
Macro: crank rocker.mac

Macro crank rocker.mac
Description Demonstrates four bar mechanism (as a crank-rocker)
CM version Any
See also macro: crank rocker dsp.mac

What the macro does

This macro creates a “stick diagram” of a four bar mechanism. This means that the
links are represented by simple lines. The crank and driven links are just a single
line each; the coupler link is here formed by three lines in a triangle. These links are
shown on the left in figure 1. Here the links are assembled correctly by the modeller.

crank

coupler

driven
link

Figure 1: Crank-rocker (four bar) mechanism

In the middle of figure 1, the crank has been rotated in a number of steps. At each
stage, the other two links are reassembled with the crank and hence a simulation of
the motion is obtained.

There is a point (shown as a small circle) at the free vertex of the coupler triangle.
The position of this point is tracked as the mechanism moves. This track is shown
in the third part of the figure. This is an example of a possible output motion from
the mechanism.

How the main part of the macro works

The listing of the macro is given below. The lines of the macro are numbered for
ease of reference.

A number of geometric objects are used.

1

p1 first fixed pivot point
p2 second fixed pivot point
l1 line to represent the crank
l2 line to represent the main part of the coupler, it goes

between the joints with the crank and with the driven
link

l2a line for one side of the coupler triangle
l2b line for the other side of the coupler triangle
ptip point at the tip of the coupler triangle
l3 line to represent the driven link

These objects are declared as global variables at the start of the macro (lines 0009
and 0010) and are defined in function setup (lines 0030-0039). The definition is
in terms of real variables declared in line 0008 and given values in lines 0014–0019.
Each line goes between two end-points; for example, the first end-point of line l1 is
denoted by l1:e1, and the second end-point by l1:e2.

Each line is embedded in a model space. A model space is essentially a transforma-
tion with which a number of geometric entities can be associated. If the transform
changes, then the entities move together.

Three model spaces are used. These are declared in line 0012 and are defined in the
setup function in lines 0027–0029. The translation components of each model space
are initially zero (first two argument in each use of function mod2). The rotation
angles are set to non-zero values: this is mainly for convenience here so that the
objects appear rotated on the screen and so are easier to identify.

Note that models space m2 is embedded into model space m1 by including m1 as the
fourth argument in line 0028. This means that if m1 moves, the m2 moves with it.
A simple hierarchy of model spaces has been constructed as shown in figure 2.

In the definitions of the geometric objects in the setup function, it is seen that the
lines and the point ptip are each embedded in an appropriate space (l1 in m1, and
so on).

world

m1 m2

m3

Figure 2: Hierarchy of model spaces

Initially the geometric objects are not connected, as suggested by the left hand part
of figure 3. The setup function uses the pivot function three times in lines 0040–

2

0042. The first of these makes an adjustment to the translation part of model space
m1. This is to bring l1:e1, the first end-point of line l1 onto p1, the first pivot
point. The second adjusts model space m2 to bring l2:e1, the first end-point of line
l2 onto l1:e2, the second end-point of line l1. The third use of the pivot function
adjusts m3 so that l3:e1 lies on p2. The second part of figure 3 shows the result of
these uses of the pivot function.

What each use of pivot does is to fix the translation components of the relevant
model space. All that can change is its rotation angle.

p1 p2

l1

l2

l2a

l2b

l3

m1

m2

m3

e1

e2

e1

e2

e1

e2

Figure 3: Stages in assembling the mechanism

It remains to join the ends of the coupler and driven link together. This cannot be
achieved using the pivot function. Instead a constraint rule needs to be introduced.
This is done in the assemble function (lines 0045–0050). The constraint rule says
that point l2:e2 needs to be on point l3:e2. In line 0049, the on function finds the
distance between these points. The rule is becomes true when this distance is zero.

The var list (line 0047) just contains m2 and m3. Since the translation components
of each of these are fixed by one of the pivot commands, all that can be changed
are the rotation angles. Hence there are just two degrees of freedom that can be
used to resolve the constraint rule.

As its name suggest, the cycle function is used to simulate a cycle of the mechanism
running. This function is defined in lines 0052–0071. An angular step, astep, is
first determined; this is the rotation required of the crank at each step of the cycle.
Within a loop, the rotation angle of space m1 is repeatedly incremented (line 0062)
and the mechanism is reassembled (line 0063). To track the end of the coupler, the
point ptip is transformed into world space (by the transf function, line 0064). The
result is assigned to a member of a global array called qq (declared in line 0011). Its
colour and font are then set and the screen is repainted (line 0067). The argument
for th rpnt function is provided by the argument passed in to the cycle function.
Finally in the cycle function, the rotation angle of space m1 is restored from a saved
value: there is no need to do this, except that it does prevent the rotation angle
increasing greatly beyond 360 degrees.

Finally in the macro, a menu is created.

GM
May 2013

3

Listing

0001 $ ==
0002 $ crank_rocker.mac -- simple four bar mechanism (crank-rocker)
0003 $ ==
0004
0005 dec int npoint; $ number of points in cycle
0006 npoint = 36;
0007
0008 dec real d0, d1, d2, d3, d2x, d2y; $ declare various lengths
0009 dec geom p1, p2, l1, l2, l3, l2a, l2b; $ declare various geometry
0010 dec geom ptip; $ point for tip of coupler
0011 dec geom qq[npoint]; $ array of geom (points)
0012 dec mod2 m1, m2, m3; $ declare 2D model spaces
0013
0014 d0 = 8; $ distance between pivots
0015 d1 = 4; $ crank length
0016 d2 = 10; $ coupler length
0017 d2x = 8; $ coupler x offset
0018 d2y = 6; $ coupler y offset
0019 d3 = 8; $ driven link length
0020
0021 function setup
0022 {
0023 p1 = pnt(0, 0, 0); $ one pivot (at origin)
0024 p2 = pnt(d0, 0, 0); $ second pivot
0025 ccol(blue(), p1, p2); $ change colour
0026 cfont(7, p1, p2); $ change font of points
0027 m1 = mod2(0, 0, 90); $ crank model space
0028 m2 = mod2(0, 0, -45, m1); $ coupler model space
0029 m3 = mod2(0, 0, 90); $ driven model space
0030 l1 = lin(0,0,0, d1,0,0, m1); $ line to represent crank
0031 l2 = lin(0,0,0, d2,0,0, m2); $ line to represent coupler
0032 l2a = lin(0,0,0, d2x,d2y,0, m2); $ line of coupler triangle
0033 l2b = lin(d2,0,0, d2x,d2y,0, m2); $ line of coupler triangle
0034 ptip = pnt(d2x, d2y, 0, m2); $ point at tip of triangle
0035 l3 = lin(0,0,0, d3,0,0, m3); $ line to represent driven
0036 ccol(red(), l1); $ make crank red
0037 ccol(green(), l2, l2a, l2b, ptip); $ make coupler green
0038 ccol(yellow(), l3); $ make driven link yellow
0039 cfont(4, ptip); $ make it a circle
0040 pivot(m1, l1:e1, p1); $ attach crank to p1
0041 pivot(m2, l2:e1, l1:e2); $ attach coupler to crank
0042 pivot(m3, l3:e1, p2); $ attach driven to p2
0043 }
0044
0045 function assemble
0046 {
0047 var m2, m3; $ just change m2, m3 (angles)
0048
0049 rule(l2:e2 on l3:e2); $ connect coupler and driven
0050 }

Figure 4: Listing of macro crank rocker.mac (part 1)

4

0051
0052 function cycle
0053 {
0054 dec int i, code; $ declare local variables
0055 dec real ahold, astep;
0056 inp code; $ function has one argument
0057
0058 ahold = m1:a; $ hold current crank angle
0059 astep = 360/npoint; $ angular step
0060
0061 loop(i, 0, npoint) $ start loop for cycling
0062 { m1:a = ahold + i*astep; $ advance crank angle
0063 assemble(); $ reassemble
0064 qq[i] = transf(ptip); $ transform ptip to world space
0065 ccol(magenta(), qq[i]); $ change colour of held point
0066 cfont(6, qq[i]); $ and its font
0067 rpnt(code); $ repaint the graphics
0068 } $ end of loop
0069
0070 m1:a = ahold; $ restore original crank angle
0071 }
0072
0073 graphics(); $ open graphics window
0074 setup(); $ call setup function
0075 assemble(); $ do initial assembly
0076 rpnt(); $ repaint to show graphics
0077 zoom(); $ zoom to fit graphics area
0078 zoom(0.8); $ zoom down a little
0079
0080 menu fbc $ start menu definition
0081 { button Reset
0082 { setup(); $ call setup functio
0083 rpnt(); $ repaint (clearing screen)
0084 }
0085 button Assemble
0086 { assemble(); $ do the assembly
0087 rpnt(0); $ repaint without clearing
0088 }
0089 button Cycle(0)
0090 { cycle(0); $ call cycle function
0091 }
0092 button Cycle(1)
0093 { cycle(1); $ call cycle function
0094 }
0095 }
0096
0097 remmenu(); $ remove any existing menu
0098 addmenu(fbc); $ put up new menu
0099
0100 $ End of file

Figure 5: Listing of macro crank rocker.mac (part 2)

5

