
M216: Exercise sheet 1

Warmup questions

1. Let U be a subset of a vector space V . Show that U is a linear subspace

of V if and only if U satisfies the following conditions:

(i) 0 ∈ U ;

(ii) For all u1, u2 ∈ U and λ ∈ F , u1 + λu2 ∈ U .

2. Which of the following subsets of R3 are linear subspaces? In each case,

briefly justify your answer.

(a) U1 := {(x1, x2, x3) | x21 + x22 + x23 = 1} (b) U2 := {(x1, x2, x3) | x1 = x2}
(c) U3 := {(x1, x2, x3) | x1 + 2x2 + 3x3 = 0}

3. Which of the following maps f : R2 → R2 are linear? In each case, briefly

justify your answer.

(a) f(x, y) = (5x+ y, 3x− 2y) (b) f(x, y) = (5x+2, 7y) (c) f(x, y) = (cos y, sinx)

(d) f(x, y) = (3y2, x3) .

Homework

4. Let I be a set and V a vector space over a field F . Recall that V I is the

set of maps I → V .

Show that V I is a vector space under pointwise addition and scalar multi-

plication.

5. Let R[x] be the space of real polynomials. This is a vector space under

coefficient-wise addition and scalar multiplication.

For d ∈ N , let Pd ⊂ R[x] be the set of polynomials of degree no more than

d . Show that Pd ≤ R[x] and has basis 1, x, . . . , xd

Define a linear map D : Pd → Pd by D(p) = p′ . Compute its matrix with

respect to 1, x, . . . , xd . What are kerD and imD ?

Additional questions

6. Which of the following subsets of C3 are linear subspaces over C ? In each

case, briefly justify your answer.

(a) U1 := {(z1, z2, z3) | z1z2 = 1} (b) U2 := {(z1, z2, z3) | z1 = z̄2} (c) U3 :=

{(z1, z2, z3) | z1 +
√
−1z2 + 3z3 = 0}

7. Let V be an n -dimensional vector space over C , and let VR be the un-

derlying vector space over R (thus VR has the same set of vectors as V ,

but scalar multiplication is restricted to real scalars). Prove that VR has

dimension 2n .

[Hint: let B : v1, v2, . . . , vn be a basis for V and show that BR : v1, iv1, v2, iv2, . . . , vn, ivn

is a basis for VR , where i ∈ C is
√
−1 rather than an index!]



Please hand in at 4W level 1 by NOON on Friday 13th October

2023



M216: Exercise sheet 1—Solutions

1. First suppose that U ≤ V . The U is non-empty so there is some u ∈ U and

then, since U is closed under addition and scalar multiplication, 0 = u+(−1)u ∈ U

also and condition (i) is satisfied. Now if u1, u2 ∈ U and λ ∈ F , then λu2 ∈ U

( U is closed under scalar multiplication) and so u1 + λu2 ∈ U ( U is closed under

addition). Thus condition (ii) holds also.

For the converse, if conditions (i) and (ii) hold, then, first, 0 ∈ U so U is non-empty

and, second, U is closed under addition (take λ = 1 in condition (ii)) and under

scalar multiplication (take u1 = 0 in condition (ii)). Thus U ≤ V .

2. (a) U1 is not a subspace as it does not contain 0 !

(b) U2 is a subspace: in fact, it is kerφA where A =
(
1 −1 0

)
.

(c) U3 is a subspace. It is kerφA for A =
(
1 2 3

)
.

3. (a) Here f is linear: it is the map φA corresponding to the matrix

A =

5 1

3 −2

 .

(b) This is not linear (because of that +2 term). In particular f(0, 0) = (2, 0) 6= 0 !

(c) Again f(0, 0) = (1, 0) 6= 0 so this f cannot be linear. Of course, we already

know this because it is certainly not true that cos(y1 + y2) = cos y1 + cos y2 .

(d) Another non-linear map: for example f(2x, 2y) 6= 2f(x, y) .

4. The basic idea is that the vector space axioms for V I will follow from those of V

applied to the values of elements of V I . Since those elements are completely

determined by their values, this will bake the cake.

In more detail: let u, v, w ∈ V I , then, for i ∈ I ,

(u+ v)(i) = u(i) + v(i) = v(i) + u(i) = (v + u)(i),

whence u + v = v + u . Here the first and last equalities are just the definition of

pointwise addition and the middle one of commutativity of addition in V .

Similarly,

((u+v)+w)(i) = (u+v)(i)+w(i) = (u(i)+v(i))+w(i) = u(i)+(v(i)+w(i)) = (u+(v+w))(i)

so that (u+ v) + w = u+ (v + w) .

The zero element is the zero map defined by 0(i) := 0 , for all i ∈ I , while the

additive inverse −v of v ∈ V I is defined by (−v)(i) := −(v(i)) . Now

(v + 0)(i) = v(i) + 0(i) = v(i) + 0 = v(i)

(v + (−v))(i) = v(i) + (−v)(i) = v(i)− v(i) = 0 = 0(i)

so that v + 0 = v and v + (−v) = 0 as required.



The axioms around scalar multiplication are verified in the sameway. For example,

for λ, µ ∈ F ,

((λ+ µ)v)(i) = (λ+ µ)(v(i)) = λ(v(i)) + µ(v(i)) = (λv)(i) + (µv)(i) = (λv + µv)(i)

so that (λ+ µ)v = λv + µv .

Again, for u, v ∈ V I and λ ∈ F ,

(λ(u+ v))(i) = λ(u+ v)(i) = λ(u(i) + v(i)) = λu(i) + λv(i)

= (λu)(i) + (λv)(i) = (λu+ λv)(i)

so that λ(u+ v) = λu+ λv .

For λ, µ ∈ F and v ∈ V I ,

((λµ)v)(i) = (λµ)v(i) = λ(µv(i)) = (λ(µv))(i)

so that (λµ)v = λ(µv) .

Finally, (1v)(i) = 1v(i) = v(i) so that 1v = v and we are (at last!) done.

5. Clearly Pd is non-empty as it contains the zero polynomial. Moreover, for any

polynomials p, q and λ ∈ R , we have

deg(p+ q) ≤ max{deg p,deg q}

deg(λp) ≤ deg p,

from which it easily follows that Pd is closed under addition and scalar multiplica-

tion.

Any polynomial p ∈ Pd has a unique expression of the form

p = a0 + a1x+ · · ·+ adx
d.

It now follows from Proposition 1.1 that 1, x, . . . , xd is a basis for Pd .

Set vj = xj−1 , for 1 ≤ j ≤ d+ 1 , and compute Dvj in terms of the vi :

Dvj = (j − 1)vj−1

so that the matrix A of D with respect to this basis has all entries 0 except just

above the diagonal where A(j−1)j = j − 1 . For example, if d = 3 , we have

A =


0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

 .

The kernel of D is the constant polynomials P0 and the image is Pd−1 .

6. (a) 0 /∈ U1 so U1 is not a subspace.

(b) U2 is not a subspace because it is not closed under complex scalar multiplica-

tion: (1, 1, 0) ∈ U2 but i(1, 1, 0) = (i, i, 0) is not (here i =
√
−1 ). In general, any

time you see complex conjugation in the definition of a subset, it is unlikely to

be a complex subspace.



(c) U3 = kerφA for A =
(
1

√
−1 3

)
and so is a subspace.

7. Following the hint we need to show that any v ∈ VR can be written uniquely as

a real linear combination of vectors in the list BR . Since v ∈ V , we may write

v =
∑n

j=1 λjvj for unique λj ∈ C . Write λj = aj + ibj with aj , bj ∈ R . Then v =∑n
j=1(ajvj + bjivj) and this expression is unique: it suffices to observe that for

v = 0 , λj = 0 for all j , and hence aj = bj = 0 for all j .


