
M216: Exercise sheet 9

Warmup questions

1. Let U ≤ V . Show that annU ≤ V ∗ .

2. Let V be finite-dimensional and U ≤ V . Show that

dimannU + dimU = dimV.

Homework

3. Prove at least one of the following assertions:

(a) Let E,F ≤ V ∗ . Then

sol(E + F ) = (solE) ∩ (solF )

(solE) + (solF ) ≤ sol(E ∩ F )

with equality if V is finite-dimensional.

(b) Let U,W ≤ V . Then

ann(U +W ) = (annU) ∩ (annW )

(annU) + (annW ) ≤ ann(U ∩W )

with equality if V is finite-dimensional.

4. Let φ ∈ L(V,W ) be a linear map of vector spaces. Show that

kerφT = ann(imφ)

imφT ≤ ann(kerφ)

with equality if V,W are finite-dimensional.

Extra questions

5. Let U ≤ V and let ι : U → V be the inclusion map (so that ι(u) = u , for all

u ∈ U ) and q : V → V /U the quotient map.

(a) Show that ιT : V ∗ → U∗ is the restriction map: thus ιT (α) = α|U with

kernel annU .

If V is finite-dimensional, show that ιT is surjective and deduce that

V ∗/annU ∼= U∗ .

(b) Show that qT : (V /U)∗ → V ∗ is injective with im qT ≤ annU . If V is

finite-dimensional, show that qT is an isomorphism (V /U)∗ → annU .

6. Recall the linear injection ev : V → V ∗∗ . For U ≤ V , show that ev(U) ≤
ann(annU) with equality if V is finite-dimensional.
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M216: Exercise sheet 9—Solutions

1. Firstly, 0 ∈ annU so annU 6= ∅ . So we just check that annU is closed under

addition and scalar multiplication. Let α1, α2 ∈ annU and u ∈ U . Then, α1(u) =

α2(u) = 0 so that (α1 + α2)(u) = 0 + 0 = 0 whence α1 + α2 ∈ annU also. Similarly,

for α ∈ annU and λ ∈ F , (λα)(u) = λα(u) = λ0 = 0 so that λα ∈ annU .

Alternatively, note that restriction to U , α 7→ α|U is a linear map V ∗ → U∗ with

kernel annU .

2. Let v1, . . . , vk be a basis of U and extend to a basis v1, . . . , vn of V . Let v∗1 , . . . , v
∗
n

be the dual basis. Now observe that α ∈ V ∗ is in annU if and only if α(vj) = 0 ,

for 1 ≤ j ≤ k . Thus, writing α =
∑n

i=1 α(vi)v
∗
i , we see that α ∈ annU if and only if

α ∈ span{v∗i | k + 1 ≤ i ≤ n} . Thus annU = span{v∗i | k + 1 ≤ i ≤ n} so that

dimannU = n− k = dimV − dimU.

3. (a) E,F ≤ E+F so sol(E+F ) ≤ solE, solF whence sol(E+F ) ≤ (solE)∩ (solF ) .

Conversely, if v ∈ (solE) ∩ (solF ) then α(v) = β(v) = 0 , for all α ∈ E and

β ∈ F . Thus, for α+β ∈ E+F , (α+β)(v) = 0+0 = 0 so that v ∈ sol(E+F ) . We

conclude that (solE)∩(solF ) ≤ sol(E+F ) and so (solE)∩(solF ) = sol(E+F ) .

For the second statement, E∩F ≤ E,F so that solE, solF ≤ sol(E∩F ) whence

(solE) + (solF ) ≤ sol(E ∩ F ) by Proposition 2.1(2) of the notes. For equality

when V is finite-dimensional, we show that both subspaces have the same

dimension using the first part, the formula for solE and the dimension for-

mula1. The dimension formula gives

dim((solE) + (solF )) = dimsolE + dimsolF − dim((solE) ∩ (solF ))

= dimsolE + dimsolF − dimsol(E + F ),

using the first part,

= dimV − dimE + dimV − dimF − (dimV − dim(E + F ))

= dimV − dim(E ∩ F ),

by the dimension formula again,

= dimsol(E ∩ F ).

(b) First we note that if X ≤ Y ≤ V then annY ≤ annX : if α ∈ annY , then

α|Y = 0 and so, in particular, α|X = 0 , that is α ∈ annX .

We now put this to work: U,W ≤ U+W so ann(U+W ) ≤ annU,annW whence

ann(U +W ) ≤ (annU)∩ (annW ) . For the converse, if α ∈ (annU)∩ (annW ) we

have α|U = 0 and α|W = 0 . So if v = u+ w ∈ U +W then α(v) = α(u) + α(w) =

0 + 0 = 0 so that v ∈ ann(U +W ) . Thus ann(U +W ) = (annU) ∩ (annW ) .

For the second statement, U ∩W ≤ U,W so that annU,annW ≤ ann(U ∩W )

and then (annU) + (annW ) ≤ ann(U ∩W ) by Proposition 2.1(2). For equality

1If X,Y ≤ W then dim(X + Y ) + dim(X ∩ Y ) = dimX + dimY .



when V is finite-dimensional, we argue as in part (a). The dimension formula

says

dim((annU) + (annW )) = dimannU + dimannW − dim((annU) ∩ (annW ))

= dimannU + dimannW − dimann(U +W ),

using the first part,

= dimV − dimU + dimV − dimW − (dimV − dim(U +W ))

= dimV − dim(U ∩W ),

by the dimension formula again,

= dimann(U ∩W ).

Notice that the arguments for part (b) are essentially identical to those for

part (a): the key points are that ann and sol reverse inclusions and take

subspaces to ones of complementary dimension.

4. Let α ∈ W ∗ . Then α ∈ kerφT if and only if α ◦ φ = 0 if and only if α(imφ) = {0} ,
that is α ∈ ann(imφ) . Thus kerφT = ann(imφ) .

For the second statement, suppose that β ∈ imφT so that β = φT (α) = α ◦ φ , for
some α ∈ W ∗ . Then if v ∈ kerφ , β(v) = α(φ(v)) = 0 so that β ∈ ann(kerφ) . Thus

imφT ≤ ann(kerφ) .

For equality when V is finite-dimensional, recall that we already know from lec-

tures that rankφ = rankφT from which we see from rank-nullity that

dim imφT = rankφ = dimV − dimkerφ = dimann(kerφ),

where the last equality comes from Question 2.

5. (a) For α ∈ V ∗ and u ∈ U , ιT (α)(u) = α(ι(u)) = α(u) = α|U (u) . Thus ιT (α) = α|U

and ιT is the restriction map. Now ker ιT = {α ∈ V ∗ | α|U = 0} = annU .

Proposition 2.11 tells us2 that any β ∈ U∗ is the restriction of some α ∈ V ∗ so

that ιT surjects: im ιT = U∗ . Thus, the First Isomorphism Theorem, applied

to ιT , tells us that

V ∗/annU = V ∗/ker ιT ∼= im ιT = U∗.

This gives us another approach to Question 2.

(b) All we need to know about q is that it is a linear surjection with kernel U .

Then, by Question 4, ker qT = ann(im q) = annV /U = {0} (any α ∈ (V /U)∗

that vanishes on V /U is zero by definition!) so that qT injects. Moreover,

Question 4 tells us that im qT ≤ ann(ker q) = annU with equality when V is

finite-dimensional. Thus, in that case, qT is a linear bijection (V /U)∗ → annU

and so an isomorphism.

2This is where we use that V is finite-dimensional.



6. This is just a matter of not panicking! Let f ∈ ev(U) so that f = ev(u) , for some

u ∈ U . Let α ∈ annU . We need f(α) = 0 . But

f(α) = ev(u)(α) = α(u) = 0,

since α ∈ annU .

When V is finite-dimensional, we know that ev is an isomorphism so that dimev(U) =

dimU . Meanwhile

dim(ann(annU)) = dimV ∗ − dimannU = dimV − (dimV − dimU) = dimU

so that ev(U) and ann(annU) have the same dimension and so coincide.


