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A method is derived for the fast, exact prediction of acoustic fields around rotating sources by using
a series expansion which generalizes a previously published method for a circular piston. The
technique gives exact predictions for the field outside the sphere containing the rotor in a
computational time two orders of magnitude less than that required for direct numerical evaluation
of the acoustic integrals. Its use is demonstrated by application to two sample problems
characteristic of real aircraft propellers. © 2006 Acoustical Society of America.
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I. INTRODUCTION

This paper presents an efficient, exact method for the
prediction of noise from rotating sources, such as aircraft
propellers. The problem to be considered is the evaluation of
the integral for the sound radiated by a sinusoidally varying
source distribution on a disk. A rotor of radius a has a ge-
ometry which can be decomposed into Fourier components
in azimuth �. For a given azimuthal order n the source on the
disk is s�r1 ,�1�=�sn�r1�exp jn�1, where the coordinate sys-
tem is that shown in Fig. 1, the subscript 1 refers to a vari-
able of integration and ��1.

We begin with the special case of sn�1. In this case, the
radiated acoustic field can be written as a Rayleigh integral1

p�x,�� = − �Mt
2n2ejn�In�a,r,z,�� , �1�

In�a,r,z,�� = �
0

a �
0

2� ej�kR�+n�1�

4�R�
r1d�1dr1,

R� = �r2 + r1
2 − 2rr1 cos �1 + z2�1/2, �2�

where � is the source frequency, c is the speed of sound, and
k=� /c. For a source which rotates at angular velocity �,
�=n� and Mt=�a /c=ka /n is the tip rotational Mach num-
ber.

A number of methods have been devised for the evalu-
ation of In. In particular, previous work has recognized its
relationship to the standard Rayleigh integral with n�0.
Oberhettinger’s numerical approach for transient radiation,2

which reduces I0 to a one-dimensional integral, has been
extended to the case of n�0 �Refs. 1 and 3–5� and used to
study the physical structure of rotating sound fields. In this
paper, a similar approach is used and the exact series expan-
sion of Mast and Yu6 is applied to the problem of rotating
sources to yield a very efficient, exact, general method of
computing the noise from a rotor. Mast and Yu’s approach to
the problem of radiation from a piston is the most recent in a
series of papers which use series expansions to evaluate the
field. The earliest such work in English appears to be that of
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Spence,7 although Mast and Yu cite two papers in German,
those of Backhaus �1930� and Stenzel �1935�. Further devel-
opments of the series expansion approach have included
Carter and Williams’ expansion,8 the work of Wittman and
Yaghjian9 who introduced methods from electromagnetism
and, in particular, the results of Hasegawa, Inoue and
Matsuzawa10 which formed the basis of Mast and Yu’s recent
work.

II. THEORY

In a recent paper,6 a series expansion was developed for
the calculation of harmonic radiation from a circular piston.
The method of this paper is now used to develop a similar
expansion for a disk-shaped source with azimuthal variation
in source strength. The result presented, Eq. �6�, gives the
acoustic field around a rotor at distances greater than the
rotor radius. It has not, so far, proven possible to derive an
equivalent expansion for the region within the sphere enclos-
ing the source.

A. Exact series

The expansion for a rotor noise field can be derived
from the integral of Eq. �2� using the summation theorem for
Bessel functions11

ejkR�

R�
=

j�

2��S�1/2 �
m=0

�

�2m + 1�Jm+1/2�k��Hm+1/2
�1� �kS�

	Pm�cos �1 sin 
� , �3�

where

R� = ��2 + S2 − 2S� cos �1 sin 
�1/2,

r2 + r1
2 + z2 = �2 + S2, sin 
 = r1r/�S ,

J� is the Bessel function of the first kind and order �, H�
�1� is

the Hankel function of order �, and Pm is the Legendre poly-
nomial of order m.

In order to perform the integration over �1, we require
11
the addition theorem for Legendre polynomials
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Pm�cos �1 sin 
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�Pm�0�

+ 2�
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�
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q �cos 
�

	Pm
q �0�cos q�1,

where Pm
q is the associated Legendre function which is zero

for q
m. Inserting this into

�
0

2�

Pm�cos �1 sin 
�ejn�1d�1,

gives, for n�0:

�
0
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n �cos 
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which, upon insertion into Eqs. �2� and �3�, gives

In = j�3/22n−2�
m=0

�
�4m + 2n + 1���2m + 1�

��2m + 2n + 1���m + 1���1/2 − m�
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0

a 1
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	Pn+2m
n �cos 
�r1dr1, �5�

where use has been made of the fact that Pn+2m+1
n �0��0.

A series expansion can now be derived by making a
suitable choice of coordinates. The choice of Mast and Yu,6

�=r1, S=R= �r2+z2�1/2 with sin 
=sin � gives an expansion
valid for R
a. With these coordinates, the integral can be
evaluated12 and
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2
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,
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where use has been made of the functional relations for the
gamma function11 and 1F2�·� is a generalized hypergeometric
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FIG. 1. Coordinate system for the disk source.
function
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n!
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where �a�n=��a+n� /��a� is Pochammer’s symbol.11

The series expansion in Eq. �6� is the main result of this
paper. It gives an exact expansion for the acoustic field
around a rotating source in terms of three special functions.
It is worth noting that the special functions are “uncoupled:”
for given k and n, if the polar angle � is fixed, only the
Hankel functions need be computed more than once per term
so that the field can be calculated very quickly for a large
number of points on a given radius.

B. General source distributions

The expansion of Eq. �6� can be extended to cover the
general case where sn�r1� varies with radius. The integral is
rewritten

Kn = �
0

a

sn�r1��
0

2� ej�kR+n�1�

4�R
r1d�1dr1, �8�

which upon integration by parts becomes

Kn = sn�a�In�a,r,z,�� − �
0

a dsn

dr1
In�r1,r,z,��dr1. �9�

On the assumption that sn�a�=0, i.e., that the source vanishes
at a rotor blade tip, Eq. �9� can be integrated termwise to
give

Kn = − �1/2 �− k�n+1/2
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2
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1F2�− 	 kr1

2

2�dr1,

�10�

where the parameters of the hypergeometric function have
been dropped for brevity.

In computing the acoustic field of a real source, the in-
tegrals of Eq. �10� would have to be calculated numerically,
although this would only have to be done once, since the
integrals depend only on the source and are the same no
matter what the observer position. In order to find an analyti-
cal formula, we use a source distribution which has been
applied in asymptotic studies14 sn= �a−r1��. Then the integral
is readily evaluated

�
0

a

1F2�− ��x�2��a − x��xndx = an+�+1�
q=0

�

Bq
�2q + n�!

�� + 1�2q+n+1

	�− �a�2q, �11�
and the acoustic field integral is

Michael Carley: Rotating sources 1253



Kn = j�1/2 �− k�n
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2
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III. RESULTS

Results are presented to demonstrate the efficiency and
accuracy of the series expansion. For comparison, In and Kn

are also computed by direct two-dimensional integration us-
ing Gaussian quadrature. The number of terms in the quadra-
ture was adjusted to the minimum which gave a converged
result. In evaluating the expansion, the Hankel functions
were computed using the finite series11

Hn−1/2
�1� �kR� = j−n	 2

�kR

1/2

ejkR

	�
q=0

n−1

�− 1�q �n + q − 1�!
q!�n − q − 1�!

1

�j2kr�q , �13�

the associated Legendre functions were computed using the
implementation in the GNU Scientific Library15 and the gen-
eralized hypergeometric function and its integral were evalu-
ated by direct summation to machine precision �tolerance
10−15�. In summing the series, the convergence criterion
was that the magnitude of the last term added be less than
10−6. All calculations were performed on a GNU/Linux
personal computer using code written in C using the GNU
C compiler and the GNU Scientific Library.15

A. Numerical performance

The first test was a check on the accuracy and efficiency
of the series expansion compared to direct integration. Figure
2 compares the real part of Kn computed using the two meth-
ods for n=32, Mt=1.0, ka=32 at a polar angle �=� /2, pa-
rameters characteristic of a high speed propeller of diameter
2.74 m rotating at 1200 rpm, similar to those used in a

FIG. 2. Real part of acoustic integral In for n=32, �=1/2, and �=� /2; by
direct integration and series evaluation: series solution solid; direct integra-

tion dots.
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NASA study on high speed propellers.16 As a check on the
integration scheme, a variation in the radial source distribu-
tion was introduced by setting �=1/2. The direct integration
was performed using 128 quadrature points in radius and
azimuth. The series expansion converged after nine terms
and, as can be seen, its accuracy is very good. To examine
the computational effort, the calculation was repeated for a
piston �i.e., n=0� with the same value of ka and the same
convergence criterion. This required 39 terms for conver-
gence, more than four times as many as in the rotor case.

Figure 3 shows the computational effort for the calcula-
tion as computational time per field point against log2�N�
where N is the number of field points. Over a wide range of
N, the computation time per point for the series expansion is
two orders of magnitude less than that required for direct
integration, even though the result is no less accurate. The
mean time per point for the series evaluation was 0.08 ms
while that for direct integration was 6.0 ms.

B. Acoustic fields

Sample results are presented for the acoustic field
around a rotating source, taking parameters representative of

FIG. 4. Real part of acoustic pressure in the plane z=0 with Mt=0.7, n=4,
and �=1/4. Contour levels ±10−3, 10−4, 10−5, positive levels solid, negative

FIG. 3. Computational time per point t /N vs number of points N: solid line:
series expansion; dashed line: direct integration.
levels dashed.
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conventional rotors and of high speed propellers. The struc-
ture of rotating sound fields has been presented in detail in
previous work1,3–5 and so the examples shown here serve to
illustrate application of the method.

The first results are calculated for Mt=0.7, n=4, ka
=2.8, and �=1/4, equivalent to a 2.74 m propeller rotating
at 830 rpm. Figure 4 shows the acoustic field �R�Kn�� in the
plane z=0 while Fig. 5 shows equivalent results for the plane
y=0. A maximum of 28 terms were required in evaluating
the series. Data were computed outside the sphere R
�1.0625a with a=1, the inner radius being shown as a
heavy line in each plot. The field has the structure described
in previous work,1 being composed of segments like those of
an orange with the field decaying exponentially over the
“peel” around the sonic radius 1/Mt=1.43. Since the rotor
lies completely inside the sonic radius, it radiates only
weakly into the far field.

Figures 6 and 7 show similar results for a high speed
rotor �diameter 2.74 m rotating at 1334 rpm� with Mt

=1.125, n=16, ka=18, and �=1/4. A maximum of 23 terms

FIG. 6. Real part of acoustic pressure in the plane z=0 with Mt=1.125, n
=16, and �=1/4. Contour levels ±10−2, 5	10−3, 2.5	10−3, positive levels

FIG. 5. Real part of acoustic pressure in the plane y=0 with Mt=0.7, n
=4, and �=1/4. Contour levels ±10−3, 10−4, 10−5, positive levels solid,
negative levels dashed.
solid, negative levels dashed.
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was needed in evaluating the series. In this case, part of the
source lies outside the sonic radius 1/Mt=0.89 and it can
radiate strongly into the far field, without losing energy in
the transition to the radiation zone. This strong radiation
shows up as the long “swirls” spiraling out of the source disk
in Fig. 6 and as the slow decay of the field on radial lines in
Fig. 7. This plot also shows the sharp demarcation between
the “quiet zone” of a supersonic rotor, near the z axis, and the
“loud zone” where field points are subject to a source ap-
proaching at a Mach number of unity.

IV. CONCLUSIONS

A fast, exact method for the prediction of acoustic fields
around rotating sources has been developed as a generaliza-
tion of a technique for the prediction of time-harmonic fields
around circular pistons.6 The method uses an exact series
expansion valid for general radial source distributions which
gives a converged solution in a time two orders of magnitude
smaller than that required for evaluation by direct two-
dimensional integration. The accuracy and efficiency of the
method have been demonstrated by computing the field
around sample sources characteristic of actually existing pro-
pellers.
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