Section A

- 1. Let $U, W \leq \mathbb{R}^3$ be given by $U = \text{span}\{(1, 1, 1), (1, 2, 1)\}, W = \text{span}\{(1, 0, 0), (0, 0, 1)\}.$ Write down bases for $U \cap W$ and U + W. [4]
- 2. Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space V such that

$$\ker \phi \cap \operatorname{im} \phi = \{0\}.$$

Prove that $\ker \phi \oplus \operatorname{im} \phi = V$.

3. Find the minimal polynomial of $A \in M_3(\mathbb{R})$ given by

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 2 \\ 1 & 0 & 0 \end{pmatrix}.$$
 [4]

[4]

[4]

- 4. Let $\phi \in L(V)$ be a linear operator on a complex vector space V with characteristic polynomial $(x-3)^4(x-2)^2$ and minimal polynomial $(x-3)^2(x-2)$. What are the possible Jordan normal forms of ϕ ? [4]
- 5. Let $E \leq (\mathbb{R}^3)^*$ be spanned by α given by

$$\alpha(x) = x_1 + 2x_2 - x_3.$$

Write down a basis of $\operatorname{sol} E$.

Define the *rank* and *signature* of a symmetric bilinear form B on a real, finite-dimensional vector space.
State Sylvester's Law of Inertia. [4]

Section B

- 7. Let V be a vector space over a field \mathbb{F} and $\phi \in L(V)$ a linear operator on V.
 - (a) Suppose that $V = V_1 \oplus V_2$ with each $V_i \phi$ -invariant. Show that

$$\ker \phi = \ker \phi_{|V_1} \oplus \ker \phi_{|V_2}.$$

- (b) Let $U \leq V$ be ϕ -invariant and let $q: V \to V/U$ be the quotient map.
 - (i) Show that there is a well-defined linear operator $\overline{\phi}$ on V/U such that

$$\bar{\phi}(q(v)) = q(\phi(v)),$$

for all $v \in V$.

(ii) If dim $V = n, u_1, \ldots, u_k$ is a basis of U and $q(v_1), \ldots, q(v_{n-k})$ is a basis of V/U, show that $u_1, \ldots, u_k, v_1, \ldots, v_{n-k}$ is a basis of V.

[12]

[6]

8. Let A be given by

$$A = \begin{pmatrix} 1 & -1 & 2 \\ -3 & -1 & -3 \\ 1 & 1 & 0 \end{pmatrix}.$$

The characteristic polynomial of A is $(2-x)(x+1)^2$ (you do not need to prove this).

- (a) Compute the minimum polynomial of A. [5]
- (b) Find the Jordan normal form of A. [4]
- (c) Find a Jordan basis for A. [9]

- 9. (a) Let $q : \mathbb{R}^5 \to \mathbb{R}$ be a quadratic form. Which of the following are possible signatures of q?
 - (i) (4, 2).
 - (ii) (2, -1).
 - (iii) (2,1).
 - (iv) (2,3).

In each case, briefly justify your answer.

[8]

(b) Let $t \in \mathbb{R}$ and define A_t by

$$A_t = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & t \\ -1 & t & 0 \end{pmatrix}.$$

Find an invertible matrix P_t such that $P_t^T A_t P_t$ is diagonal. [10]