
M216: Exercise sheet 8

Warmup questions

1. Let α1, . . . , αk span E ≤ V ∗ . Show that

solE =

k⋂
i=1

kerαi.

2. Define α, β ∈ (R3)∗ be given by

α(x) = 2x1 + x2 − x3

β(x) = x1 − x2 + x3,

for x ∈ R3 .

Let E = span{α, β} and compute solE .

Homework

3. Let A,B ∈ M4(C) be given by

A =


0 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0


B =


0 1 1 1

0 0 0 −1

0 0 0 1

0 0 0 0


Compute the Jordan normal forms of A and B .

Are A and B similar?

4. Let U ≤ V and v ∈ V with v /∈ U . Show that there is α ∈ V ∗ such that α

is zero on U but α(v) 6= 0 .

Hint: Apply theorem 5.3 to V /U .

Extra questions

5. Let V be a vector space over a field F and let α, β ∈ V ∗ be non-zero linear

functionals.

Prove that kerα = kerβ if and only there is non-zero λ ∈ F such that

α = λβ .

Hint: If v0 /∈ kerα , show that V = span{v0}+ kerα .

6. Let V be a vector space over F . For v ∈ V , define ev(v) : V ∗ → F by

ev(v)(α) = α(v).



(a) Show that ev(v) is linear so that ev(v) ∈ V ∗∗ .

(b) We therefore have a map ev : V → V ∗∗ . Show that ev is linear.

(c) Show that ev is injective.

(d) Deduce that if V is finite-dimensional then ev : V → V ∗∗ is an isomor-

phism.
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M216: Exercise sheet 8—Solutions

1. Let v ∈ solE so that α(v) = 0 , for all α ∈ E . Then, in particular, each αi(v) = 0 so

that v ∈ kerαi , for 1 ≤ i ≤ k . That is, v ∈
⋂k

i=1 kerαi and solE ≤
⋂k

i=1 kerαi .

Conversely, let v ∈
⋂k

i=1 kerαi so that αi(v) = 0 , for 1 ≤ i ≤ k . Let α ∈ E . Then

α =
∑k

i=1 λiαi , for some λ1, . . . , λk ∈ F , since the αi span E , and

α(v) =

k∑
i=1

λiαi(v) = 0

so that v ∈ solE . Thus
⋂k

i=1 kerαi ≤ solE and we are done.

2. According to question 1, solE consists of those x ∈ R3 such that α(x) = β(x) = 0 ,

that is, such that

2x1 + x2 − x3 = 0

x1 − x2 + x3 = 0.

Adding these gives 3x1 = 0 and then the first gives x2 = x3 so that solE =

span{(0, 1, 1)} .

3. Both being upper triangular, we see that ∆A = ∆B = x4 so that the only eigenvalue

of A or B is 0 . Moreover, we compute to see that A2 = B2 = 0 so that mA = x2 .

Thus both A and B have at least one 2×2 Jordan block J2 . Thus the possibilities

for the Jordan normal form of either are J2⊕J2 or J2⊕J1⊕J1 . To distinguish these,

recall that the number of Jordan blocks with eigenvalue 0 is the dimension of the

kernel. Now A has clearly has row rank 1 and so 3 -dimensional kernel. Thus A

has Jordan normal form J2 ⊕ J1 ⊕ J1 .

Meanwhile B has row rank 2 , thus nullity 2 so that it has JNF J2 ⊕ J2 .

Since they have different JNF, A and B are not similar.

4. Let q : V → V /U be the quotient map so that q is a linear surjection with kernel U

(this is all we need to know about the quotient construction). Since v /∈ U , q(v) 6= 0

so that, by the Sufficiency Principle (Theorem 5.3), there is β ∈ (V /U)∗ such that

β(q(v)) 6= 0 .

Let α = β ◦q : V → F . This is linear, being a composition of linear maps, so α ∈ V ∗ .

Moreover, α(v) = β(q(v)) 6= 0 while, if u ∈ U , q(u) = 0 so that α(u) = β(0) = 0 .

5. The reverse implication is clear: if λ 6= 0 and α = λβ then α(v) = 0 if and only if

λα(v) = β(v) = 0 .

Now suppose that kerα = kerβ with α 6= 0 . Thus there is v0 ∈ V such that

α(v0) 6= 0 . Following the hint, let v ∈ V and observe that v − (α(v)/α(v0))v0 ∈ kerα

so that V = span{v0}+ kerα .

Now, since v0 /∈ kerα = kerβ , β(v0) 6= 0 also. Set λ = α(v0)/β(v0) so that

α(v0) = λβ(v0).

Further α(v) = λβ(v) , for all v ∈ kerα , since both sides are zero. It follows that

α = λβ on span{v0}+ kerα = V .



6. This is a case of thinking carefully what each statement means after which it will

be very easy to prove.

(a) To see that ev(v) : V ∗ → F is linear, we must show that

ev(v)(α+ λβ) = ev(v)(α) + λev(v)(β),

for all α, β ∈ V ∗ and λ ∈ F . Using the definition of ev(v) , this reads

(α+ λβ)(v) = α(v) + λβ(v)

which is exactly the definition of the (pointwise) addition and scalar multipli-

cation in V ∗ .

(b) Linearity of ev : V → V ∗∗ means that for v, w ∈ V and λ ∈ F , we have

ev(v + λw) = ev(v) + λev(w).

This is supposed to be equality of elements of V ∗∗ , that is to say, equality

of two functions on V ∗ . This holds when the two functions give the same

answers on any α ∈ V ∗ so we need

ev(v + λw)(α) = ev(v)(α) + λev(w)(α).

However, using the definition of ev , this reads

α(v + λw) = α(v) + λα(w)

which is true since α is linear!

(c) ev is injective if and only if ker ev = {0} . Let v ∈ kerev . Thus ev(v) = 0 ∈ V ∗∗ ,

the zero functional on V ∗ . Otherwise said, ev(v)(α) = 0 , for all α ∈ V ∗ , or

equivalently, α(v) = 0 , for all α ∈ V ∗ . But the Sufficiency Principle now forces

v = 0 so that ev injects.

(d) If v is finite-dimensional, dimV = dimV ∗ = dimV ∗∗ so that ev is an isomor-

phism by rank-nullity since we have just seen that it injects.


