
Macro: slider crank.mac

Macro slider crank.mac
Description Demonstrates a slider-crank mechanism (four bar mechanism)
CM version Any
See also macro: crank rocker.mac

What the macro does

This macro creates a “stick diagram” of a slider-crank mechanism (a type of four bar
mechanism). This means that the links are represented by simple lines. The crank
and coupler links are just a single line each. The slider is represented by a single
point. These links are shown on the left in figure 1. Here the links are assembled
correctly by the modeller. On the right of the figure is the result of rotating the
crank to simulate the motion.

Figure 1: Slider-crank (four bar) mechanism

How the main part of the macro works

The listing of the macro is given below. The lines of the macro are numbered for
ease of reference.

A number of geometric objects are used.

p0 fixed pivot point
lcrank line to represent the crank
lcoupler line to represent the coupler
pcoupler point at the end of the coupler (i.e. the slider)
lslider line to represent the slide rail

These objects are declared as global variables at the start of the macro (lines 0012–
0014) and are defined in function setup (lines 0032–0049). The definition is in

1

terms of real variables declared in lines 0016 and 0017, and given values in lines
0025–0028. Each line goes between two end-points; for example, the first end-point
of line lcrank is denoted by lcrank:e1, and the second end-point by lcrank:e2.

Line lslider represents the slider rail and does not move. Lines lcrank and
lcoupler represent the moving links of the mechanism. Each moving line is embedded
in a model space. A model space is essentially a transformation with which a number
of geometric entities can be associated. If the transform changes, then the entities
move together.

Two model spaces are used. These are declared in line 0015 and are defined in
the setup function in lines 0037 and 0039. The translation components of each
model space are initially zero (first two argument in each use of function mod2). The
rotation angles are set to non-zero values: this is mainly for convenience here so
that the objects appear rotated on the screen and so are easier to identify.

Note that models space mcoupler is embedded into model space mcrank by including
mcrank as the fourth argument in line 0039. This means that if mcrank moves, the
mcoupler moves with it. A simple hierarchy of model spaces has been constructed
as shown in figure 2.

In the definitions of the geometric objects in the setup function, it is seen that the
moving lines and the point pcoupler are each embedded in an appropriate space.
The fixed line, lslider, is placed in world space.

world mcrank mcoupler

Figure 2: Hierarchy of model spaces

Initially the geometric objects are not connected. The setup function uses the
pivot function twice in lines 0047 and 0048. The first of these makes an adjustment
to the translation part of model space mcrank. This is to bring lcrank:e1, the
first end-point of line lcrank onto p0, the pivot point. The second adjusts model
space mcoupler to bring lcoupler:e1, the first end-point of line lcoupler onto
lcrank:e2, the second end-point of line lcrank.

What each use of pivot does is to fix the translation components of the relevant
model space. All that can change is its rotation angle.

It remains to put the end of the coupler onto the slide rail. A constraint rule is
introduced. This is done in the assemble function (lines 0052–0057). The constraint
rule says that point lcoupler:e2 needs to be on line lslider. In line 0056, the on

function finds the distance between these objects. The rule is becomes true when
this distance is zero.

The var list (line 0054) just contains mcoupler. Since the translation components
of each of this are fixed by one of the pivot commands, all that can be changed is
the rotation angle. Hence there is just one degree of freedom that can be used to
resolve the constraint rule.

2

The cycle function is used to simulate a cycle of the mechanism running. This
function is defined in lines 0060–0074. Within a loop, the rotation angle of space
mcrank is repeatedly incremented (line 0066) and the mechanism is reassembled
(line 0067). To track the end of the coupler, the point pcoupler is transformed
into world space (by the transf function, line 0069). The result is assigned to a
member of a global array called qq (declared in line 0018). Its colour and font are
then set and the screen is repainted (line 0071). The argument for th rpnt function
is provided by the argument passed in to the cycle function. The x-coordinated of
the tracked point is obtained and stored in the array xx (line 0072).

Function find vel acc is defined in lines 0077–0081. This uses the built-in deriv

function to evaluate numerically the first and second derivatives of the x-motion
held in array xx. Note that the cycle function needs to have been run before these
derivatives can be found. The first argument of the deriv function is either 1 or 2
depending on whether the first or second derivative is required. The third argument
represents the time step between points in the array, xx, being differentiated.

The results can be output to a text (ASCII) file using the function do output defined
in lines 0084–0107. Line 0089 opens the file using the built-in function fopen. This
is on “channel” 2 as specified by the first argument to fopen. The second argument,
also 2, specifies that the file is to be opened for writing. For convenience, lines 0090
and 0091 output (to the file, channel 2) the name of the file and the current date and
time. Again for convenience, each of these output lines starts with a dollar symbol.
Since a dollar symbol in the macro is interpreted as starting a comment, the symbol
is output using asc(36) which produces the character whose ASCII value is 36. The
function fwriteln makes the required output and then goes to a new line. Line
0092 simply outputs a blank line.

The results are output using a loop (lines 0094–0100). For convenience, the fwrite

function is used to output values individually. This makes the output without going
to a new line afterwards. After the values are output, line 0099 forces the start of
a new line. In each of lines 0095–0098, the character string represents a formatting
string as used in the C language. The modeller interprets any string in an output
command which begins with the percent symbol as representing a formatting string
to control the output of the next argument. In line 0095, the string %3d asks for
the integer value to be output in a field of size 3. In lines 0096–0098, the string
%12.5lf" asks for the real number to be output in a field of size 12 using 5 decimal
places.

Finally in the macro, the initial set-up is made and a simple menu is created.

GM
May 2013

3

Listing of macro

0001 $ ===
0002 $ slider_crank.mac
0003 $ ===
0004 $ Slider crank mechanism
0005 $ revised: May 2013
0006 $ ===
0007
0008 dec int npoint; $ number of points
0009 npoint = 36; $ make it 36
0010
0011 dec string file_name; $ name of output file
0012 dec geom p0; $ fixed pivot point
0013 dec geom lcrank, lcoupler, lslider; $ lines for links/rail
0014 dec geom pcoupler; $ end of coupler point
0015 dec mod2 mcrank, mcoupler; $ model spaces
0016 dec real len_crank, len_coupler, len_slider; $ link lengths
0017 dec real yoffset; $ offset value
0018 dec geom qq[npoint]; $ array of points
0019 dec real xx[npoint]; $ array of pos
0020 dec real vv[npoint]; $ array of vel
0021 dec real aa[npoint]; $ array of acc
0022 dec real tstep; $ time step
0023
0024 file_name = "slider_crank.out"; $ set the file name
0025 len_crank = 4; $ length of crank
0026 len_coupler = 10; $ length of coupler
0027 len_slider = 16; $ length of slide rail
0028 yoffset = -5; $ offset of rail
0029 tstep = 0.1; $ time step
0030
0031
0032 function setup $ start of function
0033 {
0034 p0 = pnt(0,0,0); $ define point p0
0035 cfont(7,p0); $ change its font
0036 ccol(blue(),p0); $ and colour
0037 mcrank = mod2(0,0,30); $ crank model space
0038 lcrank = lin(0,0,0, len_crank,0,0, mcrank); $ crank line
0039 mcoupler = mod2(0,0,-45,mcrank); $ coupler model space
0040 lcoupler = lin(0,0,0,len_coupler,0,0,mcoupler); $ coupler line
0041 pcoupler = pnt(len_coupler, 0, 0, mcoupler); $ end of coupler point
0042 lslider = lin(0,yoffset,0,len_slider,yoffset,0); $ line for slide rail
0043 ccol(red(), lcrank); $ make crank red
0044 ccol(green(), lcoupler, pcoupler); $ and coupler green
0045 ccol(magenta(), lslider); $ and rail magenta
0046 cfont(4, pcoupler); $ make font a circle
0047 pivot(mcrank, lcrank:e1, p0); $ join crank to p0
0048 pivot(mcoupler, lcoupler:e1, lcrank:e2); $ and crank to coupler
0049 } $ end of function
0050

Figure 3: Listing of macro slider crank.mac (part 1)

4

0051
0052 function assemble $ start of function
0053 {
0054 var mcoupler; $ coupler angle varies
0055
0056 rule(pcoupler on lslider); $ put coupler on rail
0057 } $ end of function
0058
0059
0060 function cycle $ start of function
0061 {
0062 dec int i, code; $ local variables
0063 inp code; $ one argument
0064
0065 loop(i, 0, npoint) $ loop for cycle
0066 { mcrank:a = i*360/npoint; $ increment crank angle
0067 assemble(); $ call assemble
0068 qq[i] = transf(pcoupler); $ get end of coupler
0069 ccol(cyan(), qq[i]); $ change colour
0070 cfont(6, qq[i]); $ and its font
0071 rpnt(code); $ repaint graphics
0072 xx[i] = qq[i]:x; $ get x coordinate
0073 }
0074 } $ end of function
0075
0076
0077 function find_vel_acc $ start of function
0078 {
0079 vv = deriv(1, xx, tstep); $ first derivative
0080 aa = deriv(2, xx, tstep); $ second derivative
0081 } $ end of function
0082
0083
0084 function do_output $ start of function
0085 {
0086 dec int i; $ declare local int
0087
0088 fwriteln(0, "Opening file:", file_name); $ message to screen
0089 fopen(2, 2, file_name); $ open file to write
0090 fwriteln(2, asc(36), "File:", file_name); $ output file name
0091 fwriteln(2, asc(36), "Date:", date()); $ output date/time
0092 fwriteln(2); $ blank line
0093
0094 loop(i, 0, npoint)
0095 { fwrite(2, "%3d", i); $ output counter
0096 fwrite(2, "%12.5lf", xx[i]); $ output pos
0097 fwrite(2, "%12.5lf", vv[i]); $ output vel
0098 fwrite(2, "%12.5lf", aa[i]); $ output acc
0099 fwriteln(2); $ end output line
0100 }

Figure 4: Listing of macro slider crank.mac (part 2)

5

0101
0102 fwriteln(2); $ blank line
0103 fwriteln(2, asc(36), "End of file"); $ output end of file
0104 fwriteln(2); $ blank line
0105 fclose(2); $ close file
0106 fwriteln(0, "File closed:", file_name); $ write to screen
0107 } $ end of function
0108
0109 graphics(); $ graphics window
0110 setup(); $ call setup
0111 assemble(); $ call assemble
0112 rpnt(); $ repaint screen
0113 zoom(); $ and zoom all
0114 zoom(0.8); $ zoom down a little
0115
0116 menu slider $ create menu
0117 {
0118 button Setup
0119 { setup(); $ call setup function
0120 }
0121 button Cycle
0122 { cycle(1); $ call cycle function
0123 }
0124 button Vel/acc
0125 { find_vel_acc(); $ find vel and acc
0126 fwriteln(0, "Completed"); $ write to screen
0127 }
0128 button Output
0129 { do_output(); $ output values
0130 }
0131 }
0132
0133 remmenu(); $ remove previous menu
0134 addmenu(slider); $ put up new menu
0135
0136 $ End of file
0137

Figure 5: Listing of macro slider crank.mac (part 3)

6

Listing of output file

0001 $ File: slider_crank.out
0002 $ Date: Thu May 30 08:50:42 2013
0003
0004 0 12.66025 -4.02758 -19.61390
0005 1 12.15943 -5.95630 -18.96046
0006 2 11.46899 -7.76948 -17.30323
0007 3 10.60553 -9.36000 -14.50720
0008 4 9.59699 -10.60458 -10.38435
0009 5 8.48461 -11.35839 -4.69190
0010 6 7.32532 -11.45595 2.74083
0011 7 6.19342 -10.74258 11.52654
0012 8 5.17680 -9.17265 19.87212
0013 9 4.35890 -6.94595 24.66177
0014 10 3.78761 -4.50816 24.09400
0015 11 3.45726 -2.31147 19.83984
0016 12 3.32532 -0.57476 14.89444
0017 13 3.34231 0.71661 10.93295
0018 14 3.46864 1.67507 8.23629
0019 15 3.67733 2.41404 6.54295
0020 16 3.95145 3.01814 5.53914
0021 17 4.28095 3.54402 4.97835
0022 18 4.66025 4.02761 4.69362
0023 19 5.08648 4.49062 4.56646
0024 20 5.55837 4.94406 4.50241
0025 21 6.07529 5.39001 4.41649
0026 22 6.63637 5.82200 4.22339
0027 23 7.23969 6.22487 3.83398
0028 24 7.88135 6.57449 3.15842
0029 25 8.55459 6.83820 2.11577
0030 26 9.24899 6.97643 0.64891
0031 27 9.94987 6.94593 -1.25902
0032 28 10.63817 6.70437 -3.57206
0033 29 11.29075 6.21587 -6.19792
0034 30 11.88135 5.45621 -8.99537
0035 31 12.38199 4.41691 -11.79063
0036 32 12.76473 3.10751 -14.39729
0037 33 13.00349 1.55593 -16.63446
0038 34 13.07591 -0.19276 -18.33916
0039 35 12.96494 -2.07830 -19.37171
0040 36 12.66025 -4.02758 -19.61390
0041
0042 $ End of file
0043

Figure 6: Listing of output file

7

