M216: Exercise sheet 1

Warmup questions

1. Let U be a subset of a vector space V. Show that U is a linear subspace
of V if and only if U satisfies the following conditions:
(i) 0eU;
(i) Forall uy,up €U and XeF, ujp +Aug € U.
2. Which of the following subsets of R? are linear subspaces? In each case,
briefly justify your answer.
(@) Uy == {(v1,29,23) | 22 + 23 + 23 = 1} (b) Uz := {(w1,72,73) | 71 = 22}
(c) Us:={(z1,22,23) | 1 + 222 + 323 = 0}
3. Which of the following maps f : R> — R? are linear? In each case, briefly
justify your answer.
(@) f(z,y) = bz +y,3x—2y) (b) f(z,y) = (bz+2,7y) () f(z,y) = (coSy,sinx)
(d) f(z,y) = (3y* 7).
Homework
4. Let T be asetand V a vector space over a field F. Recall that V7 is the
setof maps Z— V.
Show that V7 is a vector space under pointwise addition and scalar multi-
plication.
5. Let R[z] be the space of real polynomials. This is a vector space under

coefficient-wise addition and scalar multiplication.

For d e N, let P; C R[z] be the set of polynomials of degree no more than
d. Show that P; < R[z] and has basis 1,z,...,z2%

Define a linear map D : P; — P; by D(p) = p’. Compute its matrix with
respectto 1,z,...,2%. What are kerD and imD?

Additional questions

6.

Which of the following subsets of C? are linear subspaces over C? In each
case, briefly justify your answer.
(@) Uy := {(21,22,23) | 2122 = 1} (b) Uz := {(21,22,23) | 21 = Z2} (€) Us :=
{(21,22,23) | 21 + V/—122 + 323 = 0}

Let V be an n-dimensional vector space over C, and let Vg be the un-
derlying vector space over R (thus Vg has the same set of vectors as V,
but scalar multiplication is restricted to real scalars). Prove that Vkz has
dimension 2n.

[Hint: let B:vy,v9,...,v, beabasisfor V and show that Bg : vy, v, v9, 09, ..
is a basis for Vx, where i € C is v/—1 rather than an index!]

-y Un, tUn
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M216: Exercise sheet 1—Solutions

1.

First suppose that U < V. The U is non-empty so there is some v € U and
then, since U is closed under addition and scalar multiplication, 0 =u+(-1)u € U
also and condition (i) is satisfied. Now if w;,uo € U and X € F, then \u, € U
(U is closed under scalar multiplication) and so u; + Ay € U (U is closed under
addition). Thus condition (ii) holds also.

For the converse, if conditions (i) and (ii) hold, then, first, 0 € U so U is non-empty
and, second, U is closed under addition (take A = 1 in condition (ii)) and under
scalar multiplication (take u; = 0 in condition (ii)). Thus U <V .

(a) U; is not a subspace as it does not contain 0!

(b) U, is a subspace: in fact, itis ker¢, where A= (1 -1 o) .
(c) Us is asubspace. Itis ker¢, for A= (1 2 3) .

(a) Here f islinear: itis the map ¢4 corresponding to the matrix

(b) This is not linear (because of that +2 term). In particular f(0,0) =(2,0) #0!

(c) Again f(0,0) = (1,0) # 0 so this f cannot be linear. Of course, we already
know this because it is certainly not true that cos(y; + y2) = COSy; + COSys .

(d) Another non-linear map: for example f(2z,2y) # 2f(z,y) .
The basic idea is that the vector space axioms for V2 will follow from those of V
applied to the values of elements of VZ. Since those elements are completely

determined by their values, this will bake the cake.
In more detail: let u,v,w € V%, then, for i €T,

(u+0)(@) =ul@) +v() =v(E) +u(@) = (v+u)(3),

whence v+ v = v +u. Here the first and last equalities are just the definition of
pointwise addition and the middle one of commutativity of addition in V.
Similarly,

(utv)+w)(@) = (u+v)(@)+w(@) = (u(@)+v(E)+w(E) = u(@)+ (vE)+w(@) = (u+ (v+w))(7)

sothat (u+v)+w=u+ (v+w).
The zero element is the zero map defined by 0(i) := 0, for all ¢ € Z, while the
additive inverse —v of v € V7T is defined by (—v)(i) :== —(v(i)) . Now
(v+0)(7) =v(i) +0() =v(i) + 0 =v(4)
(v + (=v)) (@) = v(i) + (=) (i) = v(i) —v(i) = 0 = 0(z)

sothat v+0=v and v+ (—v) =0 as required.



The axioms around scalar multiplication are verified in the same way. For example,
for A, uel,

(A4 w)o) (@) = (A4 ) (v(@) = Av(d) + pu(v(@) = (A)(@) + (uv)(i) = (Av + po)(i)
so that (A + p)v = v+ pwv.
Again, for u,v € VZ and A€ F,
Au+0))(E) = Mu+v)(7) = Au(@) +v(7) = Au(i) + Av(i)
= (Au)(@) + (W) (7) = (Au + Av)(4)

so that A(u +v) = Au+ Av.
For ,u€ F and ve V%,
(A)v) (i) = (Ap)v(i) = Apv(i)) = (AMpv))(i)

so that (A\p)v = A(wv) .

Finally, (1v)(i) = 1v(i) = v(i) so that 1v =v and we are (at last!) done.

Clearly P; is non-empty as it contains the zero polynomial. Moreover, for any
polynomials p,q and A € R, we have

deg(p + q) < max{degp,degq}
deg(\p) < degp,

from which it easily follows that P, is closed under addition and scalar multiplica-
tion.
Any polynomial p € P; has a unique expression of the form

p:a0+a1$+~~~+ad9:d.

It now follows from Proposition 1.1 that 1,z,...,2? is a basis for P,.
Set v; =271, for 1< j<d+1, and compute Dv; in terms of the v, :

Dvj = (j = Dvj

so that the matrix A of D with respect to this basis has all entries 0 except just
above the diagonal where A(;_,); = j — 1. For example, if d =3, we have

1 0 0

o o o O
o O O
(e
w

The kernel of D is the constant polynomials P, and the imageis P; ;.

(@) 0¢ U, so U, is not a subspace.

(b) U, is not a subspace because it is not closed under complex scalar multiplica-
tion: (1,1,0) € Uy but i(1,1,0) = (4,7,0) is not (here i = /-1). In general, any
time you see complex conjugation in the definition of a subset, it is unlikely to
be a complex subspace.



(c) Us=ker¢s for A= (1 Vv—1 3) and so is a subspace.

Following the hint we need to show that any v € Vg can be written uniquely as
a real linear combination of vectors in the list Bz . Since v € V', we may write
v =37, \v; forunique \; € C. Write )\; = a; +1ib; with a;,b; € R. Then v =
> i1 (ajv; + bjivy) and this expression is unique: it suffices to observe that for
v=0, A\; =0 forall j,and hence a; =b; =0 forall j.



