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An analysis is developed linking the form of the sound field from a circular source to the radial struc-

ture of the source, without recourse to far-field or other approximations. It is found that the informa-

tion radiated into the field is limited, with the limit fixed by the wavenumber of the source multiplied

by the source radius (Helmholtz number). The acoustic field is found in terms of the elementary fields

generated by a set of line sources whose form is given by Chebyshev polynomials of the second kind

and whose amplitude is found to be given by weighted integrals of the radial source term. The analy-

sis is developed for tonal sources, such as rotors, and for Helmholtz number less than two, for random

disk sources. In this case, the analysis yields the cross-spectrum between two points in the acoustic

field. The analysis is applied to the problems of tonal radiation, random source radiation as a model

problem for jet noise, and to noise cancellation, as in active control of noise from rotors. It is found

that the approach gives an accurate model for the radiation problem and explicitly identifies those

parts of a source which radiate. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3531925]

PACS number(s): 43.28.Ra, 43.20.Rz, 43.50.Nm, 43.50.Ki [NAG] Pages: 633–641

I. INTRODUCTION

A problem in many applications is that of sound gener-

ated by circular sources. These include rotors of various

types such as aircraft propellers and fans, wind turbines and

cooling fans; vibrating systems such as loudspeakers; ducts

such as aircraft engines, ventilation systems, and exhausts;

and distributed sources with axial symmetry such as jets.

There have been numerous studies of the noise generation

and radiation process in each of these areas extending over

many decades. These studies can be divided into those which

examine the relationship between the acoustic source and

the physical processes which give rise to it, for example, the

work of Lighthill1 and of Ffowcs Williams and Hawkings2

which relates aerodynamic quantities to acoustic sources,

and those which examine the radiated field generated by a

given source distribution, such as methods for prediction of

the field radiated by pistons and loudspeakers3–6 or from a

known rotating source distribution.7–10

There are a number of areas where these issues, those of

generation and radiation, overlap. One is the general area of

source identification. There have been many attempts to de-

velop methods which use acoustic measurements to infer, in

greater or lesser detail, the source distribution responsible for

the acoustic field. In the case of rotating sources, some exam-

ples include cooling fans11–13 and propellers,14–17 while a

number of groups have developed methods for the inverse

problem for radiation from a duct termination.18–22 Such

studies can have a number of motivations. The first is to use

near-field data, for example, those taken in wind-tunnel tests,

to predict the far acoustic field. In this case, the requirement

is to extract information about source strength and directivity,

but there is no need to know which processes generate the

source. A second motivation, however, is the identification of

the noisiest parts of the source with a view to reduction of

noise at source, for example, the identification of “hot spots”

caused by unsteady loading on a cooling fan.11,12 In this case,

the link between the aerodynamics and the source is an essen-

tial part of the solution of the problem.

In each of the applications of source identification listed,

the authors have recognized that the problem is (very) ill-

conditioned. This can be attributed to physical causes and is

not merely an artifact of the methods used. Recent analy-

sis23–25 has given a framework for the study of this ill-condi-

tioning by quantifying the source information which is

radiated into the acoustic near and far fields. As described

below, it has been found that the source can be decomposed

into orthogonal modes based on Chebyshev polynomials,

only a limited number of which radiate a detectable acoustic

field, with the limit being fixed by the source frequency.

A second area where the issues of generation and radia-

tion overlap is that of jet noise. Lighthill’s acoustic analogy1

is accepted as an exact theory for noise generation by turbu-

lence and there is solid evidence for the validity of his source

term, as demonstrated by high quality numerical simula-

tion.26 This knowledge, however, is not sufficient to explain

certain features of jet noise, in particular, the low radiation

efficiency of subsonic jets and the low order structure of the

acoustic field. It is known that subsonic jets radiate only a

small fraction of the source energy, a view given support by

the very small changes in the flow which suffice to give large

reductions in noise, when control is applied.27 It is also

known that the acoustic far field of a jet is significantly sim-

pler than the flow field. In a recent study,28 modal decompo-

sition of the far-field noise and of the flow field of a Mach

0.9 jet showed that 24 modes were sufficient to capture 90%

of the energy of the acoustic field, but 350 were required to

resolve 50% of the flow energy. Clearly, a very large part of

the flow, however energetic it might be, simply does not

radiate, but it is not obvious if this is due to the nature of the

source or purely a result of radiation effects.
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The radiation effect has been explained in terms of

source cancellation29,30 and by viewing the radiation process

as equivalent to the imposition of a spatial filter using a

wavenumber criterion. Such an approach has been used by

Freund26 who found that the part of the source which radi-

ates is indeed that part left over after applying an appropriate

spatial filter. Similarly, Sinayoko and Agarwal31 applied a

linear convolution filter to decompose the flow into radiating

and non-radiating parts.

A question which has attracted relatively little attention

in these studies is that of the effect of radial cancellation or,

alternatively, the effect of the radial structure of the source.

A jet is a roughly circular source with finite axial extent, and

axial and azimuthal cancellation effects have been studied in

the past,29,33 but radial effects have not been considered as

important. For example, Freund, in his paper on noise sour-

ces in jets,26 says of his filtering operation that “it is not

guaranteed to remove all non-radiating components” of the

source and that “additional cancellation may occur due to

the radial structure of the source.” Exact, near- and far-field,

analysis of a finite disk source will shed some light on the

problem of azimuthal and radial effects which can extend

the previous far-field analyses of model problems such as

those of Michalke33 and of Michel.29,30

The analysis to be presented below attempts to explain

some of the features of these problems. Previous work23–25

has found limits on the information radiated from a tonal cir-

cular source, motivated by a desire to understand the ill-con-

ditioning of source identification methods. These limits have

been found without recourse to a far-field approximation,

making the approach suitable for analysis of general prob-

lems. The remainder of this paper contains an extension of

the theory to explicitly include the radial source term and to

yield spectral quantities in the acoustic field of random

sources.

The first extension, which can be viewed as a general-

ization of previous work on axisymmetric radiators,32 will

help explain radial cancellation effects, which have been

studied in jet noise using a far-field formulation30 but not, to

the author’s knowledge, in the near field. It will be found

that, for a given azimuthal order, many different sources

radiate identical acoustic fields, differing only by a scaling

factor. This result is part of the explanation for the ill-condi-

tioning of identification methods and also opens a possible

approach to the development of control systems by identify-

ing a class of sources which can give rise to practically iden-

tical acoustic fields.

The second extension, to predicting the cross-spectrum

between the acoustic pressures radiated by a random source

to arbitrary points in the near and/or far field, is an extension

of an earlier ring-source model for radiation from random

sources characteristic of jets.33 In this case, it will be found

that the cross-spectrum depends on four constants, functions

of observer radial separation, which are weighted integrals

of the source cross-spectrum.

The results to be presented arise from two different

exact theories for radiation from circular sources24,25,34

which are combined to give a formulation for the informa-

tion in the acoustic field in terms of radiation functions and

weighted integrals of the source term. The implications of

the results are discussed in terms of the information content

of the acoustic field and with regard to some of the measure-

ment methods used to study noise sources.

II. TONAL DISK SOURCE

The problem is initially formulated as that of calculating

the acoustic field radiated by a monopole source distributed

over a circular disk. The system for the analysis is shown in

Fig. 1 with cylindrical coordinates (r, h, z) for the observer

and (a, w, 0) for the source. All lengths are non-dimensional-

ized on disk radius. The field from one azimuthal mode

of the acoustic source, specified as sn(a) exp( j[nw�xt]),
is given at an arbitrary position (r, h, z) by pn(k, r, z)

�exp ( j [nh�xt]), where pn is the Rayleigh integral23,35

pnðk; r; zÞ ¼
ð1

0

ð2p

0

ejðkR0þnwÞ

4pR0
dwsnðaÞa da;

R0 ¼ ½r2 þ a2 � 2ra cos wþ z2�1=2;

(1)

where k is non-dimensional wavenumber (Helmholtz number).

A. Equivalent line source expansion

The analysis of the nature of the sound field from an ar-

bitrary disk source is based on a transformation of the disk to

an exactly equivalent line source, an approach which has

been used to study transient radiation from pistons,3,4 rotor

noise,7,8 and source identification methods.23–25

The transformation to a line source is shown in Fig. 2,

which shows the new coordinate system (r2, h2, z) centered

on a sideline of constant radius r. Under this transformation

pnðk; r; zÞ ¼
ðrþ1

r�1

ejkR0

R0
Kðr; r2Þr2 dr2; (2)

FIG. 1. Coordinate system for disk radiation calculations.

FIG. 2. Transformation to equivalent line source.
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R0 ¼ ðr2
2 þ z2Þ1=2;

Kðr; r2Þ ¼
1

4p

ð2p�hð0Þ
2

hð0Þ
2

ejnwsnðaÞ dh2; (3)

for observer positions with r> 1, with the limits of integra-

tion given by

hð0Þ2 ¼ cos�1 1� r2 � r2
2

2rr2

: (4)

Functions of the form of K(r, r2) have been analyzed in pre-

vious work8 and can be written

Kðr; r2Þ ¼
X1
q¼0

uqðrÞUqðsÞð1� s2Þ1=2; (5)

where Uq(s) is a Chebyshev polynomial of the second kind,

s¼ r2� r, and the coefficients uq(r) are functions of r but not

of z. Inserting Eq. (5) into Eq. (2)

pnðk; r; zÞ ¼
X1
q¼0

uqðrÞLqðk; r; zÞ; (6)

Lqðk; r; zÞ ¼
ð1

�1

ejkR0

R0
UqðsÞðr þ sÞð1� s2Þ1=2

ds; (7)

R0 ¼ ½ðr þ sÞ2 þ z2�1=2: (8)

The radiation properties of the integral of Eq. (7) have been

examined in some detail elsewhere,24,25 giving an exact

result for the in-plane case z¼ 0

Lqðk; r; 0Þ ¼ jqðqþ 1Þpejkr Jqþ1ðkÞ
k

: (9)

For large order q, the Bessel function Jq(k) is exponentially

small for k< qþ 1 so that the line source modes with order

qþ 1> k generate noise fields of exponentially small ampli-

tude. Since the integrals have their maximum in the plane

z¼ 0, Eq. (9) says that the whole field is of exponentially

small amplitude if qþ 1> k. This gives an indication of how

much of a given source distribution radiates into the acoustic

field, near or far.

In previous analyses, two approximations to Lq have

been developed. One is an asymptotic formula valid in the

limit k!1, derived using the method of stationary

phase.24,25 This will not be required here, but we will make

use of the far-field form of Eq. (7)

Lq � jqp
ejkR

R

qþ 1

k sin /

�
r þ j

qþ 2

k sin /

� �
Jqþ1ðk sin /Þ

� j Jqðk sin /Þ
�
; (10)

where R ¼ [r2þ z2]1=2 and /¼ cos�1 z=R.

Given the basic information about the form of the radi-

ated field, there remains to establish the relationship between

the radial structure of the source sn(a) and the line source

coefficients uq(r).

B. Series expansion for spinning sound fields

A recently derived series34 for the field radiated by a ring

source of radius a can be used to find a second expression for

the sound radiated by a disk source with arbitrary radial variation

Rn ¼
ð2p

0

ejðkR0þnwÞ

4pR0
dw;

¼ j2nþ1 p
4

1

ðaRÞ1=2

X1
m¼0

ð�1Þm ð2nþ 4mþ 1Þð2m� 1Þ!!
ð2nþ 2mÞ!!

� H
ð1Þ
nþ2mþ1=2

ðkRÞPn
nþ2mðcos /ÞJnþ2mþ1=2ðkaÞ; (11)

with H
ð1Þ
m ðxÞ the Hankel function of the first kind of order m,

Jm the Bessel function of the first kind, and Pm
n the associated

Legendre function. The observer position is specified in the

spherical polar coordinates used in Eq. (10).

Multiplication by the radial source term asn(a) and inte-

gration gives an expression for the field radiated by a general

source of unit radius and azimuthal order n

pnðk; r; zÞ ¼ j2nþ1 p
4

X1
m¼0

ð�1Þm ð2nþ 4mþ 1Þð2m� 1Þ!!
ð2nþ 2mÞ!!

� Pn
nþ2mðcos /ÞSnþ2m;

Snþ2mðk; r; zÞ ¼
ð1

0

snðaÞJnþ2mþ1=2ðkaÞHð1Þnþ2mþ1=2
ðkRÞ

� a

R

� �1=2

da:

Setting z¼ 0 (/¼p=2, R¼ r)

pnðk; r; 0Þ ¼
jp
4

X1
m¼0

AmSnþ2m; (12)

Am ¼
1

m!

ð2nþ 4mþ 1Þð2nþ 2m� 1Þ!!ð2m� 1Þ!!
2mð2nþ 2mÞ!! ;

where the following expression36 is used:

Pn
nþ2mð0Þ ¼

ð�1Þmþn

2m

ð2nþ 2m� 1Þ!!
m!

: (13)

C. Line source coefficients

The expressions for pn from Secs. II A and II B are both

exact and can be equated to derive a system of equations

relating the coefficients uq(r) to the weighted integrals of the

radial source distribution sn(a)

j

4

X1
m¼0

AmSnþ2m ¼ ejkr
X1
q¼0

uqðrÞjqðqþ 1Þ Jqþ1ðkÞ
k

: (14)

Under repeated differentiation, Eq. (14) becomes a lower tri-

angular system of linear equations which connects the coeffi-

cients uq(r) and Snþ2m

j

4

X1
m¼0

AmS
ðvÞ
nþ2m ¼

X1
q¼0

uqðrÞjqðqþ 1Þ ejkr Jqþ1ðkÞ
k

� �ðvÞ
; (15)

where superscript (v) denotes the vth partial derivative with

respect to k, evaluated at k¼ 0.
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Using standard series,36 the products of special func-

tions can be written

ejkr Jqþ1ðkÞ
k

¼ 1

jq

X1
t¼0

ðjkÞtþqEt;qðrÞ; (16)

Et;qðrÞ ¼
1

2qþ1

X½t=2�

s¼0

rt�2s

4ss!ðsþ qþ 1Þ!ðt� 2sÞ!;

where [t=2] is the largest integer less than or equal to t=2, and

a

r

� �1=2

H
ð1Þ
nþ1=2
ðkrÞJnþ1=2ðkaÞ

¼ r

2

� �2nþ1X1
t¼0

k2tþ2nþ1

t!
� r2

4

� �t

Vn;tða=rÞ

� ð�1Þnj
X1
t¼0

k2t

t!
� r2

4

� �t

Wn;tða=rÞ; (17)

with the polynomials Vn,t and Wn,t given by

Vn;tðxÞ ¼
Xt

s¼0

t
s

� �
x2sþnþ1

Cðnþ sþ 3=2ÞCðt� sþ nþ 3=2Þ ; (18a)

Wn;tðxÞ ¼
Xt

s¼0

t
s

� �
x2sþnþ1

Cðnþ sþ 3=2ÞCðt� s� nþ 1=2Þ : (18b)

Given the power series, the derivatives at k¼ 0 are readily

found

jq
@v

@kv
ejkr Jqþ1ðkÞ

k

� �
k¼0

¼
0; v < q;

jvv!Ev�q;qðrÞ; v � q;

�
(19a)

@v

@kv
ða=rÞ1=2H

ð1Þ
nþ1=2
ðkrÞJnþ1=2ðkaÞ

h i
k¼0
¼

0; v ¼ 2v0 þ 1; v0 < n;

r

2

� �2nþ1

� r2

4

� �v0�n
v!

ðv0 � nÞ! Vn;v0�nða=rÞ; v ¼ 2v0 þ 1; v0 � n;

�ð�1Þnj
ð2v0Þ!

v0!
� r2

4

� �v0

Wn;v0 ða=rÞ; v ¼ 2v0:

8>>>>>><
>>>>>>:

(19b)

Setting v¼ 0, 1, … yields an infinite lower triangular system of equations for uq(r)

EU ¼ B; (20)

with U¼ [u0 u1 …]T and the elements of matrix E and vector B given by

Evq ¼
jvðqþ 1Þv!Ev�q;qðrÞ; q � v;
0; q > v;

�
(21a)

Bv ¼
j

4

ð1

0

Tvðr; aÞsnðaÞ da; (21b)

where

Tv ¼ ð�1Þnþv0v!
r

2

� �vX1
m¼0

Am

0 v ¼ 2v0 þ 1; v0 < nþ 2m;
Vnþ2m;v0�n�2mða=rÞ
ðv0 � n� 2mÞ! v ¼ 2v0 þ 1; v0 � nþ 2m;

� j

v0!
Wnþ2m;v0 ða=rÞ v ¼ 2v0:

8>>><
>>>:

(22)

Given a radial source term sn(a), Eq. (20) can be solved to

find the coefficients uq(r) of the equivalent line source

modes. Since it is lower triangular, the first few values of uq

can be reliably estimated, although ill-conditioning prevents

accurate solution for arbitrary large q.

D. Radiated field

From the relationship between the radial source term

and the line source coefficients, some general properties of

the acoustic field can be stated. The first result, already

shown in previous work24,25 is that, since the line source

modes with qþ 1> k generate exponentially small fields, the

acoustic field has no more than k degrees of freedom, in the

sense that the radiated field is given by a weighted sum of

the fields due to no more than k elementary sources. From

Eq. (20), this result can be extended.

The first extension comes from the fact that B2v0þ1:0, for

v0< n, on the right hand side of Eq. (20). This means that uq,

q¼ 2v0 þ 1, is uniquely defined by the lower order coefficients

with q� 2v0. The result is that the acoustic field of azimuthal

order n, whatever might be its radial structure, has no more

than k� n degrees of freedom, whether in the near or far field.
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A second extension comes from examination of Eq.

(20). The first few entries of the system of equations are

1=2 0 0 0 � � �
r=2 1=4 0 0 � � �

..

. ..
. ..

.
0 � � �

2
64

3
75

u0

u1

..

.

0
B@

1
CA ¼ B0

0

..

.

0
@

1
A; (23)

resulting in the solution

u0 ¼ 2B0; u1 ¼ �2ru0 ¼ �4rB0; (24)

so that the ratio of u0 and u1 is constant, for arbitrary sn(a).

This means that low frequency sources of the same radius

and azimuthal order generate fields which vary only by a

scaling factor, since the higher order terms are exponentially

small. Again, this result holds in the near and in the far field.

Finally, if we attempt to isolate a source sn(a) associated

with a single line source mode, by setting uq: 1 for some q,

with all other uq: 0, we find that the line modes must occur

in pairs, since if u2v0: 1, u2v0þ1= 0, being fixed by the con-

dition B2v0þ1: 0, further reducing the number of degrees of

freedom or, alternatively, worsening the conditioning of the

inverse problem.

E. Comparison to far-field methods

An alternative analysis which is widely used in radiation

prediction uses the far-field approximations R0 �R� a sin /
cos w, 1=R0 � 1=R. On this approximation

pn � ð�jÞn ejkR

2R

ð1

0

Jnðka sin /ÞsnðaÞa da; (25)

so that the radiated field is given by a Hankel transform of

the radial source, with a dependence on the polar angle /. In

some sense, this can also be viewed as fixing a limit on the

radiated information as in, for example, the use of ring sour-

ces to study coherence effects on jet noise,30,33 or as a spatial

filter. The approach suffers, however, from its inability to

give information on the structure of the near field which

might be of use in understanding such experimental methods

as near- to far-field correlations.37 The approach presented in

this paper gives the radiated field, near and far, as the sum of

products of two integrals. The first of these integrals Lq con-

tains only radiation effects while the second uq depends only

on the source. The source and radiation terms are thus

“uncoupled,” simplifying the problem of analyzing the radi-

ated field, without needing to make a far-field approximation.

III. RANDOM DISK SOURCE

The second problem considered is that of the noise radi-

ated by a random disk source. This is a general problem for

broadband noise from rotating systems and is also a model

problem for jet noise, extending the random ring-source

problem which has been studied previously in order to exam-

ine the effects of source coherence on jet noise.33 In the

ring-source analysis, the axial and radial extent of the jet

were neglected in order to study the effect of the azimuthal

structure of the jet on the far-field noise. Here, we develop a

model which includes the radial and azimuthal terms in a

model which is exact in the near and far fields.

The assumptions made are that the source terms are statisti-

cally stationary and that the statistical properties of the source

are symmetric about the source axis. It will also be assumed that

the non-dimensional wavenumber k. 2, which is a reasonable

assumption for the frequency range of maximum noise level for

a subsonic jet. The result derived is an expression for the cross-

spectrum between the pressure at two points, which reduces to

the power spectrum when the points coincide. The expression is

quite general and, unlike previous formulas, does not require that

the points be in the acoustic far field of the source.

The starting point is an expression for the pressure radi-

ated from a source distributed over a unit disk

pðr; h; z; tÞ ¼
ð1

0

ð2p

0

f ða;w; t� R=cÞ
4pR

a dw da; (26)

from which the correlation between p measured at two points

(r1, h1, z1) and (r2, h2, z2) is

pðr1; h1; z1; tÞpðr2; h2; z2; tþ sÞ ¼ 1

ð4pÞ2
ð1

0

ð2p

0

ð1

0

ð2p

0

f ða1;w1; t� R1=cÞf ða2;w2; t� R2=cþ sÞ
R1R2

a1a2 dw1 da1 dw2 da2: (27)

Fourier transforming to find the cross-spectrum between the

points

W12ðf Þ ¼
1

ð4pÞ2
ð1

0

ð2p

0

ð1

0

ð2p

0

ejkðR2�R1Þ

R1R2

F12ða1;w1; a2;w2Þ

� a1a2 dw1 da1 dw2 da2; (28)

F12ða1;w1; a2;w2Þ ¼
ð1
�1

f ða1;w1; tÞf ða2;w2; tþ sÞej2pf s ds;

(29)

where F12 is the correlation between the source at two points

(a1, w1) and (a2, w2).

On the assumption of axial symmetry, the source corre-

lation can depend only on the angular separation between

two points w2�w1, so that F12 and W12 can be expanded in

Fourier series in azimuth

F12ða1;w1; a2;w2Þ ¼
X1

m¼�1
F
ðmÞ
12 ða1; a2Þejmðw2�w1Þ;

J. Acoust. Soc. Am., Vol. 129, No. 2, February 2011 M. J. Carley: The radiating part of circular sources 637

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



W12ðr1; h1; z1; r2; h2; z2Þ ¼
X1

m¼�1
W
ðmÞ
12 ðr1; z1; r2; z2Þejmðh2�h1Þ;

with

W
ðmÞ
12 ðr1; h1; z1; r2; h2; z2Þ

¼ 1

ð4pÞ2
ð1

0

ð2p

0

e�jðkR1þmw1Þ

R1

� ð1

0

ð2p

0

ejðkR2þmw2Þ

R2

� F
ðmÞ
12 ða1; a2Þa2 dw2 da2

�
a1 dw1 da1: (30)

Transforming to the equivalent line source form, as above

1

4p

ð1

0

ð2p

0

ejðkR2þmw2Þ

R2

F
ðmÞ
12 ða1; a2Þa2 dw2 da2

¼
X1
q2¼0

uq2
ðr2; a1ÞLq2

ðk; r2; z2Þ;

which results in

W
ðmÞ
12 ¼

X
q2

Lq2
ðk; r2; z2Þ

1

4p

ð1

0

ð2p

0

e�jðkR1þmw1Þ

R1

� uq2
ðr2; a1Þa1da1dw1

¼
X

q1

X
q2

uq1
ðr1; r2ÞLq2

ðk; r2; z2ÞL	q1
ðk; r1; z1Þ;

where 	 denotes complex conjugation. The coefficients uq1

are found by treating uq2
as the radial source in the (a1, w1)

integral. Up to this point, the analysis is exact but to simplify

the development, we introduce the assumption k< 2 so that

only modes of order 0 and 1 contribute to the acoustic field.

Solving Eq. (20) yields

u0 ¼ 2B0;

u1 ¼ 4ðB1 � rB0Þ;

with

B0 ¼
ð1

0

smðaÞwmða=rÞ da;

B1 ¼
ð1

0

smðaÞvmðaÞ da;

where

wmðxÞ ¼
1

2p

X1
q¼0

1

q!

ð2mþ 2q� 1Þ!!ð2q� 1Þ!!
2qð2mþ 2qÞ!! xmþ2qþ1;

mmðxÞ ¼
x=2p; m ¼ 0;
0; m 6¼ 0:

�

The result is that the mth azimuthal component of the

cross-spectrum between two field points for k. 2 is given by

W
ðmÞ
12 ¼ L0ðk; r2; z2Þ u00L	0ðk; r1; z1Þ þ u01L	1ðk; r1; z1Þ

	 

þ L1ðk; r2; z2Þ u10L	0ðk; r1; z1Þ þ u11L	1ðk; r1; z1Þ

	 

;

(31)

where

u00 ¼ 4

ð1

0

ð1

0

F
ðmÞ
12 ða1; a2Þwmða1=r1Þwmða2=r2Þ da1 da2; (32a)

u01 ¼ 8

ð1

0

ð1

0

F
ðmÞ
12 ða1; a2Þwmða2=r2Þ½vmða1Þ � r1wmða1=r1Þ�

� da1 da2; (32b)

u10 ¼ 8

ð1

0

ð1

0

F
ðmÞ
12 ða1; a2Þwmða1=r1Þ½vmða2Þ � r2wmða2=r2Þ�

� da1 da2; (32c)

u11 ¼ 16

ð1

0

ð1

0

F
ðmÞ
12 ða1; a2Þ½vmða1Þ � r1wmða1=r1Þ�

� ½vmða2Þ � r2wmða2=r2Þ� da1 da2: (32d)

The modal coefficients of the cross-spectrum of a jet noise

field, at the wavenumbers of interest in practice, are thus

fixed by four coefficients, functions of the radial separations

r1 and r2, which are weighted integrals of the source cross-

spectrum.

IV. RESULTS

To check the analyses presented above and to consider

their implications, some results are presented for tonal and

random disk sources.

A. Line source coefficient evaluation

The first results are a check on the calculation of the

coefficients uq(r) comparing those computed using Eq. (20)

and those computed directly from exact closed-form expres-

sions8 for K(r, r2) in the case when the radial source term is a

monomial in radius Sn¼ ac. Figure 3 compares the two sets

of coefficients for c¼ 0, 2, 4, with the plots terminated at a

value of q where the difference between the two sets of

results becomes noticeable, q� 20. This gives an indication

of the effect of the ill-conditioning of Eq. (20). For q. 20,

the computed values of uq are reliable. It is noteworthy that,

for small q, the coefficients are practically equal for all val-

ues of c so that for low frequency radiation, the radiated

fields will be practically indistinguishable.

B. Tonal radiation from a disk

As a test of the ability to predict radiation from tonal

sources, we present data for the acoustic field of a disk

source with n¼ 8, sn ¼ Jnðvn1aÞ, where vn1 is the first non-

zero root of Jn(x). Full numerical integration and line source

calculations have been performed for two wavenumbers,

k¼ 5 and k¼ 9, respectively. The first 11 line source modes

were used in each case, with the modal coefficients being
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found from Eq. (20). Sample results are shown in Fig. 4,

with the data scaled on the value at z¼ 0, and it is clear that

the line source model gives accurate results, even when only

a subset of the modes is used. From these and other data, the

reliability of the model for tonal sources is confirmed.

C. Low frequency random source

In order to generate data to test the random disk source

model, we must assume a form for the source correlation.

Michalke33 gives a form suitable for a ring source which

meets the symmetry requirements laid out above. With the

addition of radially varying terms, Michalke’s expression

can be extended

F12ða1;w1; a2;w2Þ ¼ Fða1ÞFða2Þ exp �ða1 � a2Þ2

b2

" #

� exp � 1� cosðw1 � w2Þ
a2

� �
; (33)

with a being an azimuthal length scale and b controlling the

correlation in radius. Equation (33) can be interpreted as the

product of the local source strengths F(a1) and F(a2) with a

coherence function, given by the exponentials, which is sym-

metric in source position and has unit value when the source

points coincide.

The azimuthal components of F12 can be found from

mathematical tables33,36 as

F
ðmÞ
12 ¼ Fða1ÞFða2Þ exp �ða1 � a2Þ2

b2

" #
exp � 1

a2

� �
Imð1=a2Þ;

(34)

where Im is a modified Bessel function.

Figure 5 shows the sample results for the predicted

cross-spectrum between pressure at a point r1¼ 5=4, z1¼ 0,

and r2¼ 5, 0� z2� 8, for a disk source of unit strength. The

reference results are the cross-spectra found by full numeri-

cal integration of Eq.(30). The first comparison is with

Eq. (31) where the functions Lq have been evaluated by nu-

merical integration. In the second comparison, the functions

Lq have been evaluated using the exact in-plane result, Eq.

(9), for z1¼ 0, and the far-field approximation, Eq. (10), for

r2¼ 5, 0� z2� 8. All data have been scaled on the numeri-

cally evaluated cross-spectrum at z2¼ 0.

The first obvious point from Fig. 5 is the similarity of

the cross-spectra, even for quite large variations in the pa-

rameter b: changing m changes the form of the radiated field,

as might be expected, but changes in the source correlation

have little effect on the radiated field. The second point is

that the line source approach gives very good results, even

for k¼ 2 where, in principle, the approximation used should

start to break down. Finally, although computational effi-

ciency is not the primary aim of the method, we note that the

line source approach converts the four dimensional integral,

Eq. (30), required at each field point, into four two-dimen-

sional integrals which are functions of radial separation

only, Eq. (32), and four one-dimensional integrals Li, giving

a large saving in calculation time.

D. Noise cancellation by an equivalent source

One implication of the results of this paper is that it is

not possible to tell different sources apart if, to within a scal-

ing factor, they have same line source coefficients uq, for

those line source modes with q� k. Even without consider-

ing errors from background noise or other causes, this is

equivalent to a condition on weighted integrals of the radial

FIG. 4. Acoustic field predicted by full numerical integration (lines) and

line source summation (symbols) for n¼ 8, r¼ 5/4. Real part shown solid,

imaginary part dashed. Plot (a): k¼ 5. Plot (b): k¼ 9.

FIG. 3. Line source mode coefficients computed using the method of Sec.

II C (solid lines) and directly from analytical formulas (symbols) for r¼ 5/4,

s¼ ac, c¼ 0 (circles), c¼ 2 (squares), and c¼ 4 (diamonds) for n¼ 2 and 16.
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source sn. Any sources which yield the same, or nearly the

same, integrals Bv for v<V, with V a positive integer, in Eq.

(21), will have indistinguishable acoustic fields for k<V.

This conclusion can also be read as a statement about

noise cancellation, such as in active noise control. The

acoustic field of a given source can be cancelled by any

source which has the same set of line source coefficients.

An example of this cancellation is shown in Fig. 6. The

original field is generated using a source term sn(a) and the

line source coefficients uq of sn are calculated. A secondary

source term s0nðaÞ is generated and its line source coefficients

u0q are computed. The secondary source s0n is then scaled by a

factor f ¼ u0=u00. As a test, sn ¼ Jnðvn2aÞ, with vn2 the sec-

ond extremum of Jn(x), and s0n : 1. The first plot in Fig. 6

shows the field due to sn and that radiated by sn � fs0n. The

large reduction in far-field noise, about 20 dB, is clear over

the whole range of z shown in the figure.

The source terms are shown in the second plot of Fig. 6.

The secondary source fs0n is of much smaller amplitude than

sn even though it generates a nearly equivalent field: The

effect of matching the line source coefficients has been to

produce a field which is very similar to that of the original

source, even though the source distributions are quite differ-

ent in form and in amplitude.

In the analysis of Sec. II A, it was found that for large

line source order q, the acoustic field is exponentially small

when k< qþ 1. In the results shown in Fig. 6, n¼ 2 so that

the field from sources with q> 1 is not exponentially small.

Despite this, the cancellation is still effective throughout the

far field. In other results for r� 1, i.e., near the source, it was

found that there can be regions where the noise increases

slightly, although over most of the range of axial displace-

ment, the noise was still reduced by a large amount and the

maximum was reduced by 20 dB.

A question which will not be dealt with in detail here is

how a controller based on this analysis might be imple-

mented for tonal sources. Given that the cancelling source

can have a very simple form, needing only its amplitude

adjusted to give cancellation of the primary field, it is possi-

ble that quite simple systems might be usable as control

inputs, as long as they have the required azimuthal depend-

ence and their frequency can be adjusted to match that of the

source. A simple controller would be a set of speakers

mounted on a ring in the source plane although the precise

form of such a controller is a matter for future work.

FIG. 5. Cross-spectrum W
ðmÞ
12 ðz2Þ scaled on W

ðmÞ
12 ð0Þ, r1¼ 5/4, z1¼ 0, r2¼ 5.

Numerical evaluation shown as solid line (real part) and dashed line (imagi-

nary part); Eq. (31) with numerical evaluation of Lq shown as circles; Eq.

(31) with far-field approximation shown as squares. Parameters: a: k¼ 1,

m¼ 0, a¼ 1, b¼ 100; b: k¼ 1, m¼ 0, a¼ 3, b¼ 0.01; c: k¼ 2, m¼ 1,

a¼ 1, b¼ 100; d: k¼ 2, m¼ 1, a¼ 3, b¼ 0.01.

FIG. 6. Cancellation effects for radial source terms with n¼ 2, k¼ 1, r¼ 5:

top figure radiated field from original sn(a) (solid) and modified source

sn(a)� fs0nðaÞ (dashed); bottom row source terms sn(a) (solid) and fs0n(a)

dashed.
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V. CONCLUSIONS

The radiation properties of disk sources of arbitrary ra-

dial variation have been analyzed to establish the part of the

source which radiates into the acoustic field, without

recourse to a far-field approximation. Limits have been

established on the number of degrees of freedom of the part

of the source which radiates and the implications of these

limits have been discussed for the problems of rotor noise

and studies of source mechanisms in jets. The analysis has

been developed for tonal and for random sources, with impli-

cations for applications in active control of noise from rotors

and experimental analysis of jet noise sources.
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