Section A

1. Define subspaces $U, W \leq \mathbb{R}^{3}$ by $U=\operatorname{span}\{(1,0,-1),(2,-1,0)\}$ and $W=$ $\operatorname{span}\{(1,1,1)\}$.
Show that the sum $U+W$ is direct.
2. With U, W as in question 1 , find $u \in U$ and $w \in W$ such that

$$
(1,2,3)=u+w .
$$

3. Use dot product to make \mathbb{R}^{3} into an inner product space.

With W as in question 1 , find a basis for W^{\perp}.
4. Let V be a complex inner product space and ϕ a unitary operator on V.

If λ is an eigenvalue of ϕ, show that $\|\lambda\|=1$.
5. Let V be a vector space over a field \mathbb{F} and $v, w \in V$ with $v \neq w$. Show that there is $\alpha \in V^{*}$ such that $\alpha(v) \neq \alpha(w)$.
6. For $t \in \mathbb{R}$, define a quadratic form Q_{t} on \mathbb{R}^{2} by $Q_{t}(x)=x_{1}^{2}-2 x_{1} x_{2}+t x_{2}^{2}$. For which t does Q_{t} have rank 1?

Section B

7. Let V be a vector space over a field \mathbb{F}.
(a) Let $\pi_{1}, \pi_{2}, \pi_{3} \in L(V)$ satisfy

$$
\begin{aligned}
\pi_{i} \circ \pi_{j} & =\delta_{i j} \pi_{i}, \quad \text { for } 1 \leq i, j \leq 3 \\
\operatorname{id}_{V} & =\pi_{1}+\pi_{2}+\pi_{3}
\end{aligned}
$$

(i) Show that $V=\operatorname{im} \pi_{1} \oplus \operatorname{im} \pi_{2} \oplus \operatorname{im} \pi_{3}$.
(ii) Show that $\operatorname{ker} \pi_{1}=\operatorname{im} \pi_{2} \oplus \operatorname{im} \pi_{3}$.
(b) Let $\phi \in L(V)$ be a linear operator on V and $U \leq V$ a ϕ-invariant subspace. Let $q: V \rightarrow V / U$ be the quotient map.
Show that there is a well-defined linear operator $\tilde{\phi} \in L(V / U)$ such that

$$
\begin{equation*}
\tilde{\phi}(q(v))=q(\phi(v)) \tag{6}
\end{equation*}
$$

for $v \in V$.
8. (a) Let V be a finite-dimensional complex inner product space and $\phi \in L(V)$ a linear operator.
Show that λ is an eigenvalue of ϕ if and only if $\bar{\lambda}$ is an eigenvalue of ϕ^{*}.
(b) Let $U=\operatorname{span}\{(1,1,-1,-1),(1,0,0,-1)\} \leq \mathbb{R}^{4}$ and view \mathbb{R}^{4} as an inner product space using dot product.
(i) Compute U^{\perp}.
(ii) Find an orthonormal basis of U^{\perp}.
(iii) Compute the orthogonal projections of $(1,2,3,1)$ onto U and U^{\perp}.
9. (a) Let V be a finite-dimensional real vector space and $\alpha, \beta \in V^{*}$ linearly independent linear functionals.
Define a symmetric bilinear form B on V by

$$
\begin{equation*}
B(v, w)=\frac{1}{2}(\alpha(v) \beta(w)+\alpha(w) \beta(v)) . \tag{6}
\end{equation*}
$$

Compute the rank and signature of B.
(b) Let $t \in \mathbb{R}$ and define A_{t} by

$$
A_{t}=\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 0 & t \\
0 & t & 3
\end{array}\right)
$$

For which t does the symmetric bilinear form $B_{A_{t}}$ have signature $(3,0)$?

