Section A

1. Let V be a vector space over a field \mathbb{F} and let $V_{1}, \ldots, V_{k} \leq V$ be linear subspaces.

What is the sum $V_{1}+\cdots+V_{k}$?
What does it mean to say that the sum $V_{1}+\cdots+V_{k}$ is direct?
2. Let V be a vector space over a field $\mathbb{F}, v \in V$ and $U \leq V$ a linear subspace.

What is the coset $v+U$?
Let $w \in V$. Show that $w \in v+U$ if and only if $\lambda v+(1-\lambda) w \in v+U$, for all $\lambda \in \mathbb{F}$.
3. Let V be a vector space over \mathbb{C}.

What is an inner product on V ?
For $x, y \in \mathbb{C}^{2}$, let

$$
\begin{equation*}
\langle x, y\rangle=\overline{x_{1}} y_{2}+\overline{x_{2}} y_{1} . \tag{4}
\end{equation*}
$$

Is \langle,$\rangle an inner product on \mathbb{C}^{2}$? (You must justify your answer.)
4. Let V be an inner product space over \mathbb{C} and ϕ a linear operator on V.

What is an adjoint of ϕ ?
What does it mean to say that ϕ is normal?
5. Let V be a vector space over a field \mathbb{F}.

What is the dual space V^{*} of V ?
Let $U \leq V$ be a linear subspace. What is the annihilator ann U of U ?
6. Compute the rank and signature of the quadratic form Q on \mathbb{R}^{2} given by

$$
Q(x)=x_{1}^{2}-6 x_{1} x_{2}+9 x_{2}^{2} ?
$$

[4]

Section B

7. Let V, W be finite-dimensional vector spaces over a field $\mathbb{F}, U \leq V$ a linear subspace and $\phi: U \rightarrow W$ be a linear map.
(a) Prove that there is a linear map $\Phi: V \rightarrow W$ such that

$$
\begin{equation*}
\Phi(u)=\phi(u), \tag{6}
\end{equation*}
$$

for all $u \in U$.
(b) Prove that the restriction map $r: L(V, W) \rightarrow L(U, W)$ given by $r(\Phi)=\Phi_{\mid U}$ is a linear surjection.
What is its kernel?
(c) State the First Isomorphism Theorem.
(d) Prove that $U^{*} \cong V^{*} / \operatorname{ann} U$.
8. (a) State and prove the Cauchy-Schwarz inequality.
[6]
(b) Let $a_{1}, \ldots, a_{n} \in \mathbb{R}$. Prove that

$$
\left(\sum_{i=1}^{n} a_{i} / n\right)^{2} \leq \sum_{i=1}^{n} a_{i}^{2} / n
$$

[3]
(c) Compute the QR decomposition of the matrix A given by

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \tag{9}\\
1 & -1 & -1 \\
1 & -3 & 3
\end{array}\right)
$$

9. (a) Let V be a real vector space.

What is a bilinear form on V ?
What is a quadratic form on V ?
What are the rank and signature of a quadratic form?
State Sylvester's Law of Inertia.
(b) Diagonalise the quadratic form $Q: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by

$$
Q(x)=x_{1}^{2}+3 x_{2}^{2}-x_{3}^{2}+2 x_{1} x_{2}+4 x_{2} x_{3} .
$$

What are the rank and signature of Q ?

