Section A

1. Let $U, W \leq \mathbb{R}^{3}$ be given by $U=\operatorname{span}\{(1,1,1),(1,2,1)\}, W=\operatorname{span}\{(1,0,0),(0,0,1)\}$. Write down bases for $U \cap W$ and $U+W$.
2. Let $\phi \in L(V)$ be a linear operator on a finite-dimensional vector space V such that

$$
\operatorname{ker} \phi \cap \operatorname{im} \phi=\{0\} .
$$

Prove that $\operatorname{ker} \phi \oplus \operatorname{im} \phi=V$.
3. Find the minimal polynomial of $A \in M_{3}(\mathbb{R})$ given by

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 2 \\
1 & 0 & 0
\end{array}\right) .
$$

4. Let $\phi \in L(V)$ be a linear operator on a complex vector space V with characteristic polynomial $(x-3)^{4}(x-2)^{2}$ and minimal polynomial $(x-3)^{2}(x-2)$.
What are the possible Jordan normal forms of ϕ ?
5. Let $E \leq\left(\mathbb{R}^{3}\right)^{*}$ be spanned by α given by

$$
\alpha(x)=x_{1}+2 x_{2}-x_{3} .
$$

Write down a basis of $\operatorname{sol} E$.
6. Define the rank and signature of a symmetric bilinear form B on a real, finite-dimensional vector space.
State Sylvester's Law of Inertia.

Section B

7. Let V be a vector space over a field \mathbb{F} and $\phi \in L(V)$ a linear operator on V.
(a) Suppose that $V=V_{1} \oplus V_{2}$ with each $V_{i} \phi$-invariant. Show that

$$
\operatorname{ker} \phi=\operatorname{ker} \phi_{\mid V_{1}} \oplus \operatorname{ker} \phi_{\mid V_{2}} .
$$

[6]
(b) Let $U \leq V$ be ϕ-invariant and let $q: V \rightarrow V / U$ be the quotient map.
(i) Show that there is a well-defined linear operator $\bar{\phi}$ on V / U such that

$$
\bar{\phi}(q(v))=q(\phi(v)),
$$

for all $v \in V$.
(ii) If $\operatorname{dim} V=n, u_{1}, \ldots, u_{k}$ is a basis of U and $q\left(v_{1}\right), \ldots, q\left(v_{n-k}\right)$ is a basis of V / U, show that $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{n-k}$ is a basis of V.
8. Let A be given by

$$
A=\left(\begin{array}{rrr}
1 & -1 & 2 \\
-3 & -1 & -3 \\
1 & 1 & 0
\end{array}\right)
$$

The characteristic polynomial of A is $(2-x)(x+1)^{2}$ (you do not need to prove this).
(a) Compute the minimum polynomial of A.
(b) Find the Jordan normal form of A.
(c) Find a Jordan basis for A.
9. (a) Let $q: \mathbb{R}^{5} \rightarrow \mathbb{R}$ be a quadratic form. Which of the following are possible signatures of q ?
(i) $(4,2)$.
(ii) $(2,-1)$.
(iii) $(2,1)$.
(iv) $(2,3)$.

In each case, briefly justify your answer.
(b) Let $t \in \mathbb{R}$ and define A_{t} by

$$
A_{t}=\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 2 & t \\
-1 & t & 0
\end{array}\right)
$$

Find an invertible matrix P_{t} such that $P_{t}^{T} A_{t} P_{t}$ is diagonal.

