Section A

1. Let V be a vector space over a field $\mathbb F$ and let $V_1,\ldots,V_k \leq V$ be linear subspaces.

```
What is the sum V_1 + \cdots + V_k?
What does it mean to say that the sum V_1 + \cdots + V_k is direct? [4]
```

- 2. Let V be a vector space over a field \mathbb{F} , $v \in V$ and $U \leq V$ a linear subspace. What is the **coset** v + U? Let $w \in V$. Show that $w \in v + U$ if and only if $\lambda v + (1 - \lambda)w \in v + U$, for all $\lambda \in \mathbb{F}$. [4]
- 3. Let V be a vector space over \mathbb{C} . What is an **inner product** on V? For $x, y \in \mathbb{C}^2$, let $\langle x, y \rangle = \overline{x_1}y_2 + \overline{x_2}y_1$.

Is \langle , \rangle an inner product on \mathbb{C}^2 ? (You must justify your answer.) [4]

- 4. Let V be an inner product space over C and φ a linear operator on V.
 What is an **adjoint** of φ?
 What does it mean to say that φ is **normal**? [4]
- 5. Let V be a vector space over a field F.
 What is the dual space V* of V?
 Let U ≤ V be a linear subspace. What is the annihilator ann U of U? [4]

6. Compute the rank and signature of the quadratic form Q on \mathbb{R}^2 given by

$$Q(x) = x_1^2 - 6x_1x_2 + 9x_2^2?$$
[4]

Section B

- 7. Let V, W be finite-dimensional vector spaces over a field \mathbb{F} , $U \leq V$ a linear subspace and $\phi: U \rightarrow W$ be a linear map.
 - (a) Prove that there is a linear map $\Phi: V \to W$ such that

$$\Phi(u) = \phi(u),$$

for all
$$u \in U$$
. [6]
(b) Prove that the restriction map $r : L(V, W) \rightarrow L(U, W)$ given by $r(\Phi) = \Phi_{|U}$
is a linear surjection.
What is its kernel? [6]
(c) State the First Isomorphism Theorem. [2]

(d) Prove that $U^* \cong V^* / \operatorname{ann} U$. [4]

- 8. (a) State and prove the Cauchy–Schwarz inequality.
 - (b) Let $a_1, \ldots, a_n \in \mathbb{R}$. Prove that

$$\left(\sum_{i=1}^{n} a_i / n\right)^2 \le \sum_{i=1}^{n} a_i^2 / n.$$

(c) Compute the QR decomposition of the matrix A given by

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & -3 & 3 \end{pmatrix}.$$
[9]

- 9. (a) Let V be a real vector space.
 What is a bilinear form on V?
 What is a quadratic form on V?
 What are the rank and signature of a quadratic form?
 State Sylvester's Law of Inertia. [9]
 - (b) Diagonalise the quadratic form $Q: \mathbb{R}^3 \to \mathbb{R}$ given by

$$Q(x) = x_1^2 + 3x_2^2 - x_3^2 + 2x_1x_2 + 4x_2x_3.$$

[6]

[3]