

Unit Code MAZUZIB	Unit Title Alcebra 2A
Academic Year 2021/2	Examiner Fran
Semester	Question No. — 6 Page \ of \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Part	Mark

| Show
$$U_nW = {20}$$
 | Suppose $(1,1,1) = \lambda(1,0,-1) + \mu(2,-1,0)$ so $1 = \lambda + 2\mu = -\lambda = -\mu$ | Arn $1 = -3 \times 0$ (1,1,1) & $U_nW = {20}$ | U_nW

2.
$$u = \lambda(1,0,-1) + \mu(2,-1,0)$$

 $w = \nu(1,1,1)$
oo wed $(1,2,3) = (\lambda+2\mu+\nu, -\mu+\nu, \nu-\lambda)$
 $\nu = \nu-2$ $\lambda = \nu-3$
 $\nu = \nu-3 + 2\nu-4+\nu = 4\nu-7$ i.e. $\nu=2$

Unit Code MAZOZIB	Unit Title Alcebra 2A
Academic Year 2021/2	Examiner Fran
Semester	Question No. \ G
Part	Mark

3.
$$W^{\perp} = \{(x,y,z) \in \mathbb{R}^3 \mid (x,y,z) \cdot (1,1,1) = 0 \}$$

4. Let
$$Q(v) = \lambda v = \omega + 0$$

Then $Q(v), Q(v) = \langle v, v \rangle$
 $\langle \lambda v, \lambda v \rangle = |\lambda|^2 \langle v, v \rangle = \langle v, v \rangle + 0$
 $|\lambda|^2 = |\lambda|^2 \langle v, v \rangle = |\lambda|^2 \langle v, v \rangle = 0$

Unit Code MAZUZIB	Unit Title Alcebra 2A
Academic Year 2021/2	Examiner Fran
Semester	Question No. (G Page 3 of 3
Part	Mark

So
$$V-w \neq 0$$
 or by sufficiency principle

 $\exists x \in V^* \text{ s.t.} \quad d(v-w) \neq 0 \text{ i.e.}$
 $d(v) - d(w) \neq 0$

[47

6. Complete le squere:
$$x_1^2 - 2x_1x_2 + t_1x_2^2 = (x_1 - x_2)^2 + (t_1)x_2^2$$

Since $x_1 - x_2 = x_2$ are limitable,

Qt has rank 1 exactly when $t = 1$.

[47]

Unit Code MAZILL	Jnit Title \bigcap '	Kelora 2	A	
Academic Year 2021/2	Examiner 💭	En		
Semester	Question No.	7	Page	of 3
Part		-	·	Mark
7.(a)(i) her v	EV 1	ten		
V = îdw) =	11, (5)+	112(5)+	· 113(v)	
00 V= im n1+	in in -	+ im mz		
To see Act sun	n is di	red, lel	(
V = W,+	· W2 + U	rs wilt	W. E in	n il i
we show Aar	Wi=	~(5).		
Now Wiz To	(luj) so	ome y 6	50 SD	
(W) =	Tic Tij (U	(j) = 0	if it	
0 6 TI((V) =	n; (w;) =	- Ti Mill	$u(t) = \pi_{i}(u)$	() -W(
as regulared.				[6]
(ii) We have			f(u) = 0	[/ [
so miz, lu	n mg ≤	Ker a,		

Total

Unit Code MAZULL6 Unit Title Alcebra 2A
Academic Year 2021/2 Examiner Fran
Semester \ Question No. \ \rightarrow Page \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Part
Conversely if VG Ker II,
V= 11/W) + 11/2(V) + 11/3(V) E (M/11/2 + 1m/12
00 Ver 11 = [m 112 + lun 113
Finally if the V=TIZ(U)=TIZ(W) Elurizalming
Acn TIZW = TIZTIZW = TIZTIZW = 0
11-11-11
so in 112 n in 113 = 503 & sum is direct.
Do Ker vi, = viv viz & viv viz. [6]
(b) Well-defined= if qui=qw)
(b) Well-delinied= if qui=qui) v-we kerq=U P(v-w) E U
0. 9.0P (v-w) = 0 i.e. q(P(v)) = q(P(w))
on god (u-w)=Oie. q(d(v)) = q(d(w)) on delivited

DEPARTMENT OF MATHEMATICAL SCIENCES Outline solution to Examination Questions

Unit Code MAZULL6	Unit Title Alcebra 2A	
Academic Year 2021/2	Examiner Francisco	
Semester	Question No. 7 Page 3	of S
Part ,	·	Mark
130000	$\sigma(x, 0, 0) = 0$	
LIVEES. Y	q(w) + 2 q(w)) =	
•	,	
\wedge	9 lixas	
0/9/11+21) = $($ $($ $)$ $($ $)$ $($ $)$ $($ $)$ $($ $)$	1029000
4 (prov. 1000) = qφ (ν+λω) = qφ	WIT & YAP(W)
	\sim ()	•
	old yet	
^,	linect	
-	(q(v))+ / P(q(w)).	r/7
$ \Psi$	(101)+ 1 + (1/m).	6
l l	· · · · · · · · · · · · · · · · · · ·	_ 0

Unit Code MAZOLL6	Unit Title Alcebra 2A		
Academic Year 2021/2	Examiner Fran		
Semester	Question No. Page of 3		
Part	Mark		
S (a) here are	revered arguments. Here is		
one : for	YEL(V)		
rank	4 = vank 4th		
[Apply rank-nully to ker f = (innf*) s			
VG Ker & Go	(411), w>=0 Hw (=> &, 4 m)=0		
•	(=) (((m) +x))		
Apply Ris ho	4= Q- Tide Men		
4 = P = J	idu & 2 is eval of of		
iff rank y	< dim V iff rank pt 2 dim V		
I T IS EN	w of 4* [6]		

Total

Unit Code MAZULL6	Unit Title Alcebra 2	A
Academic Year 2021/2	Examiner Francisco	
Semester \	Question No.	Page 2 of 3
Part		Mark
(b) (i) U= {	(X1772273, XLL) Xit	$-x_2-x_3-x_4=0$
	(x, x2, x3, x4) x1 =	
	(ス・サ・サ・ス) 1、	•
	Span { (1,0,0,1)	, (D,1,1,0)Z
(ii) dim U=2	(spanned boy hos	o lisisales vectors
a a basis	18 (1,0,0,1), ((0,1,1,0)
96: W.=	(1,0,0,1) IN	J111 ² =2
	$u_1 = \sqrt{2} (12010)$	1)
(m, 75)	•	
WZ	= V2 & Uz= /	(0,1,1,0)

Unit Code MAZULL6 Uni	it Title Alcebra 2A
Academic Year 2021/2 Exa	aminer Fran
Semester \ Qu	estion No. Page 3 of 3
Part	Mark
(iii) Ortoprof or	who Ct.
1142 (V) =	(M''n) A' + (ms'n) m5
= 4	(W, W) + (W2 V)W2
	11WIII2 11WIIIZ
o With v = 11	72,3,1)
00 LW1, V) =	$=2 \langle w_2, v \rangle = \delta$
$\frac{1}{14}(v) = \frac{2}{2}$	(1,0,0,1) + 5/ (0,1,1,0)
= ($1, \frac{6}{2}, \frac{5}{2}, 1)$

$$TI_{U}(v) = V - TI_{U}(v)$$

= $(1,2,3,1) - (1,5h,5h,1)$
= $(0,-12,12,0)$

[4]

Unit Code MAZOLLO	Unit Title Alcebra 2F	
Academic Year 2021/2	Examiner France	
Semester \	Question No.	Page of
Part	•	Mark
	$\cdot 0 \cdot 11 \cdot 0^{7}$	1. 27

9.(a)
$$Q = d\beta = \frac{1}{4}((d+\beta)^2 - (d-\beta)^2)$$

and $d+\beta$, $d-\beta$ are $l+\alpha$, richep since d , β are. Thus Q has sig $(l+1)$ σ rank 2 .

(b) We had a diagonalisty basis.

Exploit the reso in (31) slot to see flat

Viel. Vz=ez is start of such a basis.

o'o need
$$S_z=y$$
 with

 $S_A_terry = S_A_terry = O$

i.e. $(1,0,0) \left(\begin{array}{cc} 1 & 2 & 0 \\ 2 & 0 & t \\ 0 & 6 & 3 \end{array} \right) \left(\begin{array}{ccc} 91 \\ 92 \\ 72 \end{array} \right) = 91+242 = O$

Total

DEPARTMENT OF MATHEMATICAL SCIENCES Outline solution to Examination Questions

Unit Code MAZULL6	Unit Title Alcebra 21	A
Academic Year 2021/2	Examiner Fran	
Semester	Question No.	Page of

Part Mark

$$(0,0,1)\begin{pmatrix} 1&2&0\\2&0&0\\0&0&3\end{pmatrix}\begin{pmatrix} y_1\\y_2\\y_3\end{pmatrix} = 6y_2+3y_3 = 0$$

$$\frac{3}{8}(y,y) = (-6,3,-t) \quad \text{will do } 3$$

$$\frac{3}{8}(y,y) = (-6,3,-t) \quad \frac{2}{2} \quad \frac{3}{-t} \quad \frac{3}{-t}$$

$$= (-6,3,-t) \quad \frac{3}{-12-t^2} = -3(12+t^2)$$