
M216: Exercise sheet 4

Warmup questions

1. Let p, q ∈ R[x] be given by p = x2 − 2x− 3 , q = x3 − 2x2 + 2x− 5 .

Let A ∈ M2(R) and B ∈ M3(R) be given by

A =

1 2

2 1

 B =


1 2 1

−2 0 1

2 1 1

 .

Compute p(A), p(B), q(A), q(B) .

2. Compute the characteristic polynomials of A and B , from question 1.

What do you notice?

3. Let F = Z2 , the field of two elements and let p = x2 + x ∈ F[x] .
Show that p(t) = 0 , for all t ∈ F .

Homework questions

4. Compute the minimum polynomial of A ∈ M5(R) given by

0 0 0 0 −3

1 0 0 0 6

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


.

5. Let φ ∈ L(V ) be an operator on a finite-dimensional vector space over F
and let p = mφ ∈ F[x] .
Let λ be a root of p .

(a) Show there is q ∈ F[x] with deg q < deg p such that

p = (x− λ)q.

(b) Prove that q(φ) is non-zero.

(c) Deduce that λ is an eigenvalue of φ .

This shows that the roots of p are exactly the eigenvalues of φ without

recourse to the Cayley–Hamilton theorem.

(d) Deduce that φ is invertible if and only if p has non-zero constant term.

Extra questions



6. Let φ ∈ L(V ) have minimal polynomial p = 4 + 5x + 6x2 − 7x3 − 8x4 + x5 , so

that φ is invertible by question 5(d).

Compute the minimal polynomial of φ−1 .

Hint: Think about multiplying a0 idV + · · ·+ φn by φ−n .
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M216: Exercise sheet 4—Solutions

1. We just compute:

A2 =

5 4

4 5

 , A3 =

13 14

14 13


so that

p(A) = A2 − 2A− 3I2 =

5 4

4 5

− 2

1 2

2 1

− 3

1 0

0 1

 =

0 0

0 0


q(A) = A3 − 2A2 + 2A− 5I3 =

13 14

14 13

− 2

5 4

4 5

+ 2

1 2

2 1

− 5

1 0

0 1

 =

 0 10

10 0

 .

Similarly,

p(B) =


−6 −1 2

4 −6 −3

−2 3 −1

 ,

q(B) =


0 0 0

0 0 0

0 0 0

 .

2. Again, we just compute:

∆A =

∣∣∣∣∣∣1− x 2

2 1− x

∣∣∣∣∣∣ = (1− x)2 − 4 = x2 − 2x− 3.

Similarly,

∆B =

∣∣∣∣∣∣∣∣∣
1− x 2 1

−2 −x 1

2 1 1− x

∣∣∣∣∣∣∣∣∣ = (1− x)
(
x(x− 1)− 1

)
− 2

(
2(x− 1)− 2

)
+ (−2 + 2x)

= (−x3 + 2x2 − 1)− 4x+ 8 + 2x− 2 = −x3 + 2x2 − 2x+ 5.

We notice that, with p, q as in question 1, p = ∆A and q = −∆B and so, again

from question 1,

∆A(A) = ∆B(B) = 0.

As we shall soon see, this is the Cayley–Hamilton theorem in action.

3. We recall that Z2 = {0,1} with addition and multiplication given by

0 = 0+ 0 = 1+ 1 1 = 0+ 1 = 1+ 0

0 = 00 = 01 = 10 1 = 11.

We immediately conclude that 12+1 = 0 = 02+0 so that p(t) = 1 , for both t ∈ F .



4. Let us compute the first few powers of A :

A2 =



0 0 0 −3 0

0 0 0 6 −3

1 0 0 0 6

0 1 0 0 0

0 0 1 0 0


A3 =



0 0 −3 0 0

0 0 6 −3 0

0 0 0 6 −3

1 0 0 0 6

0 1 0 0 0


A4 =



0 −3 0 0 0

0 6 −3 0 0

0 0 6 −3 0

0 0 0 6 −3

1 0 0 0 6



A5 =



−3 0 0 0 −18

6 −3 0 0 36

0 6 −3 0 0

0 0 6 −3 0

0 0 0 6 −3


Stare at the top row to see that there can be no monic polynomial p = a0 + · · ·+ xk

with k ≤ 4 with p(A) = 0 : the −3 on the top row of the leading term would give

a00 + · · · + ak−10 − 3 = 0 . On the other hand, we readily see that A5 − 6A + 3I5 = 0

so that mA = x5 − 6x+ 3 .

5. (a) The remainder theorem says we can write p = (x−λ)q+r with deg r < deg(x−
λ) = 1 so that r is degree zero and so constant. Evaluating at λ gives 0 =

p(λ) = 0q + r = r and we are done.

(b) q(φ) cannot be zero unless q = 0 since deg q < deg p and p is the minimal

polynomial of φ . But q cannot be zero since p is non-zero.

(c) Since q(φ) is non-zero, there is v ∈ V such that q(φ)v 6= 0 . Now

0 = p(φ)(v) = (φ− λ idV )(q(φ)(v))

so that q(φ)v is an eigenvector with eigenvalue λ .

(d) φ is invertible if and only if φ is injective if and only if zero is not an eigenvalue

if and only if (thanks to the previous part) zero is not a root of p if and only if

p has non-zero constant term.

6. If a0 idV +a1φ + · · · + φn = 0 then, multiplying by φ−n gives a0φ
−n + a1φ

n−1 + · · · +
an idV = 0 . In the case at hand, this means that

4φ−5 + 5φ−4 + 6φ−3 − 7φ−2 − 8φ−1 + idV = 0.

If there was a non-zero polynomial q =
∑4

k=1 bkx
k of lower degree with q(φ−1) = 0

gives

b4 idV + · · ·+ b0φ
4 = 0,

contradicting the minimality of p . Thus, dividing by 4 to get a monic polynomial,

the minimum polynomial of φ−1 is 1/4− 2x− 7/4x2 + 3/2x3 + 5/4x4 + x5 .

More generally, the same argument says that if
∑n

k=0 akx
k is the minimal polyno-

mial of invertible φ with degree n then 1/a0
∑n

k=0 an−kx
k is the minimal polyno-

mial of φ−1 .


