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A hypersingular boundary integral method for the prediction of radiation from a straight circular
pipe with arbitrary end profile has been developed. The technique represents an extension of
established procedures for axisymmetric pipes with the addition of recent advances in special
function and quadrature theory to simplify the implementation. The resulting code is applied to two
sample problems: first, the prediction of radiation of a plane wave mode from a pipe with its ends
cut by an inclined plane, representing the “scarfed intake” proposed for reduction of aircraft engine
noise. Second, the method is used to examine scattering of an incident azimuthal mode by a
multi-lobed profile, characteristic of the “chevron” nozzles proposed for jet engine exhausts.
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I. INTRODUCTION

This paper addresses the problem of calculating the
sound radiated from a straight, circular section pipe with an
arbitrary end profile, motivated by two features proposed for
modern aero-engines. The first, “scarfing,” has been pro-
posed as a means of redirecting the fan noise radiated from
the intake of an engine so that the noise on the ground is
reduced.1 The second is the “chevron nozzle” in which an
asymmetric exhaust nozzle is used to modify the flow so that
the noise source is reduced.2 In such an approach, the main
reason for the noise reduction appears to be the modification
of the flow and consequent effect on the aerodynamic source
terms, but an examination of the purely acoustic effect of the
chevron nozzle is still of some interest, if only for its con-
nection with the instabilities of the jet shear layer.3

The method to be developed is a relatively conventional
technique for scattering from straight circular pipes as used
by a number of researchers in the past,4–6 who employed a
hypersingular integral equation to solve the scattering prob-
lem. The essential difference is that in this paper, the ap-
proach is extended to a pipe with end profiles given by an
arbitrary function of azimuthal angle on the pipe. In addition,
recent advances in quadrature theory7 and special functions8

are used to handle the hypersingular terms which arise in the
integral equation. The central part of the method is the de-
composition of the integral equation into a set of coupled
equations for the amplitudes of the azimuthal modes of the
surface pressure jump. This makes the problem into one
similar to that in engine noise where a duct mode interacts
with the internal stationary vanes in an engine9 with the role
of the stators being played by the duct end profile.

The problem of scattering by scarfed duct terminations
has been studied with asymptotic methods being applied to
the case of low-frequency radiation from ducts with small
scarf angle1 and ray theory to high-frequency radiation from
ducts of arbitrary scarf angle.10 There is then a gap in the
literature which this paper aims to fill: the problem of rela-
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tively low-frequency scattering from duct terminations with
large scarf angle. Since the general termination problem is no
more difficult numerically than the simple scarfed duct prob-
lem, results for the chevron termination case will also be
presented.

II. NUMERICAL TECHNIQUE

An integral equation method based on existing tech-
niques is now developed for the solution of the problem of
scattering by straight, circular pipes with arbitrary end pro-
files. The formulation yields a set of coupled equations for
azimuthal mode amplitudes on a distorted circular source,
not unlike the “wobbling modes” studied in propeller
noise.11,12 The resulting equations include a hypersingular
integral which is evaluated using recently developed quadra-
tures, easing the analysis of the integral kernel.

A. Formulation

The geometry of the system is shown in Fig. 1. A zero-
thickness, circular section, straight pipe extending from z
=a to z=b is subjected to an incident acoustic field pinc. The
pipe ends have identical azimuth-dependent profiles �w���
where � is the profile depth and w��� is the shape; −sin � for
a linear scarf. A cylindrical coordinate system �r ,� ,z� is used
for calculations with position on the pipe surface given by

x = r1 cos �1, y = r1 sin �1, z = z1 + �w��1� ,

where the subscript 1 indicates variables of integration. The
profile shape �w��1� is imposed at all axial positions so that
the formulation of the integral equations will involve analy-
sis of radiation from distorted ring sources. For the directiv-
ity plots shown later, spherical coordinates �R ,� ,�� are used
and are indicated in Fig. 1.

The total acoustic field is made up of the incident field
and that radiated by the pipe surface. Using a standard
approach,4–6 the solution for the scattered field is computed
via the pressure jump �p across the surface, which acts as a

distribution of radial dipoles:
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p�r,�,z� = pinc +� � �p��1,z1�
�

�r1

ejkR

4�R
dS , �1�

where S is the scattering surface, R is the source-observer
distance, k is the acoustic wave number, and time depen-
dence exp −j�t has been assumed.

To find �p, the integral equation is solved subject to the
boundary condition that the pressure gradient on the surface
be identically zero:

−
�pinc

�r
=� � �p��1,z1�

�2

�r � r1

ejkR

4�R
dS . �2�

Because the two ends of the pipe have identical profiles,
the transformation of the integral has unit Jacobian and Eq.
�2� can be written

−
�pinc

�r
= �

a

b �
0

2�

�p��1,z1�
�2

�r � r1

ejkR

4�R
d�1 dz1. �3�

The standard approach4–6 to solving the integral equa-
tion for �p is to decompose it into a suitable set of basis
functions and compute the coefficients of these functions
subject to the boundary conditions. In this case, �p is de-
composed into azimuthal modes in exp jn� and Chebyshev
polynomials of the second kind Un so that

�p��1,z1� = �
m=−�

�

�
n=0

N

Qnmejm�1Un� z1 − z̄

L/2
�

	�z1 − a�1/2�b − z1�1/2, �4�

where the pipe length L=b−a. Inserting Eq. �4� into Eq. �3�,
gives an integral equation for the coefficients Qnm:

−
�pinc

�r
= �

m

Qnm�
n=0

N �L

2
�2�

−1

1

Un�t��1 − t2�1/2 �2gm

�r � r1
dt ,

�5�

where

gm = �
0

2� ej�kR+m�1�

4�R
d�1,

z̄ =
a + b

2
, z1 = z̄ +

L

2
t .

Equation �5� is a set of coupled equations which must be
solved for all azimuthal mode orders simultaneously, with

FIG. 1. Coordinate systems for scarfed cylinder.
the required mode orders m to be prescribed in advance.
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B. Green’s function analysis

To numerically evaluate the integral of Eq. �5�, the sin-
gular part of the kernel must be isolated and analyzed. This is
most easily handled using some recent results in the theory
of elliptic-type integrals. Following Dawson,13 the Green’s
function gm is broken into a bounded and a singular part:

gm = gm
�b� + gm

�s�, �6a�

gm
�b� = �

0

2�

ejm�1
ejkR� − 1 − jkR� + k2R�

2/2

4�R�

d�1, �6b�

gm
�s� = �

0

2�

ejm�1
1 + jkR� − k2R�

2/2

4�R�

d�1, �6c�

R�
2 = r2 + r1

2 − 2rr1 cos �� − �1� + �z − z1 + ��w�2,

�w = w��� − w��1� .

The kernel of Eq. �5� is found by differentiation so that
the bounded part can be written

�2gm
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�r � r1
= �
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2� ejm�1

4�
	 2

R�
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−
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 �2R�
2

�r � r1
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�7�

and it is clear that all terms in the integrand have a finite
limit as the field point approaches the source position.

The singular kernel must be treated differently to extract
the leading order singularity. The aim is to make use of ex-
isting results for axisymmetric systems, as robust techniques
are available for solving such problems. Expanding gm

�s� as a
power series

� �2gm
�s�

�r � r1
= �

u=0

�
�u

u!

�u

��u� �2gm
�s�

�r � r1
��

�=0

�8�

which can be rewritten

� �2gm
�s�

�r � r1
= �

u=0

�
���w�u

u!

�u

�zu� �2gm
�s�

�r � r1
��

�=0

, �9�

because z and � only occur in the combination �z−z1

+��w�.
Because �=0 corresponds to the axisymmetric problem,

the singular kernel can be computed using established re-
sults. The terms which must be handled are of the form

n
exp jm�1 /R� which can be written
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1
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n , �10�

where R0 is R� evaluated at �=0. The terms related to the end
profile w��� are expanded in a Fourier series:

��w�u = �
p,q

Wpq
�u�ejp�ejp�1,

where nonzero values of Wpq
�u� are included in the summation

and

1

R�
n = �

u=0

�
�u
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�u
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Wpq
�u�ejp�ejq�1

R0
n . �11�

Integration of Eq. �11� yields

�
0

2� ejm�1

R�
n d�1 = �

u=0

�
�u

u!

�u

�zu�
p,q
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�u�ejp��

0

2� ej�m+q��1
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This can be simplified as follows. Using the substitution �1�
=�−�1

�
0

2� ejm�1

�r2 + r1
2 − 2rr1cos �� − �1� + �z − z1�2�n/2 d�1

=ejm��
0

2� cos m�1�

�r2 + r1
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0
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after the substitution ��=2�. Then, setting


2 = �r + r1�2 + �z − z1�2, �2 =
4rr1


2 ,

and defining

H�n,m,�� = �
0

2� cos 2m�

�1 − �2 cos2 ��n/2 d� , �12�

Eq. �11� becomes

�
0

2� ejm�1

R�
n d�1

= �
u=0

�
�u

u!

�u

�zu�
p,q

Wpq
�u�ej�p+q+m��H�n,m + q,��


n .

�13�

The elliptic-type integral H�n ,m ,�� has been extensively
analyzed due to its importance in radiation problems. In par-
ticular, recursion relations have been derived for its efficient
evaluation and an asymptotic series exists for the case where

8
n=2n�+1, covering the cases of interest in this paper:
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H�2n� + 1,m,�� =
�2m��−2n�

�1/2�n�

	� �
k=0

n�−1

�− 1�kCk�n� − 1 − k� ! ��2k

+ �− 1�n� �
k=n�

�
Ck

�k − n��!
hk������2k� ,

�14�

where

Ck = �1

2
+ m�

k
�1

2
+ m − n��

k
/k ! ,

hk���� = ��1 + k� + ��1 + k − n��

− ��1

2
+ m + k�

− ��1

2
+ m − n� + k� − 2 log ��,

�� = �1 − �2�1/2,

� is the logarithmic derivative of the gamma function, and
�a�n is Pochammer’s symbol. The asymptotic series, as well
as being useful in evaluating the kernel proper, is also useful
in that it gives the strength of the leading order singularity as
�→1.

Differentiating Eq. �6c� with �=0,
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so that the asymmetric kernel becomes

�2gm
�s�

�r � r1
= �

u=0

�
�u

u!

�u

�zu�
p,q

Wpq
�u�ej�p+q+m��Km+q

�s� . �16�

We note in passing that the substitution r=r1�1 has not
been made in Eq. �15� in order to allow the numerical pro-

cedures to be checked by evaluating the kernel with r�r1.
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Finally, inserting Eq. �16� into the integral equation and
moving the differentiations from under the integral sign

�
−1

1 �2gm
�s�

�r � r1
Un�t��1 − t2�1/2 dt

= �
u=0

�
�u

u!

�u

�zu�
p,q

Wpq
�u�ej�p+q+m��

	�
−1

1

Km+q
�s� Un�t��1 − t2�1/2 dt . �17�

C. Hypersingular kernel

The singular part of the kernel requires special treatment
as standard numerical integration techniques will not work.
The first step is to isolate the most singular term. This can be
done most easily using the asymptotic series, Eq. �14�. With
r=r1�1, the most strongly singular term is the first term in

1

4�

H�3,m,��

3 .

Setting

��2 =
4

4 + �z − z1�2 ,

the leading order singularity is

1

4�

H�3,m,��

3 


1

2�

1

�z − z1�2 , z → z1,

which can also be derived using small argument methods.6

This result means that the integrand has hypersingular
behavior as z→z1 and the integral of Eq. �5� must be inter-
preted in the Hadamard finite-part sense.14–16 A number of
approaches exist for the evaluation of finite-part integrals but
the most convenient for our purposes is the Gaussian-type
quadrature of Korsunsky,7 which is a special case of the rules
derived by Monegato.17 This quadrature is particularly good
for integral equations based on Chebyshev polynomial ex-
pansions where the kernel is difficult to analyze in detail.
When the kernel can be written in the form

K�t,x� =
1

�t − x�2 + k�t,x� ,

the quadrature rule of order n is

=�
−1

1

K�t,x�g�t��1 − t2�1/2dt

� ��
i=1

n �1 − ti
2

n + 1
K�ti,xk� +

1 − ti
2

ti − xk

�− 1�i+k

�1 − xk
2�1/2�g�ti� , �18�

ti = cos
i�

n + 1
and xk = cos

�2k − 1��
2�n + 1�

,

k = 1, . . . ,n + 1,
where =� denotes the finite-part integral. Note that k�t ,x� may
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contain singularities up to order 1 and these will be evaluated
as Cauchy principal values.

D. Differentiation of kernel

Equation �17� requires that the integral in it be differen-
tiated with respect to the axial coordinate. The collocation
points are defined by Eq. �18� and lie in the range −1
x

1 where x is the transformed variable inside the range of
integration. Differentiation with respect to the physical vari-
able z is then simply a scaled version of differentiation with
respect to x:

�

�z
=

2

L

�

�x
.

In assembling the equations, I is evaluated at the collocation
points so that we start from a set of data �xk , Ik�. In order to
perform the differentiation, we fit a set of Chebyshev poly-
nomials of the first kind to the data and use the coefficients
of the series to evaluate the derivative. The Chebyshev ex-
pansion of a function is given by

I�x� = �
m=0

m=M

amTm�x� , �19�

where, by the orthogonality relation for Chebyshev
polynomials,18

a0 =
1

�
�

−1

1

I�x��1 − x2�−1/2 dx ,

am =
2

�
�

−1

1

I�x�Tm�x��1 − x2�−1/2 dx, m � 0.

Because of the location of the collocation points xk, it is
convenient to transform the integrals for the Chebyshev co-
efficients. Setting x=cos � and noting that Tm�x�
�cos m�,

am =
2

�
�

0

�

I�cos �� cos m� d� .

The integral has been evaluated at the collocation points
given by Eq. �18� so that the data are equally spaced in � and

a0 �
1

2n
�
k=0

n

Ik, �20a�

am �
1

n
�
k=0

n

IkTm�xk�, m � 0. �20b�

To evaluate the derivative, we use the formula dTm /dx
=mUm−1�x� and

�I

�x
= �

m=0

M

mamUm−1�x� , �21�

which can be differentiated in turn to evaluate the higher

derivatives.
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E. Implementation

The implementation of the method follows the sequence
given above. The incident field azimuthal order is specified
as are the azimuthal orders of the modes to be included in the
scattering calculation. For a field of order m incident on a
linear scarf, the required modes will be m±u, where u
=0,1 , . . . ,U where, in the results shown here, U is the maxi-
mum order of the expansion in �. The profile w��� is speci-
fied, allowing Wpq

�u� to be computed using a two-dimensional
Fourier transform.19

For M azimuthal modes, the boundary conditions are
imposed at angular positions �i= i2� /M, where i=0, . . . ,M
−1, and at axial positions found from the quadrature rule,
Eq. �18�:

zk = z̄ +
L

2
xk + �w��i� .

This yields a well-posed system of equations for Qnm which
can be used in Eq. �1� to calculate the scattered pressure.

III. RESULTS

Before presenting some sample results of the method,
the numerical performance of the technique is analyzed. The
important property of the method is its convergence behavior
with respect to � and the order of the solution, i.e., the high-
est power of � considered. Figure 2 presents results for a
linear scarf with �=0.58 and k=1.0, computed using terms
up to O���, O��3�, and O��5�, a case considered in Sec. III A.
The number of azimuthal modes included in the solution is
increased as the order of the calculation rises. Figure 2 shows
the real part of the computed surface pressure jump R��p�
against the surface axial coordinate. The solid curve shows
the O��5� solution while the diamonds and crosses show the
O��3� and O��� solutions, respectively. It can be seen that the
third- and fifth-order solutions coincide. Figure 3 shows
equivalent data for �=1, the most extreme case computed in
this paper, and the behavior with � is seen to be similar: poor
results if only terms up to O��� are included but convergence
thereafter. The behavior of the solution for smaller � was
similar and so all of the results which follow have been com-

5

FIG. 2. Convergence of solution for scarf angle 30° ��=0.58�: surface pres-
sure jump R��p� against the axial coordinate at �=� /2; cross: first order;
diamond: third order; solid line: fifth order.
puted to order � .
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The second issue is that of the time required to solve a
problem. Figure 4 shows the computational time required to
assemble the matrix for solution of the linear scarf problem
at �=1 with different numbers of modes included. The data
were generated by increasing the order of � and the number
of modes simultaneously. The computational time shown has
been scaled on the time required in the single mode case, i.e.,
the axisymmetric problem. There is no clear-cut variation in
computational time with the number of modes N, but it does
appear to be roughly N2, as shown by the superimposed qua-
dratic fit.

A. Plane wave-linear scarf interaction

The first problem considered is that of radiation from a
pipe with a linear scarf. In recent papers, asymptotic analysis
has been applied to low-frequency scattering by ducts with a
small scarf angle1 and ray theory to high-frequency radiation
from ducts of arbitrary scarf angle.10 It has been noted,1 how-
ever, that a numerical solution is required when both the
scarf angle and the wave number are O�1�. For this reason,
the nondimensional wave number k=1 and the radiated field
is calculated for scarf angles of 0°, 15°, 30°, and 45° ��
=0,0.27,0.58,1.0�. The incident field is generated by a ring
of axial dipoles of unit strength at radius 1

2 placed at z=−5 in
a duct of length 10 with a=−10 and b=0. The next cut-on

FIG. 3. Convergence of solution for scarf angle 45° ��=1.0�: surface pres-
sure jump R��p� against the axial coordinate at �=� /2; cross: first order;
diamond: third order; solid line: fifth order.

FIG. 4. Computational time for matrix assembly against number of modes
included. Time has been scaled on time for single mode �axisymmetric

problem�. Diamonds: computation time; solid line: quadratic polynomial fit.

Michael J. Carley: Quasi-symmetric pipes 821



wave number is k=3.832 so that only the plane mode
propagates.20 Far-field directivities are plotted as �p�2R2

where the radial coordinate R is centered on the nominal
center of the duct face at z=0. In performing the calculation
R=20.

Figure 5 shows the normalized sound power at constant
�=� /4 with azimuthal angle � varying. The solid line rep-
resents the axisymmetric case �=0 and the directivity pattern
moves up as the scarf angle increases. As in Fig. 3 of Peake’s
work,1 the scarfing has shifted the directivity so that the
noise below the duct is reduced and that above it increased—
precisely the aim of scarfing.

Figure 6 shows the directivity in a vertical plane through
the duct centerline. The field ahead of the inlet plane is com-
posed of a narrow lobe near the vertical and a broader one
along the axis. Behind the inlet plane, there is a second set of
lobes. These are the sound field radiated from the rear of the
pipe �which is negatively scarfed� as can be seen by comput-
ing the directivity angle from the inlet to the rear plane
which is 120°. As expected from previous work, increased
scarf angle reduces the amplitude of the main lobe below the

FIG. 5. Polar plot of �p�2R2 against � at �=� /4 for an axisymmetric field
incident on a linear scarf. Wave number k=1.0; scarf angles 0°, 15°, 30°,
and 45°, shown as solid, dashed, dot-dashed, and dashed lines, respectively.

FIG. 6. Polar plot of �p�2R2 against � at �=� /4 for an axisymmetric field
incident on a linear scarf. Wave number k=1.0; scarf angles 0°, 15°, 30°,

and 45°, shown as solid, dashed, dot-dashed, and dashed lines, respectively.
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pipe axis at the expense of an increase above it. Likewise,
the narrower lobe in the vertical plane increases above the
horizontal but does not reduce significantly below, merely
being shifted slightly. The conclusions drawn in earlier work
on scarfing are thus confirmed for the large scarf angle con-
sidered here.

B. Azimuthal mode-lobed nozzle interaction

The second set of results is a calculation of the sound
radiated by a mode of nonzero azimuthal order incident on a
sinusoidally profiled duct termination, a simple model of a
chevron mixer.2 In this case, k=5, which roughly corre-
sponds to sound generated at a frequency of 550 Hz near a
nozzle of diameter 1 m. The nozzle profile is sin 4� and its
amplitude is �=0.25. As a baseline condition, the source is
an axial dipole distribution of radius 1 with azimuthal varia-
tion of order m=4, positioned outside the nozzle at z=1, i.e.,
one nozzle radius “downstream.” For comparison, the same
calculation is also performed for modes m=3 and m=5. As
in Fig. 5, the results are plotted as polar directivities �p�2R2 at
�=� /4, with the axisymmetric case superimposed for com-
parison.

Figures 7–9 show the baseline case m=4 and the com-
parisons at m=3 and m=5, respectively. The first point is
that the lobing, although it increases the radiated sound
slightly, has little effect in the m=4 and m=5 cases. In the
m=3 case, however, the increase is quite large and there is
practically no reduction in any direction.

The reason for this appears to be that the m=3 mode is
cut-on in the duct at k=5, while the m=4 and m=5 modes
are cut-off. The propagatating mode generates a strong scat-
tering response, including the cut-on m=−1 mode, which
contributes the asymmetry which is apparent in Fig. 8. By
contrast, in the other two cases, although the incident modes
excite cut-on modes, they do so via a mode which is cut-off
in the duct so that the amplitude of the excited modes is quite

FIG. 7. Polar plot of �p�2R2 against � at �=� /4 for field of azimuthal order
m=4 incident on a four-lobed termination, k=5, �=0, 0.25, shown as solid
and dashed, respectively.
weak and no great asymmetry is apparent.
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IV. CONCLUSIONS

A method has been presented for the prediction of scat-
tering by straight circular pipes with arbitrary end profiles.
The method has been applied to the problem of radiation of
sound from a linearly scarfed duct and to that of scattering
by a profile representative of a chevron nozzle on an
aeroengine. In the case of the scarfed duct, it was found that

FIG. 8. Polar plot of �p�2R2 against � at �=� /4 for field of azimuthal order
m=3 incident on a four-lobed termination, k=5, �=0, 0.25, shown as solid
and dashed, respectively.

FIG. 9. Polar plot of �p�2R2 against � at �=� /4 for field of azimuthal order
m=5 incident on a four-lobed termination, k=5, �=0, 0.25, shown as solid

and dashed, respectively.
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there is a limit on the noise reduction benefit to be had by
scarfing beyond a certain point. Examination of the sample
results for a chevron nozzle has shown that the purely acous-
tic effect of the end profile depends on the interaction be-
tween the internal modes of the pipe and the incident field.
The procedure has proven simple to implement using re-
cently developed numerical methods. Future developments
might include using a similar approach to model scattering
by pipes of almost circular section, or to predict radiation
from ducts with asymmetric liners.
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