Section A

- 1. Define subspaces $U, W \leq \mathbb{R}^3$ by $U = \operatorname{span}\{(1, 0, -1), (2, -1, 0)\}$ and $W = \operatorname{span}\{(1, 1, 1)\}$. Show that the sum U + W is direct. [4]
- 2. With U, W as in question 1, find $u \in U$ and $w \in W$ such that

$$(1,2,3) = u + w.$$
 [4]

- 3. Use dot product to make \mathbb{R}^3 into an inner product space. With W as in question 1, find a basis for W^{\perp} . [4]
- 4. Let V be a complex inner product space and ϕ a unitary operator on V. If λ is an eigenvalue of ϕ , show that $\|\lambda\| = 1$. [4]
- 5. Let V be a vector space over a field \mathbb{F} and $v, w \in V$ with $v \neq w$. Show that there is $\alpha \in V^*$ such that $\alpha(v) \neq \alpha(w)$. [4]
- 6. For $t \in \mathbb{R}$, define a quadratic form Q_t on \mathbb{R}^2 by $Q_t(x) = x_1^2 2x_1x_2 + tx_2^2$. For which t does Q_t have rank 1? [4]

MA20216

Section B

- 7. Let V be a vector space over a field \mathbb{F} .
 - (a) Let $\pi_1, \pi_2, \pi_3 \in L(V)$ satisfy

$$\pi_i \circ \pi_j = \delta_{ij} \pi_i, \quad \text{for } 1 \le i, j \le 3$$
$$\text{id}_V = \pi_1 + \pi_2 + \pi_3.$$

- (i) Show that $V = \operatorname{im} \pi_1 \oplus \operatorname{im} \pi_2 \oplus \operatorname{im} \pi_3$.
- (ii) Show that $\ker \pi_1 = \operatorname{im} \pi_2 \oplus \operatorname{im} \pi_3$.

[12]

(b) Let $\phi \in L(V)$ be a linear operator on V and $U \leq V$ a ϕ -invariant subspace. Let $q: V \to V/U$ be the quotient map. Show that there is a well-defined linear operator $\tilde{\phi} \in L(V/U)$ such that

$$\tilde{\phi}(q(v)) = q(\phi(v)),$$
 for $v \in V.$ [6]

8. (a) Let V be a finite-dimensional complex inner product space and $\phi \in L(V)$ a linear operator.

Show that λ is an eigenvalue of ϕ if and only if $\overline{\lambda}$ is an eigenvalue of ϕ^* . [6]

- (b) Let $U = \text{span}\{(1, 1, -1, -1), (1, 0, 0, -1)\} \leq \mathbb{R}^4$ and view \mathbb{R}^4 as an inner product space using dot product.
 - (i) Compute U^{\perp} .
 - (ii) Find an orthonormal basis of U^{\perp} .
 - (iii) Compute the orthogonal projections of (1, 2, 3, 1) onto U and U^{\perp} .

[12]

MA20216

9. (a) Let V be a finite-dimensional real vector space and $\alpha, \beta \in V^*$ linearly independent linear functionals.

Define a symmetric bilinear form B on V by

$$B(v,w) = \frac{1}{2}(\alpha(v)\beta(w) + \alpha(w)\beta(v)).$$

Compute the rank and signature of B.

(b) Let $t \in \mathbb{R}$ and define A_t by

$$A_t = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & t \\ 0 & t & 3 \end{pmatrix}.$$

For which t does the symmetric bilinear form B_{A_t} have signature (3,0)? [12]

[6]