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An exact series expansion for the field radiated by a monopole ring source with angular variation in

source strength is derived from a previously developed expression for the field from a finite disk.

The derived series can be used throughout the field, via the use of a reciprocity relation, and can be

readily integrated to find the field radiated by arbitrary circular sources of finite extent, and differ-

entiated to find the field due to higher order sources such as dipoles and quadrupoles.
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I. INTRODUCTION

Many problems in acoustics are related to the sound

radiated or scattered by systems with axial symmetry. These

systems include rotors such as cooling fans and aircraft

propellers, circular ducts, vibrating bodies such as baffled

speakers, and bodies of rotation. In each case, to predict the

radiated noise, there is a requirement to compute the field

produced by an elemental ring source of given radius, fre-

quency, and angular dependence. This calculation is an essen-

tial part of many noise prediction methods and there is a need

for efficient techniques to perform it.

A second motivation for the study of ring sources is

their use as a model problem for propeller and rotor noise.

There are a number of approximations to the ring source

field, developed, in the main, to examine the nature of the

field and its variation with operating parameters,1 or to give

a far-field approximation for use in noise prediction.2 These

approximations have proven useful for industrial noise pre-

diction, such as in aircraft propeller noise, and form the basis

of many practical prediction techniques.

An approach which does not seem to have found much

favor is the use of exact series expansions for the field of the

ring source. There are numerous such expansions for disk

sources of finite extent with examples covering a number of

different configurations.3–6 The number of published expan-

sions for a ring source is quite small, however. One is the

method of Matviyenko7 which gives a five term recursion

for the ring source of a given azimuthal order. A second,

very recent paper, is that of Conway and Cohl8 which gives

series expansions for the ring source, in terms of Bessel and

Hankel functions and associated Legendre functions. These

series are accurate and easily implemented but they are

expressed in terms of modified variables, of the type used in

elliptic integral solutions of ring potential problems, or of to-

roidal type. The variables used in the series are, in the nota-

tion of this paper,

4ar

ðaþ rÞ2 þ z2

" #1=2

and k ðaþ rÞ2 þ z2
h i1=2

;

where a is the source radius, k is the wavenumber, and (r, z)

is the field point in cylindrical coordinates, as defined in

Sec. II. The first difficulty in applying the expansions of

Ref. 8 lies in the requirement to differentiate the expansions

in order to find the field due to a dipole source. Second, it is

difficult to integrate the terms of the series in order to find

expansions for the field radiated from a finite disk. Both of

these difficulties arise because the source radius and the

observer coordinates do not appear explicitly in the expan-

sions but are buried inside functions of variables of the form

shown above.

In this paper, we take a previously published, quite sim-

ple, series for a finite disk source4 and use it to derive an

expansion for the field from a ring source. The derivation

depends on routine use of mathematical tables and yields an

expansion expressed in physical variables which can, if nec-

essary, be integrated to give a series for the field of a finite

source with arbitrary radial variation in source strength.

II. ANALYSIS

The problem to be considered is shown in Fig. 1. In

cylindrical coordinates (r, h, z), we require the field radiated

by a ring monopole source at radius a in the plane z ¼ 0, with

source strength exp[ j(nh1 – xt)]. Inserting the Green’s func-

tion for the Helmholtz equation, the radiated field is given by

e�jxt

ð2p

0

ejðkR0þnh1Þ

4pR0
dh1;

with

R0 ¼ ½r2 þ a2 � 2ra cosðh� h1Þ þ z2�1=2;

and wavenumber k ¼ x/c.
Suppressing the time dependence, the radiated field can

then be written exp[ jnh]Rn(k, a, r, z),

Rnðk; a; r; zÞ ¼
ð2p

0

ejðkR0þnh1Þ

4pR0
dh1;

R0 ¼ ½r2 þ a2 � 2ra cos h1 þ z2�1=2: (1)

We note that there is a reciprocity relation such that Rn is

unchanged if a and r are switched.
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A simple, exact series expansion for Rn can now be

derived using previously developed results for a finite disk

source. The starting point is the integral expression for the field

radiated by a source of unit strength on the disk r1 � a, z ¼ 0,

Inðk; a; r; zÞ ¼
ða

0

Rnðk; r1; r; zÞr1dr1; (2)

which has an exact series expansion,4

In ¼ ðpa2Þ1=2 ð�kaÞnþ1=2

ðkRÞ1=2

�
X1
m¼0

AmH
ð1Þ
nþ2mþ1=2

ðkRÞPn
nþ2mðcos /Þ

� 1F2

nþ 2mþ 2

2
;
nþ 2mþ 4

2
; nþ 2mþ 3=2;

�

� ka

2

� �2
#

ka

2

� �2mþ1=2

;

Am ¼ ð�1Þm 22m�1

nþ 2mþ 2

ð2m� 1Þ!!
ð2nþ 2mÞ!!ð2nþ 4m� 1Þ!! ;

(3)

where R ¼ [r2 þ z2] is the distance of the observer from the

origin, / ¼ cos�1 z/R is the polar angle of the observer, H
ð1Þ
m

is the Hankel function of the first kind of order m, Pq
m is the

associated Legendre function, 1F2(�) is a generalized hyper-

geometric function,9

1F2ða; b; c; xÞ ¼
X1
n¼0

Bnxn;

Bn ¼
ðaÞn
ðbÞnðcÞn

1

n!
; (4)

and (a)n ¼ C(a þ n)/C(a) is Pochhammer’s symbol.10 This

expansion for a finite disk source is valid outside the sphere

containing the source, i.e., for R > a; the reciprocity relation

which allows swapping of r and a will be used to evaluate

Rn for R < a.
Differentiating with respect to a gives an expression for

the field radiated by a ring source of radius a,

1

a

@In

@a
¼ Rnðk; a; r; zÞ: (5)

Likewise, differentiating Eq. (3),

@In

@a
¼ j2nþ1 p1=2

ðkRÞ1=2

X1
m¼0

AmH
ð1Þ
nþ2mþ1=2

ðkRÞPn
nþ2mðcos /Þ

� ðkaÞ2mþnþ1

22m�1=2

(
nþ 2mþ 2

2
1F2

"
nþ 2mþ 2

2
;

nþ 2mþ 4

2
; nþ 2mþ 3=2;�

 
ka

2

!2#

�
 

ka

2

!2

1F02

"
nþ 2mþ 2

2
;
nþ 2mþ 4

2
;

nþ 2mþ 3=2;�
 

ka

2

!2#)
; (6)

where the derivative 1F02 is taken with respect to the argu-

ment. Using the relation

1F2ða1; b1; b2; xÞa1 þ 1F02ða1; b1; b2; xÞx

¼ 1F2ða1 þ 1; b1; b2; xÞa1;

Eq. (6) can be rewritten

@In

@a
¼ j2nþ1 p1=2

ðkRÞ1=2

X1
m¼0

AmH
ð1Þ
nþ2mþ1=2

ðkRÞPn
nþ2m

�ðcos/ÞðkaÞ2mþnþ1

22mþ1=2
ðnþ2mþ2Þ1F2

� nþ2mþ4

2
;
nþ2mþ4

2
;nþ2mþ3=2;� ka

2

� �2
" #

;

noting the change in the first parameter of the hypergeomet-

ric function.

Using the cancellation property of hypergeometric

functions

1F2ða1; a1; b2; xÞ ¼ 0F1ð; b2; xÞ

and the relation11

0F1 ; mþ 1;� z

2

� �2
� �

¼ Cðmþ 1Þ 2

z

� �m

JmðzÞ;

where Jm is a Bessel function of the first kind,

1F2

nþ 2mþ 4

2
;
nþ 2mþ 4

2
;nþ 2mþ 3=2;� ka

2

� �2
" #

¼ p1=2 ð2nþ 4mþ 1Þ!!
2nþ2mþ1

2

ka

� �nþ2mþ1=2

Jnþ2mþ1=2ðkaÞ;

(7)

FIG. 1. Coordinate system for calculations.
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we find an expansion for the field radiated by a ring source,

Rnðk; a; r; zÞ ¼
1

a

@In

@a
¼ j2nþ1 p

4

1

ðaRÞ1=2

�
X1
m¼0

ð�1Þm ð2nþ 4mþ 1Þð2m� 1Þ!!
ð2nþ 2mÞ!!

� H
ð1Þ
nþ2mþ1=2

ðkRÞPn
nþ2mðcos uÞ

� Jnþ2mþ1=2ðkaÞ: (8)

Equation (8) is the main result of the paper. It is an exact se-

ries expansion for the field radiated by an oscillating ring

source of radius a to any point with R > a. If it is required to

compute the field at points R < a, this can be done using the

reciprocity relation which allows switching of r and a in the

ring source integral of Eq. (5). The expansion is remarkably

simple, containing only one special function, Pn
nþ2m, given

that the Bessel and Hankel functions can be evaluated as

finite sums of elementary functions,10

Jnþ1=2ðxÞ ¼
2

px

� �1=2

�
Xn

q¼0

1

q!

ðnþ qÞ!
ðn� qÞ!

cos½x� ðn� qþ 1Þp=2�
ð2xÞq ;

(9a)

H
ð1Þ
n�1=2
ðxÞ ¼ j�n 2

px

� �1=2

� ejx
Xn�1

q¼0

jq

q!

ðnþ q� 1Þ!
ðn� q� 1Þ!

1

ð2xÞq : (9b)

We further note that this expansion has a form very similar

to that of the expansion of the Helmholtz Green’s function

for a point source using the “summation theorem” for Bessel

functions10 or in terms of spherical harmonics.12

A. Higher order sources

An important feature of the derivation of Eq. (8) in

physical variables is that it is easily differentiated to give the

fields generated by higher order sources. Using standard

relations for the special functions, given in mathematical

tables,10 the axial and radial dipole source expansions are

@Rn

@z
¼ j2nþ1 p

4

1

R

1

ðaRÞ1=2

X1
m¼0

ð�1Þm

�ð2nþ 4m� 1Þð2m� 1Þ!!
ð2nþ 2mÞ!! Jnþ2mþ1=2ðkaÞ

�
h
kRcos/H

ð1Þ
nþ2mþ1=2

ðkRÞPn
nþ2mðcos/Þ

� ð2mþ 1ÞHð1Þnþ2mþ1=2
ðkRÞPn

nþ2mþ1ðcos/Þ
i
; (10a)

@Rn

@r
¼ j2nþ1 p

4

1

R

1

ðaRÞ1=2

X1
m¼0

ð�1Þm

� ð2nþ 4mþ 1Þð2m� 1Þ!!
ð2nþ 2mÞ!! Jnþ2mþ1=2ðkaÞ

�
"

n
H
ð1Þ
nþ2mþ1=2

ðkRÞ
sin /

Pn
nþ2mðcos /Þ

þ H
ð1Þ
nþ2mþ1=2

ðkRÞPnþ1
nþ2mþ1ðcos /Þ

þ kR sin /H
ð1Þ
nþ2m�1=2

ðkRÞPn
nþ2mðcos /Þ

#
; (10b)

@Rn

@a
¼ j2nþ1 p

4

1

a

1

ðaRÞ1=2

X1
m¼0

ð�1Þm

� ð2nþ 4mþ 1Þð2m� 1Þ!!
ð2nþ 2mÞ!!

� H
ð1Þ
nþ2mþ1=2

ðkRÞPn
nþ2mðcos /Þ½kaJnþ2m�1=2ðkaÞ

� ðnþ 2mþ 1ÞJnþ2mþ1=2ðkaÞ�; (10c)

with qRn/qa being required when the reciprocity relation for

r and a is used. The tangential dipole field found by differen-

tiation with respect to h is given by jnRn/r.

B. Finite disk source

A major application of a ring source evaluation method

is in rotor acoustics where the radiated field is given by inte-

grals of the form

pnðk; a; r; zÞ ¼
ða

0

sðr1ÞRnðk; r1; r; zÞr1dr1; (11)

where s(r1) is a radial source function whose value depends

on the rotor geometry and/or loading.

For points lying outside the sphere containing a rotor of

radius a, substitution of Eq. (8) into Eq. (11) gives a series

expansion for the acoustic field of the rotor,

pn ¼ j2nþ1 p
4

1

R1=2

X1
m¼0

ð�1Þm ð2nþ 4mþ 1Þð2m� 1Þ!!
ð2nþ 2mÞ!!

� H
ð1Þ
nþ2mþ1=2

ðkRÞPn
nþ2mðcos /Þsnþ2m;

snþ2m ¼
ða

0

sðr1ÞJnþ2mþ1=2ðkr1Þr1=2
1 dr1; (12)

so that the coefficients snþ2m are given by a Hankel trans-

form of the radial source term. It has been known for many

years that the far-field noise from a rotor is given by a Han-

kel transform of the radial source term2,13 based on integer

order Bessel functions. The expansion of Eq. (12) employs

Hankel transforms of order integer plus one half, to give a

prediction which is valid in both the near and far fields, with

the coefficients snþ2m being independent of observer posi-

tion. A similar approach can be used to derive expansions

for the dipole fields based on integrals over the source.

C. Far-field approximation

A far-field approximation to Eq. (8) can be derived on

the assumption kR!1 and using Eq. (9b) to write

H
ð1Þ
nþ2mþ1=2

ðkRÞ � j�n�2m�1 2

pkR

� �1=2

e jkR;
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resulting in

Rnðk; a; r; zÞ � jn p
2ka

� �1=2e jkR

R

X1
m¼0

ð2m� 1Þ!!
ð2nþ 2mÞ!!

�ðnþ 2mþ 1=2ÞJnþ2mþ1=2ðkaÞ
�Pn

nþ2mðcos /Þ;
kR!1: (13)

Likewise, Eq. (12) can be approximated

pn �
p
2k

� �1=2e jkR

R

X1
m¼0

ð2m� 1Þ!!
ð2nþ 2mÞ!!

�ðnþ 2mþ 1=2Þsnþ2mPn
nþ2mðcos /Þ;

kR!1: (14)

These series expansions can be truncated when n þ 2m
þ 1/2 > ka due to the exponential decay of the Bessel func-

tion for order larger than argument. In the case of a subsonic

rotor, for which ka < n, only the first term of each series

need be retained.

III. RESULTS

To assess the accuracy and efficiency of Eqs. (8) and

(10), a number of test cases were calculated and compared to

the results from numerical integration. The numerical evalua-

tions were performed using a quadrature method imple-

mented in the GNU Scientific Library.14 This method is

capable of dealing with the near singularities which occur

when the field point approaches the ring source. The cases

considered are k ¼ 14, n ¼ 9, and a ¼ 2�1/2 with / ¼ 45�,
0 � R � 4 and / ¼ 90�, 1/2 � R � 1. This second case was

chosen to test the series behavior in the source plane to see

how it handles singularities as the field point approaches the

source. The convergence criterion for the series evaluation

and for the numerical quadrature was an absolute error of

10�6 with the maximum number of terms evaluated in the se-

ries limited to 32. The series was evaluated for the monopole

and dipole terms simultaneously and, for R > a, the calcula-

tion was performed for all points at once, taking advantage of

the fact that the Bessel functions and associated Legendre

functions need to be computed only once per value of /. All

calculations were performed using programs written in C,

using the GNU C compiler and the GNU Scientific Library.14

Figures 2 and 3 show the results for / ¼ p/4. In the first

case, the monopole source, the series is seen to perform well

in matching the numerically evaluated field. The computa-

tional time per point for the series evaluation was half of that

required for the numerical integration. The dipole evalua-

tion, Fig. 3, shows a similarly close match to the numerical

result. In this case, the series was not evaluated near R ¼ a, a

point where, strictly, the series is not valid.

In the in-plane case, / ¼ p/2, the range of R is restricted

to allow examination of the behavior of the results around

the source radius and, in particular, to see how the series

deals with the singularity in qRn/qr, the dipole term. The ra-

dial dipole has been chosen for testing since the axial dipole

field is identically zero in the plane z ¼ 0. Figure 4 shows a

good match between the series and numerical approaches for

the monopole integral with the singularity being well cap-

tured. The results for the radial dipole, Fig. 5, show similar

behavior. The plot for the real part of qRn/qr, Fig. 5(a),

shows the singularity as the source radius is approached. In

this case, the numerical integration method broke down

around a, where a gap has been left in the curve. The evalua-

tion time per point in this case was 1.2 times greater for the

series than for the direct numerical integration. This is

because a large proportion of the points lay in the region

R < a and the field had to be computed at each individually

using the reciprocity relation, rather than taking advantage

of the simultaneous evaluation method possible for R > a.

FIG. 2. Comparison of numerical (solid) and series (circle) computation of

Rn, / ¼ p/4: (a) Real part and (b) imaginary part.

FIG. 3. Comparison of numerical (solid) and series (circle) computation of

qRn/qr, / ¼ p/4: (a) Real part and (b) imaginary part.
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Figure 6 shows the number of terms required to evaluate

the series at the two polar angles considered. The number of

terms was limited to 32, as can be seen around the source ra-

dius in both cases. Note that the number of terms is the maxi-

mum required for the evaluation of all terms, monopole and

dipole, at each point so that the driving factor here is the

number of terms required to evaluate the gradients near a.
This is especially clear in Fig. 6(b) showing the behavior for

a small region around a in the source plane.

Finally, Fig. 7 shows a comparison between the exact

series and the single-term far-field approximation for a sub-

sonic rotor of Eq. (13), for a subsonic (ka < n) source. The

match is seen to be very good, especially as kR increases.

IV. CONCLUSIONS

A simple exact series expansion for the acoustic field

radiated by a monopole ring source has been developed and

derived from a previous result for a finite disk. The series

has been tested numerically and compared to another

recently published expansion for the Green’s function for a

Helmholtz problem in cylindrical coordinates. Since it is

FIG. 4. Comparison of numerical (solid) and series (circle) computation of

Rn, / ¼ p/2: (a) Real part and (b) imaginary part.

FIG. 5. Comparison of numerical (solid) and series (circle) computation of

qRn/qr, / ¼ p/2: (a) Real part and (b) imaginary part.

FIG. 6. Number of terms in series evaluation of field: (a) / ¼ p/4 and

(b) / ¼ p/2.

FIG. 7. Exact series (solid line) and single-term far-field approximation

(circles) for k ¼ 3, n¼ 4, a¼ 1, / ¼ p/4: (a) Real part and (b) imaginary part.
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based on physical variables, the series is easily integrated to

give an expansion for finite sources, such as rotors, with ar-

bitrary radial variation in source strength and is also easily

differentiated to find the fields due to higher order sources

such as dipoles and quadrupoles.
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