Section A

- 1. Define $U, W \leq \mathbb{R}^4$ by $U = \text{span}\{(1,2,2,1), (1,3,1,3)\}$, $W = \text{span}\{(1,2,3,4)\}$. Is it true that $U \oplus W = \mathbb{R}^4$? Justify your answer. [4]
- 2. Let V be a vector space, $U \le V$ and $q: V \to V/U$ the quotient map. Under what condition on U is q an isomorphism? [4]
- 3. Let $p = x^{17} + 5x + 1 \in \mathbb{R}[x]$, $v = (1, 0, 0) \in \mathbb{R}^3$ and $\phi = \phi_A \in L(\mathbb{R}^3)$, where

$$A = \begin{pmatrix} 1 & 5 & 7 \\ 0 & 2 & 9 \\ 0 & 0 & 6 \end{pmatrix}.$$

Compute $p(\phi)(v)$. [4]

4. Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space V and suppose that

$$\Delta_{\phi} = (x-1)^3 (x-17)^2, \qquad m_{\phi} = (x-1)(x-17)^2.$$

What is the Jordan normal form of ϕ ?

5. What is the **dual space** V^* of a vector space V over a field \mathbb{F} ?

Define $\alpha, \beta \in (\mathbb{R}^3)^*$ by

$$\alpha(x) = x_1 + 2x_2 - x_3,$$

$$\beta(x) = 3x_1 - 3x_2.$$

Write down a basis for sol E where $E = \text{span}\{\alpha, \beta\}$. [4]

[4]

6. For which $t \in \mathbb{R}$ does the quadratic form $q_t : \mathbb{R}^2 \to \mathbb{R}$ given by

$$q_t(x) = x_1^2 + 2tx_1x_2 - 7x_2^2$$

have signature (1,1)?

Section B

7. Let $\phi: V \to W$ be a linear map of vector spaces and $A \leq W$. Define $\phi^{-1}(A)$ by

$$\phi^{-1}(A) = \{ v \in V \mid \phi(v) \in A \}.$$

- (a) Show that $\ker \phi \leq \phi^{-1}(A) \leq V$. [6]
- (b) Let $U \leq V$ and $q: V \to V/U$ be the quotient map.
 - (i) Let $U \leq B \leq V$. Show that there is a subspace $A \leq V/U$ such that $B = q^{-1}(A)$. [6]
 - (ii) Let $A_1,A_2\leq V/U$ and suppose that $q^{-1}(A_1)=q^{-1}(A_2)$. Prove that $A_1=A_2$. [6]

[4]

- 8. (a) Let $\phi \in L(\mathbb{C})$ be a linear operator on a finite-dimensional complex vector space.
 - (i) What is the **minimum polynomial of** ϕ ?
 - (ii) Show that the roots of the minimum polynomial are precisely the eigenvalues of ϕ .

(You may assume the Cayley-Hamilton theorem without proof.)

[9]

(b) Let $\phi = \phi_A \in L(\mathbb{C}^3)$ where

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ -2 & -3 & 0 \end{pmatrix}.$$

- (i) What is the minimum polynomial of *A*?
- (ii) What is the Jordan normal form of A?

[9]

- 9. (a) Which of the following are possible signatures of a quadratic form $q:\mathbb{R}^4\to\mathbb{R}$?
 - (i) (3,0).
 - (ii) (4,1).
 - (iii) (2,-2).

In each case, briefly justify your answer.

[6]

(b) Find an invertible matrix P such that P^TAP is diagonal where

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & -1 \\ 1 & -1 & 1 \end{pmatrix}.$$

[12]