M216: Exercise sheet 9

Warmup questions
1. Let U <V. Show that annU <V*.
2. Let V be finite-dimensional and U < V. Show that
dimannU +dimU =dimV.
Homework
3. Prove at least one of the following assertions:
(a) Let E,F <V*. Then
SOol(E + F) = (sol E) N (sol F)
(sol E) + (sol F) <sol(ENF)
with equality if V is finite-dimensional.
(b) Let U,W <V . Then
ann(U +W) = (annU) N (annW)
(annU) + (annW) <ann(UNW)
with equality if V' is finite-dimensional.
4. Let ¢ € L(V,W) be a linear map of vector spaces. Show that
ker¢? = ann(im ¢)
im ¢? < ann(ker ¢)
with equality if V., W are finite-dimensional.
Extra questions

5. Let U<V andlet .:U — V be the inclusion map (so that «(u) = u, for all
uweU)and ¢:V — V/U the quotient map.
(a) Show that .7 : V* — U* is the restriction map: thus "(a) = a;y with
kernel annU .
If V is finite-dimensional, show that .7 is surjective and deduce that
V*/annU = U*.
(b) Show that ¢* : (V/U)* — V* is injective with im¢? < annU. If V is
finite-dimensional, show that ¢” is an isomorphism (V/U)* — annU .
6. Recall the linear injection ev: V — V**. For U <V, show that ev(U) <
ann(annU) with equality if V is finite-dimensional.
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M216: Exercise sheet 9—Solutions

1. Firstly, 0 € annU so annU # 0. So we just check that annU is closed under
addition and scalar multiplication. Let a;,as € annU and w € U. Then, a;(u) =
az(u) =0 so that (a1 + a2)(u) =0+0=0 whence a; +az € annU also. Similarly,
for a €¢annU and A eF, (Aa)(u) = Aa(u) =X0=0 so that \aeannU.
Alternatively, note that restriction to U, a +— a)y is a linear map V* — U* with
kernel annU .

2. Let vy,...,v, be a basis of U and extend to a basis vq,...,v, of V. Let vf,... v}
be the dual basis. Now observe that a« € V* isin annU if and only if a(v;) =0,
for 1 <j <k. Thus, writing a =", a(v;)v}, we see that a € annU if and only if

aespan{vf | k+1<i<n}.Thus annU =span{v} | k+1<i<n} sothat
dimannU =n—-k=dimV —dimU.

3. (@) E,F<E+F so sol(E+F)<solE,sol F whence sol(E+ F) < (sol E)n(sol F) .
Conversely, if v € (sol E)n (sol F) then «(v) = 8(v) = 0, for all « € E and
B eF.Thus, for a+pe E+F, (a+f)(v) =0+0=0 sothat v e sol(E+F). We
conclude that (sol E)Nn(sol F) < sol(E+F) and so (sol E)N(sol F) =sol(E+F).
For the second statement, ENF < E, F sothat sol E,sol F < sol(ENF) whence
(sol E) + (sol F) < sol(E N F) by Proposition 2.1(2) of the notes. For equality
when V is finite-dimensional, we show that both subspaces have the same
dimension using the first part, the formula for sol E and the dimension for-
mulal. The dimension formula gives

dim((sol E) + (sol F)) = dimsol E + dimsol F' — dim((sol E) N (sol F))
=dimsol E+ dimsol F — dimsol(E + F),

using the first part,

=dimV —dimE +dimV —dimF — (dimV —dim(E + F))
=dimV —dim(ENF),

by the dimension formula again,
=dimsol(ENF).

(b) First we note that if X <Y <V then annY < annX: if « € annY, then
ajy =0 and so, in particular, oyx =0, thatis acannX.
We now put this to work: U,W <U+W so ann(U+W) < annU,annW whence
ann(U+W) < (annU)n(annW). For the converse, if a« € (annU)Nn(annW) we
have apy =0 and aw =0. Soif v=u+wec U+ W then a(v) = a(u) + a(w) =
0+0=0 sothat v eann(U+W). Thus ann(U + W) = (annU) N (annW).
For the second statement, UNW < U, W so that annU,annW < ann(U NW)
and then (annU) + (annW) < ann(U N W) by Proposition 2.1(2). For equality

Uf X,V <W then dim(X +Y)+dim(XNY) =dimX +dimY .



when V is finite-dimensional, we argue as in part (a). The dimension formula
says

dim((annU) + (annW)) =dimannU +dimann W —dim((annU) N (ann W))
=dimannU +dimannW —dimann(U + W),

using the first part,

—dimV —dimU +dimV — dimW — (dimV — dim(U + W))
—dimV —dim(U N W),

by the dimension formula again,
=dimann(U N W).

Notice that the arguments for part (b) are essentially identical to those for
part (a): the key points are that ann and sol reverse inclusions and take
subspaces to ones of complementary dimension.

Let a € W*. Then a € kerg¢® if and only if ao¢ =0 if and only if a(im¢) = {0},
that is a € ann(img¢) . Thus ker¢? = ann(img¢).

For the second statement, suppose that 3 € img¢? so that 3 = ¢T(a) = a0 ¢, for
some a € W*. Thenif v € ker¢, B(v) = a(é(v)) =0 so that g € ann(ker¢). Thus
im¢? < ann(ker¢).

For equality when V is finite-dimensional, recall that we already know from lec-
tures that rank ¢ = rank ¢ from which we see from rank-nullity that

dimim ¢ =rank ¢ = dimV — dimker ¢ = dim ann(ker ¢),

where the last equality comes from Question 2.

(@) For a e V* and u e U, JJ(a)(u) = a((v)) = a(u) = ap(u). Thus T(a) = oqpr
and T is the restriction map. Now ker/” ={a e V*|ay =0} =annU .
Proposition 2.11 tells us? that any 3 € U* is the restriction of some a € V* so
that .7 surjects: im.” = U*. Thus, the First Isomorphism Theorem, applied
to 7, tells us that

V*/annU = V*/ker.” =im.” = U*.

This gives us another approach to Question 2.

(b) All we need to know about ¢ is that it is a linear surjection with kernel U .
Then, by Question 4, kerq” = ann(imgq) = annV /U = {0} (any « € (V/U)*
that vanishes on V /U is zero by definition!) so that ¢ injects. Moreover,
Question 4 tells us that im¢” < ann(kerq) = annU with equality when V is
finite-dimensional. Thus, in that case, ¢7 is a linear bijection (V/U)* — annU
and so an isomorphism.

°This is where we use that V is finite-dimensional.



This is just a matter of not panicking! Let f € ev(U) so that f = ev(u), for some
uelU. Let a cannU. We need f(a)=0. But

since a€annU.

When V isfinite-dimensional, we know that ev isanisomorphism so that dimev(U) =
dimU . Meanwhile

dim(ann(annU)) =dimV* —dimannU =dimV — (dimV —dimU) =dimU

so that ev(U) and ann(annU) have the same dimension and so coincide.



