Step 1: compute A4 . This turns out to be (2—z)%(4—x)? so that we have eigenvalues
2,4 and Theorem 4.13 tells us that

dim G¢(2) = dim G¢(4) = 2.

14Question 5 on sheet 5.
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Step 2: compute m4 by trial and error. It must be (z — 2)%(z — 4)%2 with 1 <s; <2 so
firsttry (z —2)(x—4):

(A—2I)(A—4I) = £0.

o o o O
L

NN N O

NN O

Next try (z —2)(z —4)%:
(A —2I)(A —4I)*> =0 € My(C)

so that ma = (z — 2)(z — 4)*.
Step 3: deduce the shape of the Jordan normal form using Theorem 4.22:
Since s; =1, all Jordan blocks with eigenvalue 2 have size 1, E,(2) = G4(2) .

Since s, =2, there is at least one Jordan block of size 2 with eigenvalue 4 and since
dim G4(4) = 2 there is no room for any other block.

We conclude that A has JNF J(2,1)® J(2,1) ® J(4,2):

We find a Jordan basis by finding one for each generalised eigenspace in turn. Any
basis of E4(2) will do for the 2-generalised eigenspace so solve (A —2I)v =0 to find
one. | found (2,1,0,2), (0,1,2,0).

For the 4-generalised eigenspace, we need a basis of the form (¢ —4id)v,v with (¢ —
4id)?(v) = 0. For this we work backwards:

(a) Find an eigenvector with eigenvalue 4 by solving Aw = 4w . One solution is w =
(0,1,1,1).

(b) Find v by solving (A —4I)v = w. One solution is (1,0,0,1).
We therefore have a Jordan basis (2,1,0,2), (0,1,2,0), (0,1,1,1), (1,0,0,1).

It follows that

O
S N
—_ =
—
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satisfies

P'AP =

Example. Let ¢ € L(V) with Ay = (z—5)* and m, = (z—5)%. What can be said about
the JNF of ¢?

Solution: We see from A, that 5 is the only eigenvalue of ¢ and that dimV =
degAy =4.

From m,, we see that there must be at least one Jordan block of size 2. This gives
two possibilities:

J(5,2) ® J(5,2)
J(5,2) @ J(5,1) @ J(5,1).

In the first case, dim E,(5) =2 and, in the second, dim E4(5) = 3.

Example. What is the JNF of A given by

-1 1 0
-1 1 017
-1 1 0

Find a Jordan basis for A.

Solution: One readily checks that A, = 2?, and A% = 0 whence A is nilpotent with
ma = 2. Thus A has at least one J, = J(0,2) block of size two so the JNF must be
Jo @ Jq .

A Jordan basis is vy,vs,v3 With Avs =v; and Av; = Avy =0 so we seek v; € im ANker A
and work backwards from there.

Solve linear equations to see that

ker A = {(z,z,y) | z,y € F}
imA={(z,z,z) | x € F}

so take v; = (1,1,1) and solve Avs =v; to get, for example, v, = (0,1,0). Finally take
any vz € ker A that is linearly independent of v;: (0,0,1) will do.

Thus we have arrived at the Jordan basis (1,1,1), (0,1,0), (0,0,1).

Remark. We see from these computations that Jordan bases of ¢ are far from unique:
many choices are made when finding one.

52



Chapter 5

Symmetric bilinear forms and
quadratic forms

We give describe a generalisation of real inner products to vectors spaces V' over an
arbitrary field F and use this to study the simplest non-linear functions on V.

5.1 Bilinear forms and matrices

Definition. Let V be a vector space overa field F. Amap B:V xV — T is bilinear
if it is linear in each slot separately:

B(Avy + vg,v) = AB(v1,v) + B(vg,v)
B(v, A1 +v2) = AB(v,v1) + B(v, v2),

forall v,vi,v2 €V, v,v1,v2 € V and A eF.

A bilinear map V xV — F is called a bilinear form on V.

Remark. A bilinear form B:V xV — F has B(v,0) = B(0,v) =0, for all v € V. Indeed,
B(v,0) = B(v,0+40) = B(v,0) + B(v,0)

and similarly for B(0,v).

Examples.

(1) Any real inner product is a bilinear form (what goes wrong for complex inner
products?).

(2) Let A € M, (F) and define a bilinear form By, : F* x F* — F by
Ba(z,y) =x" Ay.

This gives us a new use for matrices.
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There is a converse to this last example:

Definition. Let V be a vector space over F with basis B = vy,...,v, and let B :
V xV — F be a bilinear form. The matrix of B with respect to B is A4 € M,(F)
given by

Aij = B(vi, vj),

for 1<i,j<n.
The matrix A along with B tells the whole story:

Proposition 5.1.
Let B: VxV — F be a bilinear form with matrix A with respectto B=1v4,...,v,. Then
B is completely determined by A: if v=31", z;v; and w=>7_, y;v; then

B(v,w) = Z zy; Ay = x" Ay.

ij=1
Proof. We simply expand out using the bilinearity of B:

n n
B(v,w) = Z z;y; B(vi,vj) = Z iy Aij.
i,j=1 ij=1

O

Remark. When V =F" and B :ey,...,e, is the standard basis, this tells us that any
bilinear form on V is By where A;; = B(e;,e;) .

How does A change when we change basis of V' ?

Proposition 5.2.
Let B: V xV — F be a bilinear form with matrices A and A’ with respect to bases
B:vy,...,v, and B :vf,... v, of V. Then
A =pPTAP
where P is the change of basis matrix'from B to B’: thus vl = Yo Pijvi, for 1 <j <

n.

Proof. Using the bilinearity to expand things out, we compute:
Aij = B(Ug,vg-) = B(Z Pkivk, Z P;Ljvh)
k h

= ZpkiB<Uk7Uh>Phj = Z(PT)ikAthhj = (PTAP);;.
k,h k,h

1Algebra 1B, Definition 1.7.1.
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This prompts:

Definition. We say that matrices A, B € M,,(F) are congruent if thereis P € GL(n,F)
such that
B =PTAP.

5.2 Symmetric bilinear forms

Definition. A bilinear form B:V xV — F is symmetric if, forall v,w eV,

B(v, w) = B(w,v)
Exercise. If V is finite-dimensional, B is symmetric if and only if B(v;,v;) = B(vj,v;),
1<14,5 <n,for some basis vy,...,v, of V.
Thus B is symmetric if and only if its matrix A with respect to some (and then any)
basis is a symmetric matrix: A7 = A.

Example. A real inner product is a symmetric bilinear form. Thinking of symmetric
bilinear forms as a generalisation of inner products is a good source of intuition.

5.2.1 Rank and radical

Definitions. Let B: V x V — F be a symmetric bilinear form.

The radical rad B of B is given by
radB:={veV | Bv,w)=0, forall weV}.
We shall shortly see that rad B< V.
We say that B is non-degenerate if rad B = {0} .
If V is finite-dimensional, the rank of B is dimV — dimrad B (so that B is non-

degenerate if and only if rank B =dim V).

Remark. A real inner product B is non-degenerate since B(v,v) >0 when v #0.

Lemma 5.3.
Let B: V xV —F be a symmetric bilinear form with matrix A with respect to a basis
V1,...,0,. Then v=Y"" z;v; erad B if and only if Ax=0 ifand only if x’A=0.

Proof. Since the v; span V, we see that B(v,w) = 0, for all w € V, if and only if
B(v,v;) =0 for i <1 <mn. Thus, v € rad B if and only if >, z;4;; = 0, for each 1.
Otherwise said, v € rad B ifand only if x”' A = 0 or, taking transposes and remembering
that AT =4, Ax=0. O
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This enables us to compute rank B:

Corollary 5.4.
Let B: V xV — F be a symmetric bilinear form on a finite-dimensional vector space
V' with matrix A with respect to some basis of V. Then

rank B = rank A.

In particular, B is non-degenerate if and only if det A #0.

Proof. We have, for n =dim V' :
rank B =n — dimrad B = n — dimker A = rank A,
where the last equality is rank-nullity. O

Examples. We contemplate some symmetric bilinear forms on F3:

(1) B(z,y) = x1y1 + z2y2 — z3y3 . With respect to the standard basis, we have

1 0
0

0 -1

= O

a=1|o
0
so that rank B =3.

(2) B(x,y) = z1y2 + x2y1 - Here the matrix with respect to the standard basis is

0 1 0
A=|1 0 0
0 0 O

so that B has rank 2 and radical span{es} .

(3) In general, B(z,y) =%?

i =1 Adijziy; so we can read off A from the coefficients of
the TiYj -

5.2.2 Classification of symmetric bilinear forms

Convention. In this section, we work with a field F where 1+1 # 0 sothat 1 = (1+1)~!
makes sense. This excludes, for example, the 2-element field Z..

We can always find a basis with respect to which B has a diagonal matrix. First a
lemma:

Lemma 5.5.
Let B:V xV — F be a symmetric bilinear form such that B(v,v) =0, forall v € V.
Then B=0.
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Proof. Let v,w € V. We show that B(v,w) =0. We know that B(v+ w,v +w) =0 and
expanding out gives us

0 = B(v,v) + 2B(v,w) + B(w,w) = 2B(v,w).

Since 2#0 in F, B(v,w)=0. O

We can now prove:

Theorem 5.6 (Diagonalisation Theorem).
Let B be a symmetric bilinear form on a finite-dimensional vector space over F. Then
there is a basis v1,...,v, of V with respect to which the matrix of B is diagonal:

B(Ui7’l}j) = 07
forall 1<i#j<n.Wecall v,...,v, adiagonalising basis for B.
Proof. This is reminiscent of the spectral theorem? and we prove it in a similar way
by inducting on dimV .

So our inductive hypothesis is that such a diagonalising basis exists for symmetric
bilinear forms on a vector space of dimension n.

Certainly the hypothesis holds vacuously if dimV = 1. Now suppose it holds for all
vector spaces of dimension at most n — 1 and that B is a symmetric bilinear form on
a vector space V with dimV =n.

There are two possibilities: if B(v,v) =0, forall v € V', then, by Theorem 5.5, B(v,w) =
0, forall v,w € V', and any basis is trivially diagonalising.

Otherwise, there is v; € V' with B(vy,v1) #0 and we set
U := span{v; }, W :={v| B(vy,v) =0} < V.
We have:

(1) Unw ={0}:if vy € W then 0= B(v1, A\vy) = AB(v1,v1) forcing A =0.
(2) V=U+W:for veV, write

v =

B(vy,v B(vy,v
Bloran U + (0 = B ).

The first summand is in U while

B(Ula U= BB((,lell”:l)) Ul) = B(Ul, U) - B(’U17 U) =0

so the second summand is in W .

2Theorem 5.2.11 from Algebra 1B
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We conclude that V = U @ W . We therefore apply the inductive hypothesis to By . w
to get a basis vs,...,v, of W with B(v;,v;) =0, for 2<i#j<n.

Now wvy,...,v, is a basis of V' and, further, since v; ¢ W, for j > 1, B(vi,v;) =0 SO
that
B(’Ui,’l}j) :07

forall 1<i#j<n.

Thus the inductive hypothesis holds at dimV =n and so the theorem is proved. O

Remark. We can do a little better if F is C or R: when B(v;,v;) # 0, either

(1) If F = C, replace v; with v;/y/B(v;,v;) to get a diagonalising basis with each
B(v;,v;) either 0 or 1.

(2) If F =R, replace v; with v;/+/|B(v;,v;)| to get a diagonalising basis with each
B(v;,v;) either 0, 1 or —1.

Corollary 5.7.
Let A € M, «.(F) be symmetric. Then there is an invertible matrix P € GL(n,F) such
that PTAP is diagonal.

Proof. We apply Theorem 5.6 to B4 to get a diagonalising basis B and then let P be
the change of basis matrix from the standard basis to B. Now apply Theorem 5.2. O

Remark. When F = R, Theorem 5.7 also follows from the spectral theorem for real
symmetric matrices3, which assures the existence of P € O(n) with P~'AP = PTAP
diagonal.

Theorem 5.6 also gives us a recipe for computing a diagonalising basis: find v; with
B(vi,v1) #0, compute W = {v | B(vi,v) =0} and iterate. In more detail:

(1) Find vy €V with B(Ul,vl) 750

(2) Suppose we already have found wvy,...,v,_1 . Now find non-zero y € V solving
B(vy,y) =+ = B(vk-1,y) = 0. (5.1)

(3) If k=dimV, take v, =y and we are done. Otherwise:
(4) Inspect B(y,y). There are three possibilities:
(i) If B(y,y) #0, then set v, =y, and return to step 2 to find vj41 .

(ii) If B(y,y) =0 and y € rad B (so that B(y,v) =0 for all vinV'), then again set
vy =y, and return to step 2 to find v .

(iii) Otherwise reject y (it cannot be a member of a diagonalising basis*) and
try another solution of (5.1).

3Algebra 1B, Theorem 5.2.16.
4See question 1 on sheet 6.
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Here are some examples:

Examples.

(1) Problem: find a diagonalising basis for B = B4 : R* x R?* - R where

1 21
A=12 0 1
1 1 0

Solution: First note that A4;; # 0 so take v; =e¢;. We seek v, among y such that

O:B(vl,y):(l 0 O)Ay:(l 2 1)y:y1+2y2+y3.

We try v, = (1,-1,1) for which

B(Uz,y)z(l -1 1)Ay=(0 3 0)Y=3y2

In particular, B(vq,v2) = —3 # 0 SO we can carry on.
Now seek v3 among y such that B(vy,y) = B(vs,y) =0, that is:

Y1 +2y2+ys3 =0
3y2 =0.
A solution is given by v3 = (1,0,—1) and B(vs,vs3) = —1.
We have therefore arrived at the diagonalising basis (1,0,0),(1,-1,1),(1,0,—1).

Note that such bases are far from unique: starting from a different »; would give
a different, equally correct answer.

The same calculation solves another problem: find P € GL(3,R) such that PTAP
is diagonal.
Solution: we take our diagonalising basis as the columns of P so that

Exercise. Check that PTAP really is diagonal!

Remark. We could also solve this by finding an orthonormal basis of eigenvectors
of A but this is way more difficult because we would have to find the eigenvalues
by solving a cubic equation.

Now let us take
1 2 3

A=12 4 6
3 6 9
and find a diagonalising basis for B = B, .

Solution: As before, we can take v; =e; and seek v, among y with

0= B(vi,y) = y1 + 2y2 + 3ys.
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Let us try v = (3,0,—1). Then
B(va,y) = (3 0 —1)Ay =0,

for all y. Otherwise said, v, € rad B. We keep vy, and try again with v3 =
(0,—3,2). Again we find that v3 € rad B and conclude that v;,vs,v3 are a diago-
nalising basis with B(vi,v1) =1 and B(va,v2) = B(vs,v3) =0.

Here is a trick that can short-circuit these computations if there is a zero in an
off-diagonal slot. Take

1 1 0
A=11 0 1
01 -1

and seek a diagonalising basis for B = B,4 .
We can exploit the zero in the (1,3)-slot of A: observe that

B(ehel) =1
B(eg,eg) =-1
B((il,eg) :O

so we are well on the way to getting a diagonalising basis starting with e;,e3. To
get the last basis vector, we seek y € R® with

0= B(e1,y) =y1 +¥2
0= 3(63,2/) =Y2 — Y3.

We solve thesetoget y = (-1,1,1), forexample, and so that (1,0,0),(0,0,1),(-1,1,1)
are a diagonalising basis and

B(y,y)=1—-2+4+2-1=0.

5.2.3 Sylvester’s Theorem

Let B be a symmetric bilinear form on a real finite-dimensional vector space. We
know that there is a diagonalising basis v,...,v, with each B(v;,v;) € {+1,0} and
would like to know how many of each there are. We give a complete answer.

Definitions. Let B be a symmetric bilinear form on a real vector space V.

Say that B is positive definite if B(v,v) >0, forall v e V' \ {0}.

Say that B is negative definite if —B is positive definite.

If V is finite-dimensional, the signature of B is the pair (p,q) where

p=max{dimU | U <V with By, positive definite}
q = max{dim W | W <V with By . negative definite}.

60



Remark. A symmetric bilinear form B on V is positive definite if and only if it is an
inner product on V.

The signature is easy to compute:

Theorem 5.8 (Sylvester’s Law of Inertia).
Let B be a symmetric bilinear form of signature (p,q) on a finite-dimensional real
vector space Then:

* p+q=rankB;

* any diagonal matrix representing B has p positive entries and ¢ negative en-
tries (necessarily on the diagonal!).

Proof. Set K =rad B, r =rank B and n=dimV so that dmK =n —r.

Let U < V be a p-dimensional subspace on which B is positive definite and W a
g-dimensional subspace on which B is negative definite.

First note that U N K = {0} since B(k,k) =0, for all £k € K. Thus, by the dimension
formula,
dim(U + K) =dimU +dmK =p+n—r.

Moreover, if v=u+ke U+ K, with wue U and k€ K, then B(v,v) = Blu+k,u+k) =
B(u,u) > 0.

From this we see that Wn (U + K) = {0}: if we Wn (U + K) then B(w,w) > 0 by
what we just proved but also B(w,w) < 0 since w € W. Thus B(w,w) =0 and so, by
definiteness on W, w=0. Thus

dim(W+ U+ K)) =dimW +dim(U+ K)=q+n+p—r <dimV =n
sothat p+qg<r.

Now let v4,...,v, be adiagonalising basis of B with p positive entries on the diagonal
of the corresponding matrix representative A of B and 4 negative entries. Then B is
positive definite on the p-dimensional space span{v; | B(v;,v;) > 0} (exercise®!). Thus
p <p. Similarly, §<gq.

However r =rank A is the number of non-zero entries on the diagonal, thatis r = p+4.
We therefore have
r=p+q<p+q<r

sothat p=p, g=q and p+q=r. -

5Question 2 on sheet 6.
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Example. Find the rank and signature of B = B, where

1 2 1

A=12 0 1

1 1 0
Solution: we have already found a diagonalising basis v; = (1,0,0),v2 = (1,-1,1),v3 =
(1,0,—1) so we need only count how many B(v;,v;) are positive and how many neg-

ative. In this case, B(vi,v;) =1 > 0 while B(vy,v2) = =3 < 0 and B(uvs,v3) = -1 < 0.
Thus the signature is (1,2) while rankB=1+2=3.

62



Remarks.

(1) Here is a useful sanity check: symmetric bilinear B of signature (p,q) on an
n-dimensional V has p,q¢,p+ ¢ < n (since p,q are dimensions of subspaces of
n-dimensional V' while n— (p+¢) =dimrad B > 0).

(2) A symmetric bilinear form of signature (n,0) on a real n-dimensional vector
space is simply an inner product.

(3) In physics, the setting for Einstein’s theory of special relativity is a 4 -dimensional
real vector space (space-time) equipped with a symmetric bilinear form of sig-
nature (3,1).

5.3 Application: Quadratic forms

Convention. We continue working with a field F where 1+1+#0.

We can construct a function on V from a bilinear form B (which is a function on
V x V).

Definition. A quadratic form on a vector space V over F is a function Q : V — F
of the form
Q(v) = B(v,v),

forall veV,where B:V xV —F is a symmetric bilinear form.

Remark. For v € V and A € F, Q(\v) = B(A\v,\v) = A?Q(v) so Q is emphatically not a
linear function!

Examples. Here are two quadratic forms on F3:

(1) Q(z) = 2% + 23 — 2% = Ba(z,z) where

10 0
A=10 1 0
0 0 -1
(2) Q(z) = z129 = Ba(z,x) where
0 %2 0
A=[1 0 0
0 0 0

We can recover the symmetric bilinear form B from its quadratic form Q:
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Lemma 5.9.
Let Q@ : V — F be a quadratic form with Q(v) = B(v,v) for a symmetric bilinear form
B. Then

B(v,w) = 3(Q(v+w) - Qv) — Q(w)),

forall v,weV.

B is called the polarisation of Q.

Proof. Expand out to get

Qv+ w)— QW) — Qw) = B(v,w) + B(w,v) = 2B(v,w).

Here is how to do polarisation in practice: any quadratic form @ : F* — F is of the
form
a1 %jS
Qx) = Z Qi T = xT X
1<i<j<n L
§Qij dnn
so that the polarisation is B4, where
i if i = ;
Ay=A;,;=1" J
: : 1 e
5ij if i < 7-
Example. Let Q:R?> = R be given by
Q(z) = 23 4 223 + 2z 29 + T123.

Let us find the polarisation B of @, that is, we find A so that B = B,: we have
q1=1, ¢2=2, ¢12=2 and ¢;3 =1 with all other ¢;; vanishing so

11
A=11 2

o (NI

3 0

Definitions. Let (Q be a quadratic form on a finite-dimensional vector space V over
F.

The rank of  is the rank of its polarisation.

If F=R, the signature of @ is the signature of its polarisation.

What does the diagonalisation theorem mean for a quadratic form Q? We take a
practical point of view and let @ : F* — F be a quadratic form on F" with polarisation
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B. We have a diagonalising basis v1,...,v, of B and let P be the change of basis
matrix from the standard basis to vy,...,v,. Then, with z =" z,e; = Zj y;jv; , we have

n n n

Q(z) =Y Bvi,vi)y; =Y _ B(vi,v)(Y_ Pyjx;)*,
j=1

i=1 i=1

where P,; = (P~');;. Otherwise said, Q is a linear combination of squares of linear
functions in the z; and the linear functions have linearly independent coefficients (the
rows of P~1).

Let us now apply the classification results of §5.2 and summarise the situation for
quadratic forms on vector spaces over our favourite fields:

Theorem 5.10.
Let Q be a quadratic form with rank r polarisation on a finite-dimensional vector
space over F.

(1) When F =C, there is a basis vy,...,v, of V such that
Q(ixivi) =24 a2
i=1
(2) When F =R and Q has signature (p,q), there is a basis v4,...,v, of ¥V such that
Q(zn:xlvl) :xf—I—---—i—xi—ng — a2,
i=1
Example. Find the signature of @ : R® — R given by
Q(x) = 3 + 23 + x5 + 2x173 + 4wow3.
Q@ has polarisation B = B, with

1 0 1
A=10 1 2
1 21

Solution: exploit the zero in the (1,2)-slot of A to see that e;,eq,y = (-1,-2,1) is a
diagonalising basis and so gives us a diagonal matrix representing B with Q(e;) =
Q(e2) =1>0 and Q(y) = —4 < 0 along the diagonal. So the signature is (2,1).

Here are two alternative techniques:

(1) Orthogonal diagonalisation yields a diagonal matrix representing B with the
eigenvalues of A down the diagonal so we just count how many positive and
negative eigenvalues there are.

In fact, A has eigenvalues 1 and 1++/5. Since v5>2, 1—1/5 <0 and we again
conclude that the signature is (2,1).

Danger: this method needed us to solve a cubic equation which is already diffi-
cult. Foran nxn A with n > 5, this could be impossible!
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(2) Finally, we could try and write @ as a linear combination of linearly independent
squares and then count the number of positive and negative coefficients. In fact,

Q(x) = 23 + 23 + 23 + 2x173 + daoas
= (z1+ x3)2 + x% +4dxoxs = (21 + x3)2 + (2 + 2x3)2 — 4;33.

We must check that the linear functions z; + z3, 22 + 2x3,23 have linearly inde-
pendent coefficients (that is, (1,0,1), (0,1,2), (0,0,1) are linearly independent)
but that is easy. Now the coefficients of these squares are 1,1,—4 and so, once
more, we get that the signature is (2,1).
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