Chapter 1

Linear algebra: concepts and examples

1.1 Vector spaces

Definition. A vector space V over a field F is a set V with two operations:

- **addition** $V \times V \rightarrow V : (v, w) \mapsto v + w$ with respect to which V is an abelian group:
 - $v + w = w + v$, for all $v, w \in V$;
 - $u + (v + w) = (u + v) + w$, for all $u, v, w \in V$;
 - there is a zero element $0 \in V$ for which $v + 0 = v = 0 + v$, for all $v \in V$;
 - each element $v \in V$ has an additive inverse $-v \in V$ for which $v + (-v) = 0 = (-v) + v$.

- **scalar multiplication** $F \times V \rightarrow V : (\lambda, v) \mapsto \lambda v$ such that
 - $(\lambda + \mu)v = \lambda v + \mu v$, for all $v \in V$, $\lambda, \mu \in F$.
 - $\lambda(v + w) = \lambda v + \lambda w$, for all $v, w \in V$, $\lambda \in F$.
 - $(\lambda \mu)v = \lambda(\mu v)$, for all $v \in V$, $\lambda, \mu \in F$.
 - $1v = v$, for all $v \in V$.

We call the elements of F *scalars* and those of V *vectors*.

1.2 Subspaces

Definition. A vector (or linear) subspace of a vector space V over F is a non-empty subset $U \subseteq V$ which is closed under addition and scalar multiplication: whenever $u, u_1, u_2 \in U$ and $\lambda \in F$, then $u_1 + u_2 \in U$ and $\lambda u \in U$.

In this case, we write $U \leq V$.

Say that U is trivial if $U = \{0\}$ and proper if $U \neq V$.

1.3 Bases

Definitions. Let v_1, \ldots, v_n be a list of vectors in a vector space V.

1. The span of \(v_1, \ldots, v_n\) is
 \[
 \text{span}\{v_1, \ldots, v_n\} := \{\lambda_1 v_1 + \cdots + \lambda_n v_n \mid \lambda_i \in \mathbb{F}, 1 \leq i \leq n\} \leq V.
 \]

2. \(v_1, \ldots, v_n\) span \(V\) (or are a spanning list for \(V\)) if \(\text{span}\{v_1, \ldots, v_n\} = V\).

3. \(v_1, \ldots, v_n\) are linearly independent if, whenever \(\lambda_1 v_1 + \cdots + \lambda_n v_n = 0\), then each \(\lambda_i = 0, 1 \leq i \leq n\), and linearly dependent otherwise.

4. \(v_1, \ldots, v_n\) is a basis for \(V\) if they are linearly independent and span \(V\).

Definition. A vector space is finite-dimensional if it admits a finite list of vectors as basis and infinite-dimensional otherwise.

If \(V\) is finite-dimensional, the dimension of \(V\), \(\dim V\), is the number of vectors in a (any) basis of \(V\).

Proposition 1.1 (Algebra 1B, Section 2.4, Proposition 5). \(v_1, \ldots, v_n\) is a basis for \(V\) if and only if any \(v \in V\) can be written in the form
 \[
 v = \lambda_1 v_1 + \cdots + \lambda_n v_n
 \]
 (1.1)
 for unique \(\lambda_1, \ldots, \lambda_n \in \mathbb{F}\). In this case, \((\lambda_1, \ldots, \lambda_n)\) is called the coordinate vector of \(v\) with respect to \(v_1, \ldots, v_n\).

1.3.1 Standard bases

Proposition 1.2. For \(I\) a set and \(i \in I\), define \(e_i \in \mathbb{F}^I\) by
 \[
e_i(j) = \begin{cases}
 1 & \text{if } i = j \\
 0 & \text{if } i \neq j
 \end{cases}
 \]
 for all \(j \in I\).

If \(I\) is finite then \((e_i)_{i \in I}\) is a basis, called the standard basis, of \(\mathbb{F}^I\).

In particular, \(\dim \mathbb{F}^I = |I|\).

1.3.2 Useful facts

Proposition 1.3 (Algebra 1B, Chapter 3, Theorem 6(b)). Any linearly independent list of vectors in a finite-dimensional vector space can be extended to a basis.

Lemma 1.4 (Algebra 1B, Chapter 3, Theorem 5). Let \(V\) be a finite-dimensional vector space and \(U \leq V\). Then
 \[
 \dim U \leq \dim V
 \]
 with equality if and only if \(U = V\).

1.4 Linear maps

Definitions. A map \(\phi : V \to W\) of vector spaces over \(F\) is a linear map (or, in older books, linear transformation) if
 \[
 \phi(v + w) = \phi(v) + \phi(w)
 \]
 \[
 \phi(\lambda v) = \lambda \phi(v),
 \]
 for all \(v, w \in V, \lambda \in \mathbb{F}\).

The kernel of \(\phi\) is \(\ker \phi := \{v \in V \mid \phi(v) = 0\} \leq V\).

The image of \(\phi\) is \(\text{im} \phi := \{\phi(v) \mid v \in V\} \leq W\).
Definition. A linear map \(\phi : V \to W \) is a (linear) isomorphism if there is a linear map \(\psi : W \to V \) such that
\[
\psi \circ \phi = \text{id}_V, \quad \phi \circ \psi = \text{id}_W.
\]
If there is an isomorphism \(V \to W \), say that \(V \) and \(W \) are isomorphic and write \(V \cong W \).

Lemma 1.5. \(\phi : V \to W \) is an isomorphism if and only if \(\phi \) is a linear bijection (and then \(\psi = \phi^{-1} \)).

1.4.1 Vector spaces of linear maps

Notation. For vector spaces \(V, W \) over \(F \), denote by \(L_F(V, W) \) (or simply \(L(V, W) \)) the set \(\{ \phi : V \to W \mid \phi \) is linear\} of linear maps from \(V \) to \(W \).

Theorem 1.6 (Linearity is a linear condition). \(L(V, W) \) is a vector space under pointwise addition and scalar multiplication. Otherwise said, \(L(V, W) \leq W^V \).

1.4.2 Linear maps and matrices

Definition. Let \(V, W \) be finite-dimensional vector spaces over \(F \) with bases \(B : v_1, \ldots, v_n \) and \(B' : w_1, \ldots, w_m \) respectively. Let \(\phi \in L(V, W) \). The matrix of \(\phi \) with respect to \(B, B' \) is the matrix \(A = (A_{ij}) \in M_{m \times n}(F) \) defined by:
\[
\phi(v_j) = \sum_{i=1}^{m} A_{ij} w_i, \quad (1.2)
\]
for all \(1 \leq j \leq n \).

In the special case where \(V = W \) and \(B = B' \), we call \(A \) the matrix of \(\phi \) with respect to \(B \).

1.4.3 Extension by linearity

Proposition 1.7 (Extension by linearity). Let \(V, W \) be vector spaces over \(F \). Let \(v_1, \ldots, v_n \) be a basis of \(V \) and \(w_1, \ldots, w_n \) any vectors in \(W \).

Then there is a unique \(\phi \in L(V, W) \) such that
\[
\phi(v_i) = w_i, \quad 1 \leq i \leq n. \quad (1.3)
\]

1.4.4 The rank-nullity theorem

Theorem 1.8 (Rank-nullity). Let \(\phi : V \to W \) be linear with \(V \) finite-dimensional. Then
\[
\dim \ker \phi \leq \dim V.
\]

Proposition 1.9. Let \(\phi : V \to W \) be linear with \(V, W \) finite-dimensional vector spaces of the same dimension: \(\dim V = \dim W \).

Then the following are equivalent:
1. \(\phi \) is injective.
2. \(\phi \) is surjective.
3. \(\phi \) is an isomorphism.
Chapter 2

Sums and quotients

Convention. In this chapter, all vector spaces are over the same field \(F \) unless we say otherwise.

2.1 Sums of subspaces

Definition. Let \(V_1, \ldots, V_k \leq V \). The sum \(V_1 + \cdots + V_k \) is the set
\[
V_1 + \cdots + V_k := \{ v_1 + \cdots + v_k \mid v_i \in V_i, 1 \leq i \leq k \}.
\]

Proposition 2.1. Let \(V_1, \ldots, V_k \leq V \). Then
\begin{enumerate}
 \item \(V_1 + \cdots + V_k \leq V \).
 \item If \(W \leq V \) and \(V_1, \ldots, V_k \leq W \) then \(V_1, \ldots, V_k \leq V_1 + \cdots + V_k \leq W \).
\end{enumerate}

2.2 Direct sums

Definition. Let \(V_1, \ldots, V_k \leq V \). The sum \(V_1 + \cdots + V_k \) is direct if each \(v \in V_1 + \cdots + V_k \) can be written
\[
v = v_1 + \cdots + v_k
\]
in only one way, that is, for unique \(v_i \in V_i, 1 \leq i \leq k \).

In this case, we write \(V_1 \oplus \cdots \oplus V_k \) instead of \(V_1 + \cdots + V_k \).

Proposition 2.2. Let \(V_1, V_2 \leq V \). Then \(V_1 + V_2 \) is direct if and only if \(V_1 \cap V_2 = \{0\} \).

Definition. Let \(V_1, V_2 \leq V \). \(V \) is the (internal) direct sum of \(V_1 \) and \(V_2 \) if \(V = V_1 \oplus V_2 \).

In this case, say that \(V_2 \) is a complement of \(V_1 \) (and \(V_1 \) is a complement of \(V_2 \)).

Proposition 2.3. Let \(V_1, \ldots, V_k \leq V, k \geq 2 \). Then the sum \(V_1 + \cdots + V_k \) is direct if and only if for each \(1 \leq i \leq k \), \(V_i \cap (\sum_{j \neq i} V_j) = \{0\} \).

2.2.1 Direct sums and projections

Definition. Let \(V \) be a vector space. A linear map \(\pi : V \to V \) is a projection if \(\pi \circ \pi = \pi \).

Proposition 2.4. Let \(V_1, V_2 \leq V \) with \(V = V_1 \oplus V_2 \). Then there are projections \(\pi_1, \pi_2 : V \to V \) such that:
\begin{enumerate}
 \item \(\text{im} \pi_i = V_i, i = 1, 2 \);
\end{enumerate}
(b) \(\ker \pi_1 = V_2, \ker \pi_2 = V_1 \);
(c) \(v = \pi_1(v) + \pi_2(v) \), for all \(v \in V \). Otherwise said, \(\text{id}_V = \pi_1 + \pi_2 \).

Proposition 2.5. Let \(V = V_1 \oplus V_2 \) with \(V \) finite-dimensional. Then
\[
\dim V = \dim V_1 + \dim V_2.
\]

2.2.2 Induction from two summands

Lemma 2.6. Let \(V_1, \ldots, V_k \leq V \). Then \(V_1 + \cdots + V_k \) is direct if and only if \(V_1 + \cdots + V_{k-1} \) is direct and \((V_1 + \cdots + V_{k-1}) + V_k \) (two summands) is direct.

Corollary 2.7. Let \(V_1, \ldots, V_k \leq V \) be subspaces of a finite-dimensional vector space \(V \) with \(V_1 + \cdots + V_k \) direct. Then
\[
\dim V_1 + \cdots + V_k = \dim V_1 + \cdots + \dim V_k.
\]

2.2.3 Direct sums and bases

Proposition 2.8. Let \(V_1, V_2 \leq V \) be finite-dimensional subspaces with bases \(B_1 : v_1, \ldots, v_k \) and \(B_2 : w_1, \ldots, w_l \). Then \(V_1 + V_2 \) is direct if and only if the concatenation\(^1\) \(B_1 B_2 : v_1, \ldots, v_k, w_1, \ldots, w_l \) is a basis of \(V_1 + V_2 \).

Corollary 2.9. Let \(V_1, \ldots, V_k \leq V \) be finite-dimensional subspaces with \(B_i \) a basis of \(V_i \), \(1 \leq i \leq k \). Then \(V_1 + \cdots + V_k \) is direct if and only if the concatenation \(B_1 \cdots B_k \) is a basis for \(V_1 + \cdots + V_k \).

2.2.4 Complements

Proposition 2.10 (Complements exist). Let \(U \leq V \), a finite-dimensional vector space. Then there is a complement to \(U \).

Proposition 2.11 (Extension of linear maps). Let \(V, W \) be vector spaces with \(V \) finite-dimensional. Let \(U \leq V \) be a subspace and \(\phi : U \to W \) a linear map. Then there is a linear map \(\Phi : V \to W \) such that the restriction\(^2\) of \(\Phi \) to \(U \) is \(\phi \): \(\Phi|_U = \phi \). Otherwise said: for all \(u \in U \)
\[
\Phi(u) = \phi(u).
\]

2.3 Quotients

Definition. Let \(U \leq V \). Say that \(v, w \in V \) are *congruent modulo* \(U \) if \(v - w \in U \). In this case, we write \(v \equiv w \mod U \).

Lemma 2.12. Congruence modulo \(U \) is an equivalence relation.

Definition. For \(v \in V, U \leq V \), the set \(v + U := \{ v + u \mid u \in U \} \subseteq V \) is called a *coset of* \(U \) and \(v \) is called a *coset representative* of \(v + U \).

Definition. Let \(U \leq V \). The *quotient space* \(V/U \) of \(V \) by \(U \) is the set \(V/U \), pronounced “\(V \) mod \(U \)”, of cosets of \(U \):
\[
V/U := \{ v + U \mid v \in V \}.
\]
This is a subset of the *power set*\(^3\) \(\mathcal{P}(V) \) of \(V \).

\(^1\)The concatenation of two lists is simply the list obtained by adjoining all entries in the second list to the first.

\(^2\)Recall that if \(f : X \to Y \) is a map of sets and \(A \subseteq X \) then the restriction of \(f \) to \(A \) is the map \(f|_A : A \to Y \) given by \(f|_A(a) = f(a) \), for all \(a \in A \).

\(^3\)Recall from Algebra 1A that the power set of a set \(A \) is the set of all subsets of \(A \).
The quotient map \(q : V \to V/U \) is defined by

\[q(v) = v + U. \]

Theorem 2.13. Let \(U \leq V \). Then, for \(v, w \in V \), \(\lambda \in F \),

\[
(v + U) + (w + U) := (v + w) + U \\
\lambda(v + U) := (\lambda v) + U
\]

give well-defined operations of addition and scalar multiplication on \(V/U \) with respect to which \(V/U \) is a vector space and \(q : V \to V/U \) is a linear map.

Moreover, \(\ker q = U \) and \(\text{im } q = V/U \).

Corollary 2.14. Let \(U \leq V \). If \(V \) is finite-dimensional then so is \(V/U \) and

\[
\dim V/U = \dim V - \dim U.
\]

Theorem 2.15 (First Isomorphism Theorem). Let \(\phi : V \to W \) be a linear map of vector spaces.

Then \(V/\ker \phi \cong \text{im } \phi \).

In fact, define \(\bar{\phi} : V/\ker \phi \to \text{im } \phi \) by

\[
\bar{\phi}(q(v)) = \phi(v),
\]

where \(q : V \to V/\ker \phi \) is the quotient map.

Then \(\bar{\phi} \) is a well-defined linear isomorphism.
Chapter 3

Inner product spaces

Convention. In this chapter, we take the field \mathbb{F} of scalars to be either \mathbb{R} or \mathbb{C}.

3.1 Inner products

3.1.1 Definition and examples

Definition. Let V be a vector space of \mathbb{F} (which is \mathbb{R} or \mathbb{C}). An inner product on V is a map $V \times V \to \mathbb{F}$: $(v, w) \mapsto \langle v, w \rangle$ which is:

1. (conjugate) symmetric: $\langle w, v \rangle = \overline{\langle v, w \rangle}$, for all $v, w \in V$. In particular $\langle v, v \rangle = \langle v, v \rangle$ and so is real.
2. linear in the second slot:

$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$$
$$\langle u, \lambda v \rangle = \overline{\lambda} \langle u, v \rangle,$$
for all $u, v, w \in V$ and $\lambda \in \mathbb{F}$.
3. positive definite: For all $v \in V$, $\langle v, v \rangle \geq 0$ with equality if and only if $v = 0$.

A vector space with an inner product is called an inner product space.

Definition. A map $\phi : V \to W$ of complex vector spaces is conjugate linear (or anti-linear) if

$$\phi(v + w) = \phi(v) + \phi(w)$$
$$\phi(\lambda v) = \overline{\lambda} \phi(v),$$
for all $v, w \in V$ and $\lambda \in \mathbb{F}$.

Definition. Let V be an inner product space.

1. The norm of $v \in V$ is $\|v\| := \sqrt{\langle v, v \rangle} \geq 0$.
2. Say $v, w \in V$ are orthogonal or perpendicular if $\langle v, w \rangle = 0$. In this case, we write $v \perp w$.

3.1.2 Cauchy–Schwarz inequality

Theorem 3.1 (Cauchy–Schwarz inequality). Let V be an inner product space. For $v, w \in V$,

$$|\langle v, w \rangle| \leq \|v\| \|w\|$$

(3.1)
with equality if and only if v, w are linearly dependent, that is, either $v = 0$ or $w = \lambda v$, for some $\lambda \in \mathbb{F}$.
Proposition 3.2. Let \(V \) be an inner product space and \(v, w \in V \).

1. **Pythagoras Theorem**: If \(v \perp w \) then
 \[
 \|v + w\|^2 = \|v\|^2 + \|w\|^2.
 \] (3.2)

2. **Triangle inequality**: \(\|v + w\| \leq \|v\| + \|w\| \) with equality if and only if \(v = 0 \) or \(w = \lambda v \) with \(\lambda \geq 0 \).

3. **Parallelogram identity**: \(\|v + w\|^2 + \|v - w\|^2 = 2(\|v\|^2 + \|w\|^2) \).

3.2 Orthogonality

3.2.1 Orthonormal bases

Definition. A list of vectors \(u_1, \ldots, u_k \) in an inner product space \(V \) is **orthonormal** if, for all \(1 \leq i, j \leq k \),

\[
\langle u_i, u_j \rangle = \delta_{ij} := \begin{cases}
1 & \text{if } i = j; \\
0 & \text{if } i \neq j.
\end{cases}
\]

If \(u_1, \ldots, u_k \) is also a basis, we call it an **orthonormal basis**.

Lemma 3.3. Let \(V \) be an inner product space with orthonormal basis \(u_1, \ldots, u_n \) and let \(v \in V \). Then

\[
v = \sum_{i=1}^{n} \langle u_i, v \rangle u_i.
\]

Lemma 3.4. Any orthonormal list of vectors \(u_1, \ldots, u_k \) is linearly independent.

Proposition 3.5. Let \(u_1, \ldots, u_n \) be an orthonormal basis of an inner product space \(V \). Let \(v = x_1 u_1 + \cdots + x_n u_n \) and \(w = y_1 u_1 + \cdots + y_n u_n \). Then

\[
\langle v, w \rangle = \sum_{i=1}^{n} \bar{x_i} y_i = x \cdot y.
\]

Thus the inner product of two vectors is the dot product of their coordinates with respect to an orthonormal basis.

Proposition 3.6. Let \(u_1, \ldots, u_n \) be an orthonormal basis of an inner product space \(V \) and \(v, w \in V \). Then:

1. **Parseval’s identity**: \(\langle v, w \rangle = \sum_{i=1}^{n} \langle v, u_i \rangle \langle u_i, w \rangle \).
2. **Bessel’s equality**: \(\|v\|^2 = \sum_{i=1}^{n} |\langle v, u_i \rangle|^2 \).

Theorem 3.7 (Gram–Schmidt orthogonalisation). Let \(v_1, \ldots, v_m \) be linearly independent vectors in an inner product space \(V \).

Then there is an orthonormal list \(u_1, \ldots, u_m \) such that

\[
\text{span}\{u_1, \ldots, u_k\} = \text{span}\{v_1, \ldots, v_k\},
\]

for all \(1 \leq k \leq m \), defined inductively by:

\[
u_k := \frac{w_k}{\|w_k\|}
\]

where,

\[
w_1 := v_1
\]
and, for $k > 1$,

$$w_k := v_k - \sum_{j=1}^{k-1} (u_j, v_k) u_j = v_k - \sum_{j=1}^{k-1} \frac{(w_j, v_k)}{\|w_j\|^2} w_j.$$

Corollary 3.8. Any finite-dimensional inner product space V has an orthonormal basis.

Definition. A matrix $Q \in M_{n \times n}(\mathbb{R})$ is orthogonal if

$$Q^T Q = I_n,$$

or, equivalently, Q has orthonormal columns with respect to the dot product. Here I_n is the $n \times n$ identity matrix.

Theorem 3.9 (QR decomposition). Let $A \in M_{n \times n}(\mathbb{R})$ be an invertible matrix. Then we can write

$$A = QR,$$

where Q is orthogonal and R is upper triangular ($R_{ij} = 0$ if $i > j$) with positive entries on the diagonal.

3.2.2 Orthogonal complements and orthogonal projection

Definition. Let V be an inner product space and $U \leq V$. The orthogonal complement U^\perp of U (in V) is given by

$$U^\perp := \{v \in V \mid (u, v) = 0, \text{ for all } u \in U\}.$$

Proposition 3.10. Let V be an inner product space and $U \leq V$. Then

1. $U^\perp \leq V$;
2. $U \cap U^\perp = \{0\}$;
3. $U \leq (U^\perp)^\perp$.

Theorem 3.11. Let U be a finite-dimensional subspace of an inner product space V. Then V is an internal direct sum:

$$V = U \oplus U^\perp.$$

Corollary 3.12. Let V be a finite-dimensional inner product space and $U \leq V$. Then

1. $\dim U^\perp = \dim V - \dim U$.
2. $U = (U^\perp)^\perp$.

Definition. Let V be an inner product space and $U \leq V$ such that $V = U \oplus U^\perp$. The projection $\pi_U : V \to V$ with image U and kernel U^\perp is called the orthogonal projection onto U.

Lemma 3.13. Let V be an inner product space and $U \leq V$ a finite-dimensional subspace with orthonormal basis u_1, \ldots, u_k then, for all $v \in V$,

$$\pi_U(v) = \sum_{i=1}^k (u_i, v) u_i.$$

Theorem 3.14. Let V be an inner product space and $U \leq V$ such that $V = U \oplus U^\perp$.

For $v \in V$, $\pi_U(v)$ is the nearest point of U to v: for all $u \in U$,

$$\|v - \pi_U(v)\| \leq \|v - u\|.$$

9
Chapter 4

Linear operators on inner product spaces

Convention. In this chapter, we once again take the field \(F \) of scalars to be either \(\mathbb{R} \) or \(\mathbb{C} \).

4.1 Linear operators and their adjoints

4.1.1 Linear operators and matrices

Definition. Let \(V \) be a vector space over \(F \). A linear operator on \(V \) is a linear map \(\phi : V \to V \).

The vector space of linear operators on \(V \) is denoted \(L(V) \) (instead of \(L(V,V) \)).

4.1.2 Adjoints

Lemma 4.1 (Nondegeneracy Lemma). Let \(V \) be an inner product space and \(v \in V \). Then \(\langle v, w \rangle = 0 \), for all \(w \in V \), if and only if \(v = 0 \).

Definition. Let \(V \) be an inner product space and \(\phi \in L(V) \). An adjoint to \(\phi \) is a linear operator \(\phi^* \in L(V) \) such that, for all \(v, w \in V \), we have

\[
\langle \phi^*(v), w \rangle = \langle v, \phi(w) \rangle
\]

or, equivalently, by conjugate symmetry,

\[
\langle w, \phi^*(v) \rangle = \langle \phi(w), v \rangle.
\]

Proposition 4.2. Let \(V \) be an inner product space and suppose \(\phi, \psi \in L(V) \) have adjoints. Then \(\phi \circ \psi; \phi + \lambda \psi, \lambda \in \mathbb{F} \; \text{and} \; \text{id}_V \) all have adjoints given by:

1. \((\phi \circ \psi)^* = \psi^* \circ \phi^* \) (note the change of order here!).
2. \((\phi + \lambda \psi)^* = \phi^* + \bar{\lambda} \psi^* \).
3. \((\phi^*)^* = \phi \).
4. \(\text{id}_V^* = \text{id}_V \).

Proposition 4.3. Let \(V \) be a finite-dimensional inner product space and \(\phi \in L(V) \) a linear operator. Then
(1) \(\phi \) has a unique adjoint \(\phi^* \).

(2) Let \(u_1, \ldots, u_n \) be an orthonormal basis of \(V \) with respect to which \(\phi \) has matrix \(A \). Then \(\phi^* \) has matrix \(A^\dagger := \overline{A^T} \) (which is \(A^T \) when \(F = \mathbb{R} \)).

Definitions.

1. Let \(V \) be an inner product space and \(\phi \in L(V) \).
 Say that \(\phi \) is self-adjoint if \(\phi^* = \phi \), or, equivalently, for all \(v, w \in V \),
 \[
 (\phi(v), w) = (v, \phi(w)).
 \]
 Say \(\phi \) is skew-adjoint if \(\phi^* = -\phi \), or, equivalently, for all \(v, w \in V \),
 \[
 (\phi(v), w) = -(v, \phi(w)).
 \]

2. Let \(A \in M_{n \times n}(F) \).
 (a) If \(F = \mathbb{C} \), say that \(A \) is Hermitian if \(A^\dagger = A \) and skew-Hermitian if \(A^\dagger = -A \).
 (b) If \(F = \mathbb{R} \), say that \(A \) is symmetric if \(A^T = A \) and skew-symmetric if \(A^T = -A \).

4.1.3 Linear isometries

Definition. Let \(V, W \) be inner product spaces with inner products \(\langle , \rangle_V \) and \(\langle , \rangle_W \) respectively. A linear map \(\phi : V \to W \) is a linear isometry if, for all \(v_1, v_2 \in V \),
 \[
 \langle \phi(v_1), \phi(v_2) \rangle_W = \langle v_1, v_2 \rangle_V.
 \]

Proposition 4.4. Let \(V \) be a finite-dimensional inner product space and \(\phi \in L(V) \). Then \(\phi \) is a linear isometry if and only if \(\phi \) is an isomorphism with \(\phi^{-1} = \phi^* \) (equivalently, \(\phi^* \circ \phi = \text{id}_V = \phi \circ \phi^* \)).

Definitions. Let \(V \) be an inner product space over \(F \) and \(\phi \in L(V) \). If \(\phi \) is an isomorphism with \(\phi^{-1} = \phi^* \), then say \(\phi \) is:
 - an orthogonal transformation if \(F = \mathbb{R} \);
 - a unitary transformation if \(F = \mathbb{C} \).

The set of all orthogonal, resp. unitary transformations is denoted \(O(V) \), resp. \(U(V) \).

Let \(A \in M_{n \times n}(F) \).
 - \(A \) is orthogonal if \(F = \mathbb{R} \) and \(A^T A = I \);
 - \(A \) is unitary if \(F = \mathbb{C} \) and \(A^\dagger A = I \).

The set of all \(n \times n \) orthogonal, resp. unitary matrices is denoted \(O(n) \), resp. \(U(n) \).

Definitions. Let \(V \) be a vector space. The general linear group of \(V \), denoted \(\text{GL}(V) \), is:
 \[
 \text{GL}(V) := \{ \phi \in L(V) \mid \phi \text{ is an isomorphism} \}.
 \]

Similarly, the general linear group of \(n \times n \) matrices over \(F \), denoted \(\text{GL}(n, F) \), is:
 \[
 \text{GL}(n, F) := \{ A \in M_{n \times n}(F) \mid A \text{ is invertible} \}.
 \]

Proposition 4.5.

1. Let \(V \) be a vector space. Then \(\text{GL}(V) \) is a group under composition: \(\psi \phi := \psi \circ \phi \).

2. If \(V \) is an inner product space, then \(O(V) \), resp. \(U(V) \), is a subgroup of \(\text{GL}(V) \), when \(F = \mathbb{R} \), resp. \(\mathbb{C} \).
Theorem 4.6 (Classification of rigid motions). Let V be a real inner product space. Recall that the distance between $v, w \in V$ is $d(v, w) := \|v - w\|.$

A map $f : V \to V$ (not necessarily linear) is distance-preserving or a rigid motion if $d(f(v), f(w)) = d(v, w),$ for all $v, w \in V.$

f is distance-preserving if and only if there is a $v_0 \in V$ and $\phi \in L(V)$ a linear isometry such that

$$f(v) = \phi(v) + v_0,$$

(4.1)

for all $v \in V.$

4.2 The spectral theorem

4.2.1 Eigenvalues and eigenvectors

Definitions. Let V be a vector space over \mathbb{F} and $\phi \in L(V)$.

An eigenvalue of ϕ is a scalar $\lambda \in \mathbb{F}$ such that there is a non-zero $v \in V$ with

$$\phi(v) = \lambda v.$$

Such a vector v is called an eigenvector of ϕ with eigenvalue λ.

The λ-eigenspace $E_\phi(\lambda)$ of ϕ is given by

$$E_\phi(\lambda) := \ker(\phi - \lambda \text{id}_V) \leq V.$$

Definition. Let V be a finite-dimensional vector space over \mathbb{F} and $\phi \in L(V)$.

The characteristic polynomial Δ_ϕ of ϕ is given by

$$\Delta_\phi(\lambda) := \det(\phi - \lambda \text{id}_V) = \det(A - \lambda I),$$

where A is the matrix of ϕ with respect to some (any!) basis of V.

Lemma 4.7. A scalar $\lambda \in \mathbb{F}$ is an eigenvalue of ϕ if and only if $\Delta_\phi(\lambda) = 0,$ that is, λ is a root of Δ_ϕ.

Corollary 4.8. Let ϕ be a linear operator on a finite-dimensional complex vector space V. Then ϕ has an eigenvalue.

4.2.2 Invariant subspaces and adjoints

Definition. Let V be a vector space and $\phi \in L(V)$.

A subspace $U \leq V$ is ϕ-invariant if $\phi(U) \leq U,$ that is, $\phi(u) \in U,$ for all $u \in U$.

Lemma 4.9. Let $\phi, \psi \in L(V)$ and suppose that

- $\psi \circ \phi = \phi \circ \psi$ (say that ϕ and ψ commute).
- $U = E_\phi(\lambda)$ is an eigenspace of ϕ.

Then U is ψ-invariant.

Lemma 4.10. Let V be a finite-dimensional¹ inner product space and $\phi \in L(V)$.

Let $U \leq V$ be a ϕ-invariant subspace. Then U^\perp is ϕ^*-invariant.

Definition. Let V be a finite-dimensional inner product space. A linear operator $\phi \in L(V)$ is normal if it commutes with its adjoint: $\phi^* \circ \phi = \phi \circ \phi^*$.

¹We only need this hypothesis to ensure that ϕ^* exists.
Proposition 4.11. Let V be a finite-dimensional inner product space and $\phi \in L(V)$. Suppose that:
- ϕ is normal;
- $U \leq V$ is an eigenspace of ϕ.
Then U^\perp is ϕ-invariant.

4.2.3 The spectral theorem for normal operators

Definition. Let V be a finite-dimensional vector space. A linear operator $\phi \in L(V)$ is diagonalisable if V has a basis of eigenvectors of ϕ.

Definition. Let V be a finite-dimensional inner product space. A linear operator $\phi \in L(V)$ is orthogonally diagonalisable if V has an orthonormal basis of eigenvectors.

Proposition 4.12. Let V be a finite-dimensional inner product space over \mathbb{F} and $\phi \in L(V)$ an orthogonally diagonalisable linear operator. Then:
1. If $\mathbb{F} = \mathbb{C}$, ϕ is normal.
2. If $\mathbb{F} = \mathbb{R}$, ϕ is self-adjoint.

Theorem 4.13 (Spectral theorem for normal operators). Let V be a finite-dimensional complex inner product space and $\phi \in L(V)$ a linear operator. Then ϕ is orthogonally diagonalisable if and only if ϕ is normal.

4.2.4 The spectral theorem for real self-adjoint operators

Lemma 4.14. Let V be an inner product space and $\phi \in L(V)$ be self-adjoint.
1. Any eigenvalue of ϕ is real.
2. If $v, w \in V$ are eigenvectors of ϕ with eigenvalues $\lambda \neq \mu$ then $v \perp w$.

Proposition 4.15. A self-adjoint operator ϕ on a real, finite-dimensional inner product space V has an eigenvalue.

Theorem 4.16 (Spectral theorem for real self-adjoint operators). Let V be a real, finite-dimensional inner product space and $\phi \in L(V)$ a linear operator. Then ϕ is orthogonally diagonalisable if and only if ϕ is self-adjoint.

4.2.5 The spectral theorem for symmetric and Hermitian matrices

Theorem 4.17 (Spectral theorem for symmetric/hermitian matrices).
1. Let $A \in M_{n \times n}(\mathbb{R})$ be symmetric. Then there is an orthogonal matrix $P \in O(n)$ such that $P^{-1}AP$ is diagonal.
2. Let $A \in M_{n \times n}(\mathbb{C})$ be Hermitian. Then there is an unitary matrix $P \in U(n)$ such that $P^{-1}AP$ is diagonal.

4.2.6 Singular value decomposition

Lemma 4.18. Let V be a finite-dimensional inner product space and $\phi \in L(V)$. Then:
1. All eigenvalues of $\phi^* \circ \phi$ are non-negative.

\footnote{We do not demand that V be finite-dimensional.}
(2) \(\ker(\phi^* \circ \phi) = \ker \phi \).

Definition. Let \(V \) be a finite-dimensional inner product space and \(\phi \in L(V) \). The singular values of \(\phi \) are \(\sigma_1, \ldots, \sigma_n \) where \(\sigma_i = \sqrt{\mu_i} \geq 0 \) and \(\mu_1, \ldots, \mu_n \) are the eigenvalues of \(\phi^* \circ \phi \) listed with multiplicity (thus each distinct \(\mu \) appears \(\dim E_{\phi^* \circ \phi}(\mu) \) times).

Theorem 4.19 (Singular value decomposition). Let \(V \) be a finite-dimensional inner product space and \(\phi \in L(V) \) a linear operator with singular values \(\sigma_1, \ldots, \sigma_n \).

Then there are orthonormal bases \(u_1, \ldots, u_n \) and \(w_1, \ldots, w_n \) of \(V \) such that

\[
\phi(v) = \sum_{i=1}^{n} \sigma_i \langle u_i, v \rangle w_i, \tag{4.2}
\]

for all \(v \in V \).
Chapter 5

Duality

5.1 Dual spaces

Definition. Let V be a vector space over F. The dual space V^* of V is

$$V^* := L(V,F) = \{ \alpha : V \to F \mid \alpha \text{ is linear} \}.$$

Elements of V^* are called linear functionals or (less often) linear forms.

Proposition 5.1. Let V be a finite-dimensional vector space with basis v_1, \ldots, v_n.

Define $v_1^* , \ldots , v_n^* \in V^*$ by setting

$$v_i^*(v_j) = \delta_{ij} \in F$$

and extending by linearity (thus applying Proposition 1.7).

Then v_1^*, \ldots, v_n^* is a basis of V^* called the dual basis to v_1, \ldots, v_n.

Corollary 5.2. If V is finite-dimensional then $\dim V = \dim V^*$.

Theorem 5.3 (Riesz Representation Theorem). Let V be a finite-dimensional inner product space and $\alpha \in V^*$. Then there is a unique $w \in V$ such that

$$\alpha(v) = \langle w,v \rangle,$$

for all $v \in V$. Thus $\alpha = \alpha_w$.

Indeed, if u_1 , \ldots , u_n is an orthonormal basis of V then

$$w = \sum_{i=1}^n \overline{\alpha(u_i)} u_i. \quad (5.1)$$

Theorem 5.4 (Sufficiency principle). Let V be a vector space and $v \in V$. Then $\alpha(v) = 0$, for all $\alpha \in V^*$, if and only if $v = 0$.

Proposition 5.5. Let V be a finite-dimensional vector space and $\alpha_1 , \ldots , \alpha_n$ a basis of V^*. Then there is a basis v_1, \ldots, v_n of V such that

$$\alpha_i(v_j) = \delta_{ij}.$$

Thus $\alpha_i = v_i^*$, for $1 \leq i \leq n$.

Theorem 5.6. If V is a finite-dimensional vector space then $ev : V \to V^{**}$ is an isomorphism.
5.2 Solution sets and annihilators

Definition. Let $E \leq V^\ast$. The solution set of E is

$$\text{sol }E := \{v \in V \mid \alpha(v) = 0, \text{ for all } \alpha \in E\} = \bigcap_{\alpha \in E} \ker \alpha \leq V.$$

Proposition 5.7. If V is finite-dimensional and $E \leq V^\ast$ then

$$\dim \text{sol }E = \dim V - \dim E.$$

We say that E and $\text{sol }E$ have complementary dimension.

Corollary 5.8. Let V have dimension n and suppose that $\alpha_1, \ldots, \alpha_n \in V^\ast$ are such that

$$\bigcap_{i=1}^n \ker \alpha_i = \{0\}.$$

Then $\alpha_1, \ldots, \alpha_n$ is a basis of V^\ast.

Proposition 5.9. Let $E, F \leq V^\ast$. Then

1. If $E \leq F$ then $\text{sol }F \leq \text{sol }E$.
2. sol swaps sums and intersections:

$$\begin{align*}
\text{sol}(E + F) &= (\text{sol }E) \cap (\text{sol }F) \\
(\text{sol }E) + (\text{sol }F) &\leq \text{sol}(E \cap F)
\end{align*}$$

with equality if V is finite-dimensional.

Definition. Let $U \leq V$. The annihilator of U, denoted $\text{ann }U$ or U°, is given by:

$$\text{ann }U := \{\alpha \in V^\ast \mid \alpha|_U = 0\} = \{\alpha \in V^\ast \mid \alpha(u) = 0, \text{ for all } u \in U\}.$$

Proposition 5.10. Let V be finite-dimensional and $U \leq V$. Then

$$\dim \text{ann }U = \dim V - \dim U.$$

Proposition 5.11. Let $U, W \leq V$. Then

1. If $U \leq W$ then $\text{ann }W \leq \text{ann }U$.
2. ann swaps sums and intersections:

$$\begin{align*}
\text{ann}(U + W) &= (\text{ann }U) \cap (\text{ann }W) \\
(\text{ann }U) + (\text{ann }W) &\leq \text{ann}(U \cap W)
\end{align*}$$

with equality if V is finite-dimensional.

Lemma 5.12. Let $U \leq V$ and $E \leq V^\ast$ then $U \leq \text{sol }E$ if and only if $E \leq \text{ann }U$.

Theorem 5.13. Let $U \leq V$ and $E \leq V^\ast$. Then

$$\begin{align*}
U &\leq \text{sol}(\text{ann }U) \\
E &\leq \text{ann}(\text{sol }E),
\end{align*}$$

with equality if V is finite-dimensional.

5.3 Transposes

Definition. Let $\phi \in L(V, W)$ be a linear map of vector spaces. The transpose ϕ^T of ϕ is the map $\phi^T : W^\ast \rightarrow V^\ast$ given by

$$\phi^T(\alpha) := \alpha \circ \phi,$$

for all $\alpha \in W^\ast$.

16
Lemma 5.14. \(\phi^T : W^* \to V^* \) is also a linear map.

Proposition 5.15. Let \(V,W \) be finite-dimensional vector spaces and \(\phi \in L(V,W) \) with matrix \(A \in M_{m \times n}(F) \) with respect to bases \(v_1, \ldots, v_n \) and \(w_1, \ldots, w_m \) of \(V \) and \(W \). Then \(\phi^T \) has matrix \(A^T \) with respect to the dual bases \(w^*_1, \ldots, w^*_m \) and \(v^*_1, \ldots, v^*_n \) of \(W^* \) and \(V^* \).

Theorem 5.16. Let \(\phi \in L(V,W) \) be a linear map of vector spaces. Then

(1) \[\ker \phi = \text{sol}(\text{im} \, \phi^T) \]
\[\text{im} \phi \leq \text{sol}(\ker \phi^T) \]

with equality if \(V,W \) are finite-dimensional.

(2) \[\ker \phi^T = \text{ann}(\text{im} \, \phi) \]
\[\text{im} \phi^T \leq \text{ann}(\ker \phi) \]

with equality if \(V,W \) are finite-dimensional.

Corollary 5.17. Let \(\phi \in L(V,W) \) be a linear map of finite-dimensional vector spaces. Then
\[\text{rank} \phi = \text{rank} \phi^T. \]

Proposition 5.18. Let \(\phi \in L(V,W) \) be a linear map of finite-dimensional vector spaces. Then

(1) \(\phi \) injects if and only if \(\phi^T \) surjects.

(2) \(\phi^T \) injects if and only if \(\phi \) surjects.
Chapter 6

Bilinearity

6.1 Bilinear maps

6.1.1 Definitions and examples

Definition. Let \(U, V, W \) be vector spaces over a field \(F \). A map \(B : U \times V \to W \) is *bilinear* if it is linear in each slot separately:

\[
B(\lambda u_1 + u_2, v) = \lambda B(u_1, v) + B(u_2, v)
\]

\[
B(u, \lambda v_1 + v_2) = \lambda B(u, v_1) + B(u, v_2),
\]

for all \(u, u_1, u_2 \in U, v, v_1, v_2 \in V \) and \(\lambda \in F \).

A bilinear map \(U \times V \to F \) is called a *bilinear pairing*.

A bilinear map \(V \times V \to F \) is called a *bilinear form on \(V \).*

Notation. We let \(\text{Bil}(U, V; W) \) denote the set of bilinear maps \(U \times V \to W \).

6.1.2 Bilinear forms and matrices

Definition. Let \(V \) be a vector space over \(F \) with basis \(\mathcal{B} = v_1, \ldots, v_n \) and let \(B : V \times V \to F \) be a bilinear form. The *matrix of* \(B \) *with respect to* \(\mathcal{B} \) is \(A \in M_n(F) \) given by

\[
A_{ij} = B(v_i, v_j),
\]

for \(1 \leq i, j \leq n \).

Proposition 6.1. Let \(B : V \times V \to F \) be a bilinear form with matrix \(A \) with respect to \(\mathcal{B} = v_1, \ldots, v_n \). Then \(B \) is completely determined by \(A \): if \(v = \sum_{i=1}^{n} x_i v_i \) and \(w = \sum_{j=1}^{n} y_j v_j \) then

\[
B(v, w) = \sum_{i,j=1}^{n} x_i y_j A_{ij},
\]

or, equivalently, for all \(x, y \in F^n \),

\[
B(\phi_{\mathcal{B}}(x), \phi_{\mathcal{B}}(y)) = B_A(x, y) = x^T A y.
\]

Proposition 6.2. Let \(B : V \times V \to F \) be a bilinear form with matrices \(A \) and \(A' \) with respect to bases \(\mathcal{B} \) and \(\mathcal{B}' \) of \(V \). Then

\[
A' = P^T A P
\]

where \(P \) is the change of basis matrix\(^1 \) from \(\mathcal{B} \) to \(\mathcal{B}' \): thus \(\phi_P = \phi_{\mathcal{B}'}^{-1} \circ \phi_{\mathcal{B}} \).

\(^1\)See Definition 1 in Section 2.6 of Algebra 1B.
Definition. We say that matrices $A, B \in M_{n \times n} (\mathbb{F})$ are congruent if there is $P \in \text{GL}(n, \mathbb{F})$ such that $B = P^T A$.

6.2 Symmetric bilinear forms

Definition. A bilinear form $B : V \times V \to \mathbb{F}$ is symmetric if, for all $v, w \in V$,

$$B(v, w) = B(w, v)$$

6.2.1 Rank and radical

Definitions. Let $B : V \times V \to \mathbb{F}$ be a symmetric bilinear form.

The **radical** $\text{rad} B$ of B is given by

$$\text{rad} B := \{ v \in V \mid B(v, w) = 0, \text{ for all } w \in V \}.$$

We shall shortly see that $\text{rad} B \leq V$.

We say that B is **non-degenerate** if $\text{rad} B = \{0\}$.

If V is finite-dimensional, the **rank** of B is $\dim V - \dim \text{rad} B$ (so that B is non-degenerate if and only if rank $B = \dim V$).

Lemma 6.3. Let $B : V \times V \to \mathbb{F}$ be a symmetric bilinear form on a finite-dimensional vector space V with matrix A with respect to some basis of V. Then

$$\text{rank} B = \text{rank} A.$$

In particular, B is non-degenerate if and only if $\det A \neq 0$.

6.2.2 Classification of symmetric bilinear forms

Convention. In this section, we work with a field \mathbb{F} where $1 + 1 \neq 0$ so that $\frac{1}{2} = (1 + 1)^{-1}$ makes sense. This excludes, for example, the 2-element field \mathbb{Z}_2.

Lemma 6.4. Let $B : V \times V \to \mathbb{F}$ be a symmetric bilinear form such that $B(v, v) = 0$, for all $v \in V$. Then $B \equiv 0$.

Theorem 6.5 (Diagonalisation Theorem). Let B be a symmetric bilinear form on a finite-dimensional vector space over \mathbb{F}. Then there is a basis v_1, \ldots, v_n of V with respect to which the matrix of B is diagonal:

$$B(v_i, v_j) = 0,$$

for all $1 \leq i \neq j \leq n$. We call v_1, \ldots, v_n a diagonalising basis for B.

Corollary 6.6. Let $A \in M_{n \times n}(\mathbb{F})$ be symmetric. Then there is an invertible matrix $P \in \text{GL}(n, \mathbb{F})$ such that $P^T A P$ is diagonal.

6.2.3 Sylvester’s Theorem

Definitions. Let B be a symmetric bilinear form on a real vector space V.

Say that B is **positive definite** if $B(v, v) > 0$, for all $v \in V \setminus \{0\}$.

Say that B is **negative definite** if $-B$ is positive definite.
If V is finite-dimensional, the signature of B is the pair (p,q) where

\[p = \max \{ \dim U \mid U \leq V \text{ with } B|_{U \times U} \text{ positive definite} \} \]
\[q = \max \{ \dim W \mid W \leq V \text{ with } B|_{W \times W} \text{ negative definite} \}. \]

Theorem 6.7 (Sylvester’s Law of Inertia). Let B be a symmetric bilinear form of signature (p,q) on a finite-dimensional real vector space. Then:

- $p + q = \text{rank } B$;
- any diagonal matrix representing B has p positive entries and q negative entries (necessarily on the diagonal!).

6.3 Application: Quadratic forms

Convention. We continue working with a field \mathbb{F} where $1 + 1 \neq 0$.

Definition. A quadratic form on a vector space V over \mathbb{F} is a function $Q : V \to \mathbb{F}$ of the form

\[Q(v) = B(v,v), \]

for all $v \in V$, where $B : V \times V \to \mathbb{F}$ is a symmetric bilinear form.

Lemma 6.8. Let $Q : V \to \mathbb{F}$ be a quadratic form with $Q(v) = B(v,v)$ for a symmetric bilinear form B. Then

\[B(v,w) = \frac{1}{2}(Q(v+w) - Q(v) - Q(w)), \]

for all $v, w \in V$.

B is called the polarisation of Q.

Definitions. Let Q be a quadratic form on a finite-dimensional vector space V over \mathbb{F}.

The **rank** of Q is the rank of its polarisation.

If $\mathbb{F} = \mathbb{R}$, the **signature** of Q is the signature of its polarisation.

Theorem 6.9. Let Q be a quadratic form with rank r polarisation on a finite-dimensional vector space over \mathbb{F}.

1. When $\mathbb{F} = \mathbb{C}$, there is a basis v_1, \ldots, v_n of V such that

\[Q(\sum_{i=1}^{n} x_i v_i) = x_1^2 + \cdots + x_r^2. \]

2. When $\mathbb{F} = \mathbb{R}$ and Q has signature (p,q), there is a basis v_1, \ldots, v_n of V such that

\[Q(\sum_{i=1}^{n} x_i v_i) = x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_r^2. \]