Section A

1. Define $U, W \leq \mathbb{R}^{4}$ by $U=\operatorname{span}\{(1,2,2,1),(1,3,1,3)\}, W=\operatorname{span}\{(1,2,3,4)\}$.

Is it true that $U \oplus W=\mathbb{R}^{4}$? Justify your answer.
2. Let V be a vector space, $U \leq V$ and $q: V \rightarrow V / U$ the quotient map. Under what condition on U is q an isomorphism?
3. Let $p=x^{17}+5 x+1 \in \mathbb{R}[x], v=(1,0,0) \in \mathbb{R}^{3}$ and $\phi=\phi_{A} \in L\left(\mathbb{R}^{3}\right)$, where

$$
A=\left(\begin{array}{lll}
1 & 5 & 7 \\
0 & 2 & 9 \\
0 & 0 & 6
\end{array}\right)
$$

Compute $p(\phi)(v)$.
4. Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space V and suppose that

$$
\Delta_{\phi}=(x-1)^{3}(x-17)^{2}, \quad m_{\phi}=(x-1)(x-17)^{2} .
$$

What is the Jordan normal form of ϕ ?
5. What is the dual space V^{*} of a vector space V over a field \mathbb{F} ? Define $\alpha, \beta \in\left(\mathbb{R}^{3}\right)^{*}$ by

$$
\begin{aligned}
& \alpha(x)=x_{1}+2 x_{2}-x_{3}, \\
& \beta(x)=3 x_{1}-3 x_{2} .
\end{aligned}
$$

Write down a basis for sol E where $E=\operatorname{span}\{\alpha, \beta\}$.
6. For which $t \in \mathbb{R}$ does the quadratic form $q_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
q_{t}(x)=x_{1}^{2}+2 t x_{1} x_{2}-7 x_{2}^{2} \tag{4}
\end{equation*}
$$

have signature $(1,1)$?

Section B

7. Let $\phi: V \rightarrow W$ be a linear map of vector spaces and $A \leq W$. Define $\phi^{-1}(A)$ by

$$
\begin{equation*}
\phi^{-1}(A)=\{v \in V \mid \phi(v) \in A\} . \tag{6}
\end{equation*}
$$

(a) Show that $\operatorname{ker} \phi \leq \phi^{-1}(A) \leq V$.
(b) Let $U \leq V$ and $q: V \rightarrow V / U$ be the quotient map.
(i) Let $U \leq B \leq V$. Show that there is a subspace $A \leq V / U$ such that $B=q^{-1}(A)$.
(ii) Let $A_{1}, A_{2} \leq V / U$ and suppose that $q^{-1}\left(A_{1}\right)=q^{-1}\left(A_{2}\right)$. Prove that $A_{1}=A_{2}$.
8. (a) Let $\phi \in L(\mathbb{C})$ be a linear operator on a finite-dimensional complex vector space.
(i) What is the minimum polynomial of ϕ ?
(ii) Show that the roots of the minimum polynomial are precisely the eigenvalues of ϕ.
(You may assume the Cayley-Hamilton theorem without proof.)
[9]
(b) Let $\phi=\phi_{A} \in L\left(\mathbb{C}^{3}\right)$ where

$$
A=\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 0 \\
-2 & -3 & 0
\end{array}\right)
$$

(i) What is the minimum polynomial of A ?
(ii) What is the Jordan normal form of A ?
9. (a) Which of the following are possible signatures of a quadratic form q : $\mathbb{R}^{4} \rightarrow \mathbb{R}$?
(i) $(3,0)$.
(ii) $(4,1)$.
(iii) $(2,-2)$.

In each case, briefly justify your answer.
[6]
(b) Find an invertible matrix P such that $P^{T} A P$ is diagonal where

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 0 & -1 \\
1 & -1 & 1
\end{array}\right)
$$

