
Aeroacoustic sources of motorcycle helmet noise

J. Kennedy,a) O. Adetifa, and M. Carley
Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, United Kingdom

N. Holt
School of Science, Society and Management, Bath Spa University, Newton Park, Newton Street Loe,
Bath, BA2 9BN, United Kingdom

I. Walker
Department of Psychology, University of Bath, Bath, BA2 7AY, United Kingdom

(Received 8 February 2011; revised 27 June 2011; accepted 5 July 2011)

The prevalence of noise in the riding of motorcycles has been a source of concern to both riders

and researchers in recent times. Detailed flow field information will allow insight into the flow

mechanisms responsible for the production of sound within motorcycle helmets. Flow field surveys

of this nature are not found in the available literature which has tended to focus on sound pressure

levels at ear as these are of interest for noise exposure legislation. A detailed flow survey of a com-

mercial motorcycle helmet has been carried out in combination with surface pressure measurements

and at ear acoustics. Three potential noise source regions are investigated, namely, the helmet

wake, the surface boundary layer and the cavity under the helmet at the chin bar. Extensive infor-

mation is provided on the structure of the helmet wake including its frequency content. While the

wake and boundary layer flows showed negligible contributions to at-ear sound the cavity region

around the chin bar was identified as a key noise source. The contribution of the cavity region was

investigated as a function of flow speed and helmet angle both of which are shown to be key factors

governing the sound produced by this region. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

Noise inside motorcycle helmets has been recognized as

a hearing hazard for just over 20 years, since the first exten-

sive studies were conducted by police forces in the Nether-

lands1–4 and the United Kingdom.5,6 Since then it has been

understood that noise in helmets is dominated by the aerody-

namic sources caused by flow over the helmet, and there have

been a number of published measurements of noise levels

inside helmets7 (for example), reflecting the desire to educate

motorcyclists in the need to protect their hearing.8

Despite the work which has been done on measuring noise

inside helmets, there are relatively few data in the open litera-

ture on the mechanisms of noise generation or on the nature of

the noise. The flow on, and around, the helmet is the noise

source responsible for hearing damage. As part of a study on

noise inside helmets a flow survey of a commercial motorcycle

helmet has recently been conducted. This survey had the aim

of establishing the main features of the flow which are, or

might be, responsible for noise generation. Other factors which

must be considered are propagation of noise from the source

through the helmet and head of the rider, but without a knowl-

edge of the source, little can be done to control the noise.

To gain some insight into the features which might be

expected in a flow survey of a motorcycle helmet we consider

flow around spherical bodies. Data for flow around a sphere

at Reynolds numbers similar to those in our tests have been

published by Taneda9 and by Achenbach.10,11 These are use-

ful in establishing broad parameters for the flow over isolated

helmets, although it may be that a better approximation for

the geometry of a rider is a form such as an ellipsoid, but

there are few data on the aerodynamic processes which give

rise to noise in and around the surface of bodies comparable

to helmets.

An issue which is not considered in this paper is the

effect of the rider’s body and of the motorcycle structure, in

particular the fairing or windscreen. We have studied these

effects elsewhere, however, and have found that while the

windscreen does have an effect on noise in the helmet,

depending on head position,12 wind-tunnel measurements on

an isolated head model do accurately reproduce the noise

measured on a real rider on the road.13 In this other work,

studies were conducted on two different helmets, including

that used in an earlier on-road study,14 and it was found that

the noise measured in both cases was very similar, even

though the helmets were quite different in their external fea-

tures. We conclude that the details of the helmet make little

difference to the noise and assume that our results are general.

From published data, however, some general conclusions

can be drawn. The Reynolds number for a sphere of diameter

D ¼ 300 mm at free stream velocity of 80 km/h

(Um ¼ 22 m=s) is Re ¼ UmD=� � 4:5� 105. Boundary layer

separation on a smooth sphere at this Reynolds number occurs

at / � 120� from the inflow axis while the transition to turbu-

lent flow has been shown10 to occur at / � 95�. The same
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work also reports a characteristic Strouhal number St ¼ fD=Um

¼ 0:18 at this Reynolds number. Given that a motorcycle hel-

met is not a smooth sphere in a uniform flow, we would expect

both separation and transition to occur earlier but these figures

are useful indications of what to expect. On the downstream

side of a sphere, flow visualization studies at the relevant Reyn-

olds numbers9 show evidence of a vortex sheet shed from the

back of the sphere to generate a vortex pair. For Re > 5� 105,

this feature oscillates randomly through less than 180�. We

might expect to see such a feature in these tests, though prob-

ably at lower Reynolds number.

II. EXPERIMENTAL FACILITIES AND
INSTRUMENTATION

The large wind tunnel facility at the University of Bath

was used for all tests. This closed loop facility has a

2 m� 1:5 m� 3 m test section and can provide flow veloc-

ities up to 25 m/s with a freestream turbulence intensity of

0.1%. In order to compare the results of wind tunnel tests

with future on-road data three flow speeds were chosen

which are representative of driving conditions, namely, 11,

16.5, and 22 m/s equivalent to road speeds of 40, 60, and 80

km/h. The motorcycle helmet was mounted on the structur-

ally isolated a rig, a system which varies the incidence angle

of the helmet relative to the free stream. This provides

dynamic control of helmet position while isolating the hel-

met from any wind tunnel vibrations. The blockage ratio

caused by the helmet and a rig was 16%. Figure 1 shows the

setup within the wind tunnel.

The helmet used in this investigation is one of a number

of helmets provided by manufacturers for noise investigations.

As such, the make and model are covered by a confidentiality

agreement. It is a commercially available extra large (XL)

motorcycle helmet and was mounted using an expanded poly-

styrene mannequin head the dimensions of which are given in

Table I. The majority of the mannequin head measurements

correspond to the 50th percentile for adult males according to

the NASA Man-Systems Integration Standards.15 The helmet

dimensions were 26 cm� 25 cm� 36 cm. The helmet fea-

tured numerous air vents and an aerodynamic wing on the

back surface commonly found on many high end motorcycle

helmets. This paper investigates the importance of three

potential sound producing regions of the flow, namely, the

helmet wake, the surface boundary layer and the cavity region

beneath the helmet rim.

The flow measurements were acquired using a calibrated

Dantec 55P11 hot wire probe and a DISA type 56C01 CTA

unit with a DISA type 56C16 CTA bridge. The probe was

mounted in a three axis traverse system controlled by dedi-

cated Labview software. The wake flow was investigated

using two separate test grids. The first grid assessed flow

symmetry and consisted of 5 horizontal traverses of the hot

wire as shown in Fig. 2. Due to the complexity of the flow

region to be measured and the symmetric shape of the helmet

a second detailed grid extending from the free stream to 1 cm

past the midpoint of the helmet was also used. The second

grid consisted of 451 points and was designed with varying

spatial resolution for a smooth transition from the free stream

to the turbulent wake of the helmet. Measurements were

acquired using this grid at four locations of increasing dis-

tance from the back surface of the helmet. These locations

were chosen based on the helmet length as

Z=L ¼ 0; 0:25; 0:5; and 1:0. Figure 3 shows the grid point

locations relative to the helmet. Boundary layer measure-

ments were made at the helmet surface adjacent to the right

ear and at a position at the top of the helmet.

Further measurements were acquired using 1=4 inch

130D20 PCB Piezotronics microphones connected to a PCB

442B117 signal conditioner. These were calibrated using a

Larson Davis CAL200 microphone calibration unit. Surface

pressure fluctuations were acquired using two flush mounted

FIG. 1. (Color online) Wind tunnel facility.

TABLE I. Mannequin head dimensions.

Dimension

Face breadth 14.0 cm

Head length 19.5 cm

Face length 11.5 cm

Head breadth 16.5 cm

Head circumference 29.0 cm

FIG. 2. Grid 1 hot wire measurement locations.
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microphones in the helmet visor. The microphones used

were located 12 cm from the visor center at eye level. The

sound produced by the cavity under the helmet rim was

investigated using a microphone located at the helmet chin

bar. Sound pressure levels and spectra at ear were acquired

using two microphones mounted within the mannequin head.

In order to quantify and remove the effects of tunnel

noise a sixth 1=4 inch PCB microphone was mounted

upstream of the a rig within the wind tunnel. The hot wire and

PCB microphone data were acquired using a 16 channel NI

DAQ system. This system comprised a PC with a NI-PCI-

MIO-16E-1 acquisition card and BNC-2090 connector box.

III. SIGNAL CONDITIONING

The wind tunnel used has no acoustic treatment meaning

that there is a risk of signal contamination by spurious back-

ground noise. Also, we wish to compare wind tunnel measure-

ments to data taken on a motorcycle where there is a

contribution to the in-helmet noise from the motorcycle engine

and from environmental sources. In order to extract a “helmet-

only” spectrum, one which contains only the noise due to flow

over the helmet, we apply a signal conditioning procedure

which has been used in a number of applications16,17 to condi-

tionally remove unwanted contributions to the output signal.

A model for the system is shown in Fig. 4. The output

signal pðtÞ is composed of a sum of inputs giðtÞ, i ¼ 1; 2;….

If we consider a two input problem, where g1ðtÞ is a back-

ground noise contribution to pðtÞ and g2ðtÞ is the “real” aero-

dynamically generated noise in the helmet, we wish to

remove from pðtÞ the part of the signal which is correlated

with g1ðtÞ. This is readily done using standard signal proc-

essing methods. If we wish to remove the effects of multiple

signals, however, we must take account of possible correla-

tions between them. In this case, if we wish to remove the

contributions of giðtÞ, i ¼ 1; 2, leaving the “true” signal due

to g3ðtÞ, we cannot simply remove from pðtÞ the part which

is correlated with g1ðtÞ and/or g2ðtÞ. Instead, we must decor-

relate the input signals before proceeding.

The method of partial coherence is a systematic technique

for performing this decorrelation in order to rigorously assess

the contribution of different sources. If the inputs are uncorre-

lated, the coherence function of each with the output signal is

c2
ipðf Þ ¼

jGipðf Þj2

Giiðf ÞGppðf Þ
;

where Gppðf Þ is the autospectrum of pðtÞ, Giiðf Þ is the auto-

spectrum of giðtÞ and Gip is the corresponding cross-spec-

trum. The contribution of the ith source to the output can

then be removed by subtracting the correlated part:

Gpp:i ¼ ð1� c2
ipÞGpp: (1)

The notation Gpp:i denotes the spectrum of the signal pðtÞ
with the contribution of the ith input removed.

If the input signals are correlated, however, this proce-

dure is not valid, as it will lead to a correlated part being sub-

tracted more than once. In this case, the input signals must

be processed to make them mutually uncorrelated. This is

done by using a recursive conditioning procedure, treating

each signal in turn:

Gpp:i ¼ 1� c2
ip:ði�1Þ!

h i
Gpp:ði�1Þ!: (2)

Here, Gpp:ði�1Þ! is the power spectrum of pðtÞ with the corre-

lated part of all inputs up to i� 1 removed and the partial co-

herence c2
ip:ði�1Þ! given by

c2
ip:ði�1Þ! ¼

jGip:ði�1Þ!j
Gii:ði�1Þ!Gpp:ði�1Þ!

; (3)

where Gip:ði�1Þ! is the cross-spectrum with the correlated part

of inputs up to i� 1 removed. The residual autospectra and

cross spectra are given by

Gjk:r! ¼ Gjk:ðr�1Þ! � LrjGjr:ðr�1Þ!; (4)

with Lrj the conditioned frequency response function

Lrj ¼
Grj:ðr�1Þ!
Grr:ðr�1Þ!

: (5)

FIG. 3. Grid 2 hot wire measurement

locations.

FIG. 4. System model for partial coherence processing.
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For example, in a three input, single output system, Table

II shows the conditioning sequence. At step 1, the auto- and

cross-spectra for the inputs and output are generated. At step 2,

the spectra for i � 2 and for the output have subtracted from

them the part which is correlated with the first input, generat-

ing spectra Gij:1. At step 3, the same procedure is applied for

i � 3, using Eq. (2) and (3) and the spectra from step 2. This

generates spectra Gij:2!, i.e., spectra which have had removed

from them the part which is correlated with inputs 1 and 2.

Finally, at step 4, the procedure is applied to the third input

and to the output, generating the final spectra Gij:3! which have

had removed the effects of all three inputs. The right hand col-

umn of Table II contains a set of output autospectra which

have had successively removed the contribution from each of

the inputs. To return to the concrete example, if the output sig-

nal is an at-ear noise recording and inputs 1 and 2 are measures

of background noise, Gpp:2! is the spectrum of the at-ear noise

with the background noise removed, in other words, an esti-

mate of the “true” aerodynamic noise.

IV. WAKE FLOW FIELD

The flow statistics available from these experiments are

the mean velocity magnitude and turbulence intensity. While

the 55P11 hot wire probe used in this investigation is not

directionally sensitive the orientation of the probe was such

that the results presented here can be taken as the velocity in

the free stream direction. A single hot wire probe, such as the

one used in this investigation, is also poorly suited to meas-

urements within a recirculation region. The absence of a

recirculation region within the measurement planes is demon-

strated by the clear transition of the mean velocity magni-

tudes and turbulence intensities to the values found in the

downstream measurement planes. Figure 5 shows the mean

velocity and turbulence intensity profiles measured at the

grid locations shown in Fig. 2. These profiles show a consis-

tently symmetric flow profile at the 5 heights measured. As a

result the data from the second test grid could be mirrored to

produce the full flow field behind the helmet. It should be

noted that due to the curved surface of the helmet that the dis-

tance from the helmet to the measurement planes increases

from the midpoint of the back surface of the helmet.

Figures 6(a) to 6(h) show the mean velocity magnitude

and turbulence intensity plots for the four test locations

behind the helmet. As can be seen from Figs. 6(a) and 6(b)

FIG. 5. Mean velocity �u=Um and turbulence intensity ðu02Þ1=2=Um on grid 1.

TABLE II. Conditioning sequence for a three-input system.

Step Spectra

1 G11 G12 G13 G1p G22 G23 G2p G33 G3p Gpp

2 G22:1 G23:1 G2p:1 G33:1 G3p:1 Gpp:1

3 G23:2! G2p:2! G33:2! G3p:2! Gpp:2!

4 G3p:3! Gpp:3!

FIG. 6. (Color online) Mean velocity �u=Um and turbulence intensity

ðu02Þ1=2=Um.
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the helmet shape and aerodynamic wing have succeeded in

preventing separation of the free stream flow over the top

surface of the helmet. High turbulence intensities are only

found at or below the aerodynamic wing at the back of the

helmet. A stagnation area can be found on the upper half of

the helmet surface below the wing. The flow coming around

the rider’s neck and from the base of the helmet produces a

region of high turbulence intensity close to the helmet

surface.

A quarter helmet length downstream Figs. 6(c) and 6(d)

show how this region of high turbulence from the lower half

of the helmet increases in intensity as it mixes with the tur-

bulence produced by the collapse of the stagnation region

from the upper half of the helmet.

Figures 6(e) and 6(h) show how the entrainment of the

surrounding fluid leads to lower turbulence intensities and

higher mean velocities as the measurement planes move fur-

ther from the helmet surface.

V. WAKE SPECTRAL RESULTS

In order to gain an understanding of possible noise sour-

ces the frequency content of the wake turbulence was inves-

tigated. Of particular interest is the nature of the turbulence

produced by the various air vents and surface features of the

helmet. The data were acquired at a sample rate of 44.0 kHz

for 10 s and spectra were calculated at each point in the mea-

surement grid using a window size of 8192 points providing

a frequency resolution of 5.4Hz. This provides extensive

spectral data for the helmet wake. Using the data from the

Z=L ¼ 0 measurement plane it is possible to relate the peaks

seen in the spectra to the helmet features that produced them

and so the data from that measurement plane is what is pre-

sented here. In order to present this information in a concise

form the spectra from the 16 y-axis grid positions are pre-

sented as a single surface plot of 28 x-axis measurements.

Each of these surface plots is labeled to correspond to the

FIG. 7. Wake spectral content 0–50 Hz.
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measurement planes shown in Fig. 3. This information is

presented over several frequency ranges.

Figure 7 shows the 0–50 Hz range which covers the nat-

ural vortex shedding frequency of the overall helmet struc-

ture. Figure 8 shows the 100–200 Hz range where the

majority of the wake energy is located and the air vents begin

to produce vortices. Figure 9 shows the 500–1000 Hz range

which demonstrates the wide range over which the air vents

produce turbulence structures. At the flow velocity tested the

helmet wake turbulence was found to be an order of magni-

tude lower than the free stream turbulence above 5 kHz.

As can be seen from Figs. 7(a) to 7(e) the helmet wake

does not begin until below the aerodynamic wing structure.

Figures 7(f) to 7(j) contain the region of strong low fre-

quency vortex shedding from the side of the helmet. This is

also the region containing the stagnation area below the aer-

odynamic wing as can be seen from the low amplitude spec-

tra within this stagnation region. Figures 7(j) to 7(l) show the

continuation of strong vortex shedding from the sides of the

helmet combined with turbulence being generated from the

center of the helmet base. Figures 7(m) to 7(p) shows the

distributed wake being generated by the rider’s neck and hel-

met base with an absence of strong vortex shedding from the

helmet sides.

The 100–200 Hz range shown in Fig. 8 contains the

same starting point of the wake. Figure 8(e) clearly shows

the start of the turbulence being generated from the helmet

air vents. It is interesting to note that flow over the top of the

helmet and off the aerodynamic wing have directed the flow

downward so that the air vent turbulence is detected 2 cm

below the air vents at this location. The stagnation area

shown in Figs. 8(f) to 8(h) contains the expected low ampli-

tude turbulence spectra and no evidence of vortex shedding

for the helmet side. As can be seen from Figs. 8(j) to 8(p) the

helmet base and rider neck produce a distributed wake con-

taining high levels of turbulence in this frequency range.

FIG. 8. Wake spectral content 100–200 Hz.
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While the amplitude of the turbulence spectra contained

in the 500–1000 Hz range of Fig. 9 is 2 orders of magnitude

lower than in Fig. 7 it is still clearly increased significantly

from the free stream. The turbulent structures produced by

the air vents are still clear in the spectra of Fig. 9(e) and

these air vents have the potential to produce noise over a

very wide frequency range. There is also evidence of low

amplitude high frequency turbulence contained in the stag-

nation area although this is still significantly lower than the

turbulence spectra found at the helmet base.

VI. AT-EAR NOISE

The combination of the turbulence intensity and wake spec-

tral information can be used to indicate areas of potential inter-

est for noise production by the helmet wake. These locations

were taken to be at the air vents, the underside of the wing, vor-

tex shedding locations for the side of the helmet and at the base

of the helmet above the rider’s neck. Simultaneous hot wire and

at-ear microphone measurements were then acquired along a

grid line covering several areas of the wake flow and at the

remaining locations. These locations are marked in Fig. 10. Cor-

relations with at-ear sound were found to be negligible for all of

these test locations which implies that the wake flow is not a

significant source for motorcycle noise exposure.

A second likely source of at-ear sound is the boundary

layer over the helmet surface. Simultaneous hot wire and at-

ear microphone measurements were taken 1 mm from the

helmet surface at the key locations shown in Fig. 10. Corre-

lations between the hot wire and at-ear microphones were

again found to be negligible for these test locations. The lack

of any correlation between at-ear sound and the boundary

layer directly above the helmet surface is a surprising result.

This may imply that the helmet lining also acts as an acous-

tic lining or that the contribution of the boundary layer to at-

ear sound is widely distributed over the helmet surface.

FIG. 9. Wake spectral content 500–1000 Hz.
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The final sound source investigated in these experiments

is the region beneath the helmet at the chin bar. A micro-

phone placed at the under side of the mannequin chin was

used to investigate this source.

In order to check that the chin and at-ear microphones

are not correlated due to being placed in the same externally

imposed acoustic field, we removed the contribution of the

background noise from both using the partial coherence

techniques outlined in Sec. III. The signal taken from the in-

tunnel microphone was used as a measurement of the exter-

nal acoustic field. This was 1m from the helmet and so

within a wavelength of the other two microphones for fre-

quencies less than approximately 340 Hz. The at-ear and

chin microphone signals remained correlated with this con-

tribution removed, leading us to believe that the at-ear noise

is largely connected to a source in the chin cavity region.

The chin cavity sound source was investigated as a func-

tion of wind speed and helmet angle. The wind speeds inves-

tigated corresponded to driving conditions of 40 km/h (11

m/s), 60 km/h (16.5 m/s) and 80 km/h (22 m/s) with a helmet

angle of 90�, i.e. a fully upright riding condition. Figure 11

shows the partial coherence between the chin and at-ear

microphones for these test conditions. As can be seen from

Fig. 11 the primary effect of wind speed on the partial coher-

ence is to move the frequency of the peak coherence from

approximately 65 Hz for a speed of 40 km/h (11 m/s) to 150

Hz for a speed of 80 km/h (22 m/s). The peak amplitude of

the coherence is not strongly affected.

The effect of helmet angle was investigated at a constant

speed of 80 km/h (22 m/s) for the following angles: 90�, 80�,
70�, 60�, and 50�. In contrast to the effect of speed, helmet

angle was a very significant factor in affecting the amplitude

of the coherence producing a partial coherence greater than

0.8 in the region of 100 Hz for a helmet angle of 50�. The

spectral content of the at-ear noise produced by the cavity

region is affected by the helmet angle with the contribution

of lower frequencies being much more significant as helmet

angle decreases.

As expected, the peak frequency for the partial coher-

ence, Fig. 11, increases with speed, with 1:7 < St < 2:0 for

the peak Strouhal number over the range of speeds consid-

ered, quite different from the vortex shedding Strouhal num-

ber St ¼ 0:18. However when this Strouhal number is

applied to the different angle configurations shown in Fig.

12 there is no collapse of the spectral peaks. No further suc-

cess was achieved by any attempt to adjust the Strouhal

FIG. 10. Correlation measurement locations.

Diamonds, boundary layer measurement;

dots, wake measurement.

FIG. 11. Partial coherence versus speed. FIG. 12. Partial coherence versus head angle, Um ¼ 22m=s.
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number using an effective length based on the helmet angle.

Using the available data there does not appear to be a single

Strouhal number relationship for all helmet configurations.

These results indicate that the contribution of this flow

region to the at-ear sound is both significant and dependent

upon riding conditions.

VII. CONCLUSIONS

The importance of three potential motorcycle helmet

noise source regions has been investigated. The helmet

wake, while being shown to contain turbulence over a wide

frequency range, did not prove to be a significant source of

at-ear noise. An investigation of the helmet boundary layer

was conducted at several locations around the helmet sur-

face. These regions did not measurably contribute to the

at-ear noise. This was surprising as one of the boundary layer

regions investigated was directly above the ear location. The

third potential noise source investigated was the cavity under

the helmet at the chin bar. Investigations in this area were

conducted using a microphone placed at the center of the

mannequin chin. After conditionally removing the contribu-

tion of tunnel noise a high coherence was achieved between

this region and the at-ear sound between 0 and 1000 Hz.

Helmet angle and flow speed were identified as key factors

governing the production of sound from this region.

The geometry of this cavity region is highly complex

and will be unique to each rider and helmet combination. It

is clear that it is possible to control the production of sound

from this region with relatively small changes to the riding

conditions. This information supports anecdotal reports of

noise reduction from riders who use a neck shield to close

off this cavity region.
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