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ABSTRACT 

The integral constraints on quadratic quantities of physical importance, 
such as conservation of mean kinetic energy and mean square vorticity, 
will not be maintained in finite difference analogues of the equation of mo- 
tion for two-dimensional incompressible flow, unless the finite difference 
Jacobian expression for the advection term is restricted to a form which 
properly represents the interaction between grid points, as derived in this 
paper. It is shown that the derived form of the finite difference Jacobian 
prevents nonlinear computational instability and thereby permits long- 
term numerical integrations. 

INTRODUCTION 

A major difficulty, which has blocked progress in long-term numerical 
integration of the equations of fluid motion, has been nonlinear com- 
putational instability of the finite difference analogues of the governing 
differential equations. The existence and cause of this instability was 
first called to our attention by Phillips [l, 21. 

The instability can be illustrated by integration of the vorticity equa- 
tion for two-dimensional incompressible flow, 

~+v.vc=o, (1) 

1 U.C.L.A. Department of Meteorology, Contribution No. 122. 
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where 
v=kxVy, 

C=k. Vxv=Py, 

and v is the stream function, F is the two-dimensional de1 operator, 
and k is unit vector normal to the plane of motion. 

Equation (1) can be rewritten as 

ac - = JCL WI, at 
or 

where J is the Jacobian operator with respect to the rectangular coordi- 
nates, x and y, in the plane. 

When the Jacobian in this equation is replaced by space-differences 
of the usual form, 

Ji.j(L Y) = & Kti+,,j - Ti4.j) (Vi,j+1 - 1vi,j-1) 

- (ci,j+l - c&j-1) (Y’i+l.j - Vi-l,i)l~ (41 

where i is the finite-difference grid index in X, j is the index in y and d 
is the grid interval, and the equation is integrated over some tens of time 
steps, using an ordinary time-centered differencing scheme, it is found 
that the solution begins to show a characteristic structure termed “stretch- 
ing” or “noodling” [3, 41. This is a structure in which the motion de- 
generates into eddies of a few grid intervals in size and of elongated, 
filamented shape. 

The early stages of this noodling can be due to physical processes, 
but, once formed, the eddies usually intensify without limit, causing 
computational instability and explosive growth of the total kinetic energy 
of the system. It is also observed that as integration proceeds the energy 
is distributed over a broader and broader range of wave number. 

Platzman [3] recognized the existence of “aliazing errors,” or errors 
due to misrepresentation of the shorter waves because of the inability 
of the finite grid to properly resolve them. Phillips [2] further showed 
that the above computational instability can be caused by this “alias- 
ing.” In addition, Richtmeyer [5] pointed out that, in a one-dimension- 
al hyperbolic problem, if the disturbance is out of the properly defined 
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linear range the rate of false growth cannot be reduced by shortening the 
time interval. Miyakoda [6] showed that this type of computational in- 
stability (which Philips found for the nonlinear equations) can also occur 
in a linear equation with nonconstant coefficients. 

For long-term integration of the equations of fluid motion it is ne- 
cessary to overcome the computational instability through proper 
computational design of the integration. Because this nonlinear instability 
has its origin in space-truncation errors, this paper will be concerned 
with the proper form of space-differencing. It will describe the principle 
and give some examples of space-difference schemes in which the non- 
linear computational instability does not appear. The paper will discuss, 
moreover, not only the stability of the difference scheme, but also how 
well the scheme similates other important properties of the continuous 
fluid, such as the constraint on the spectral distribution of its energy. 

1. CONSTRAINTS ON THE ADVECTION TERM 

Equation (1) implies the conservation of vorticity for individual fluid 
particles and, therefore, the frequency distribution of the vorticities of 
the fluid elements does not change with time in two-dimensional in- 
compressible flow. Moreover, since the advection of vorticity, like the 
advection of any quantity in two-dimensional incompressible flow, can 
be expressed by a Jacobian, as in (2) or (3), we can easily see that there 
are strong integral constraints on the advection term, which come from 
the nature of the Jacobian. Among these constraints, the following are 
the simplest ones with which we are concerned. 

J(P9 4) = 0, (5) 

PJ(P, 4) = 09 (6) 

qJ(p, 4) = 0, (7) 

where p and q are any arguments and the bar denotes the average over 
the domain in the plane of motion, along the boundary of which either 
p or q is constant. From these integral constraints, applied to the ad- 
vection of vorticity, we can see that the mean vorticity, c, the mean 

kinetic energy, K = +f;z = 4 (17~)~, and the mean square vorticity, 
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2V = f” = (02y)2, in a closed domain, across the boundary of which 
there is no inflow or outflow, are conserved with time. 

Expanding w  into the series of orthogonal harmonic functions, vn, 
which satisfy 

V2y,, + k;y,, = 0, 

we get 
dK 

--+,=o, 
dt n 

K,, = + (VYQ, 

and 
dV 

--=fc v,=o, 
dt n 

Therefore, the average wave number, k, defined by 

(8) 

(9) 

(10) 

is conserved with time. This shows that no systematic one-way cascade 
of energy into shorter waves can occur in two-dimensional incompres- 
sible flow, as Fjsrtoft [7] pointed out. If we consider, for example, 
three waves (or three groups of waves, each of which has a characteristic 
average scale), only the following energy exchanges are possible: 

or 

where KL, KM, and K, are the mean kinetic energies of the long wave(s), 
medium wave(s), and short wave(s), respectively. Moreover, it turns 
out that relatively little energy exchange can take place between K,,f 
and K,, compared with the energy exchange between KL and Kll. 

It can also be shown, from the conservation of mean square vorticity, 

that the mean square total deformation, 0; + Dg, is also conserved. 
Here 



LONG-TERM NUMERICAL INTEGRATION 123 

(13) 

and there is an identity: 

4J(U, v) = c2 - 4(@ + II;>. (14) 

As we have seen so far, the simple integral requirements, (5), (6), 
and (7), lead to important integral constraints on two-dimensional in- 
compressible flow. But not only the mean vorticity and the quadratic 
means (such as mean kinetic energy, mean square vorticity and mean 
magnitude of deformation) are constrained. The spectral energy distribu- 
tion is also constrained, because the average wave number defined by 
(11) is conserved. Of course, these constraints are not sufficient to keep 
the frequency distribution of vorticity constant. However, it should be 
noted that the constraints on the mean vorticity, [, and on the mean 

square vorticity, 5, are the constraints on the first and second moments 
of the frequency distribution of the vorticity. 

One can easily visualize that in the usual scheme, given by (4), these 
integral constraints might not be maintained in a proper way. But if we 
can find a finite difference scheme which has constraints analogous to the 
integral constraints of the differential form, the solution will not show 
the false “noodling,” followed by computational instability. 

If we are only concerned with avoiding the computational instability, 
the conservation of either of the quadratic means (the mean kinetic 
energy or mean square vorticity) will be sufficient. But it is very desirable 
to require the conservation of both, because together they are a constraint 
on the spectral change of energy, as previously shown. Moreover, con- 
servation of only one of these quadratic means is equivalent to the 
abandonment of the Jacobian property that J(p, q) = - J(q, p), and 
hence that J(p, p) = 0. 

It is known that the spectral computation of the Jacobian in wave 
number space, by means of truncated Fourier series (or spherical har- 
monics for the motion on a sphere), allows the conservation of the 
quadratic quantities. The energy and the square of the vorticity can be 
transferred from one wave to another, in a consistent manner, without 
the false gain or loss of these quantities. However, spectral computation 
has a practical disadvantage, in that the computation time increases 
as the square of the number of degrees of freedom, whereas there is 
only a linear increase of the computing time when using a finite difference 
scheme. 
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Our problem, then, is to find a finite difference scheme for the Jaco- 
bian, by means of which the two quadratic quantities, the kinetic energy 
and the square of the vorticity, are transferred, in a two-dimensional 
plane, from one grid point to another, without false gain or loss. In 
this way, the integral constraints on the quadratic quantities will be 
maintained when the integration is replaced by the summation of the 
quantities at the discrete grid points. 

Lorenz [8], in dealing with the equations for a three-dimensional mo- 
tion, showed how one can maintain integral constraints on quadratic 
quantities when vertical derivatives are replaced by vertical finite dif- 
ferences. In that work, he kept the horizontal derivatives in their dif- 
ferential form. But his procedure for the single vertical dimension 
gives us the clue to the treatment of the two-dimensional horizontal 
differencing. 

11. FINITE DIFFERENCE ANALOGUES OF THE JACOBIAN 

The finite difference analogue of the Jacobian at the grid point (i, j) 
may be written, in a relatively general form, as 

where C. t+z,,i+j, is the vorticity at a neighboring grid point (i + i’, j + j’) 

and wi+i#l,i+ill is the stream function at a neighboring grid point (i + i”, 

j + j”). The coefficients ri,i; i’ i,. i,,,i” must be chosen in such a way 
that (15) is an approximation’tb the Jacobian with the order of ac- 
curacy we need. In addition, we have the requirements mentioned in 
the last section, which are now constraints on these coefficients. 

In order to see when the square of the vorticity is conserved, it is con- 
venient to define 

thus ai,j; i+i’,i+i’ is a linear combination of v’, or, in fact, a linear 
combination of the velocity components as expressed by finite differences 
of the stream function. Then we have 

(17) 
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When all of the Ci+i,,j+i, are formally put equal to a constant, the Ja- 
cobian must vanish, regardless of the value of the constant. Thus we 
have 

IZ ai,j; i+i’,j+j’ = 0, (18) i’ j’ 

which is a finite difference expression for V . v = 0, as we shall see, later, 
more clearly. 

Multiplying (15) by 2[~, we obtain 

2~i,jJi,j(~, *) = 22 %,j; i+i’,j+j’ Ci,j Ci+i’,j+jl - 
i’ j’ 

(1% 

From (2), we see that the left hand side of (19) is the time change of 
Qj due to advection. Therefore, we can interpret the term 2a,,j, i+it,i+ij 
Ci,j Ci+il,i+i, as the square vorticity gain at the grid point (i,j) due to 
the interaction with the grid point (i + i’, j + j’). Similarly, 2ai+i,,j+j,; i,i 
Si+i,,i+i, Ti,i can be interpreted as the square vorticity gain at the grid 
point (i + i’, j + j’) due to the interaction with the grid point (i,j). 
These two quantities must have the same magnitude and opposite sign, 
regardless of the values of Ci,i and ri+i’,i+i’ in order to avoid false pro- 
duction of square vorticity. Therefore, we have the requirement 

in particular 

ai+i~,j+j~; i,j = - ai,i; i+i’,j+j’ T  

ai,j; i,j = 03 

(20) 

(20’) 

if the square vorticity is to be conserved in the finite difference scheme. 

Replacing i by i - i’ and j by j - j’ in (20), we get 

Ui,j; i-it,j-j’ = - ai-it,2y; i,p (21) 

Equations (17) and (18) are now rewritten as 

si,j(c, *I = Z* L4.j; i+i’,j+j’ ti+i’,j+j’ 
i’,j’ 

- Ui-i’,j-j’; i,j Ci-i’,j-j’], 

E* [Ui,j,i+i’,j+j* - Ui-i’,j-j’; i,j] = 0, i# jt 

(22) 

(23) 

where gz.T denotes the summation for the indices j’ > 0, i’ $0 and 
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j’ = 0, i’ > 0. Taking into account (23), (22) can also be rewritten 
as 

or 
(24) 

(25) 

Equations (23), (24), and (25) correspond to the differential forms: 

and 

-30. v=o, (26) 

J(T, y) = - v - VT, (27) 

The form given by (24) may be called an “advective form” and the 
form given by (25) may be called a “flux form,” and both are identical 
in the non-divergent case. The flux form, given by (25), shows that the 
flux of a quantity from grid point (i, j) to (i + i’, j + j’) is expressed 
as the product of the corresponding mass flux and the arithmetic mean 
of the quantities at the two grid points. The finite difference analogue 
for the vertical flux of potential temperature, obtained by Lorenz [S], 
has this form. 

Multiplying (22) by 2ri,i, we get 

- 2Ui-iJ,f-jt; i,j Ci-i,,j-j’ C(,j]. (29) 

It is seen that the right-hand side again consists of the differences of 
fluxes of the square vorticity in which geometrical means appear, in 
contrast to the arithmetic means in (25). We see, therefore, that if 
(20) and (20’) hold, both S,,l(C, w) and 2[i,iJi,i(C, q) can be properly 
written in flux forms. 

In the usual finite difference scheme for the Jacobian, given by (4), 
we have 

ai,j: ifl, j - - & (wi,f+l - vij-I)1 (30.1) 
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-!- (Wi,j+1 - Yi,j-A ai,i; i-w = - 4d2 (30.2) 

ai i; i,j+l = - & (%+1,j - wi-*.ib (30.3) 

ai,i; &j-l = & (Wi+l,j - Wi-1.j)~ (30.4) 

for arbitrary i and j. Replacing i by i + 1 in (3X2), and replacing j 
by j + 1 in (30.4), we get 

and 

ai+l,j; i,j = - & (Y’i+1,i+1 - wi+1,j-l), (30.2’) 

ai,i+1; i,i = -& (Y'i+1.j+1 - 'vi-w+d. (30.4’) 

Comparing (30.1) with (30.2’), and (30.3) with (30.4’), we see that 
equation (20) is not satisfied by the finite difference scheme given by 
(4). The net false production of square vorticity, due to the interaction 
between the grid points (i, j) and (i + 1, j), and that between the grid 
points (i,j) and (i,j + l), in this scheme, are 

Wi,i; i+l, j + ai+i,j; i,j> Ci,j Ci+~,j 

= - & [(Y'i+l,j+l - Yi+l,j-1) - (Yi,f+l - W&j-I>1 Ci,j Ci+l,j, 

and 

2(%i; i.i+l + %j+l: i,j) Ci,j Ci,j+l 

= & [(Wi+I.i+I - Yi-I,j+d - (‘Yi+I,j - Vi-l.,j)l ci, j Ci, j+I * 

These can be rewritten as 

is a finite difference analogue of - @y/LJxay, which is a component 



128 ARAKAWA 

of the deformation tensor. Furthermore, the false production of square 
vorticity, for which Di+llz,i+llz is responsible, is expressed as 

4 Di+1/2,j+1/2 (ci,i [i+l,j + Ci,j+l Si+l,j+-I 

- [T,i ci,i+l - ci+l,i ~i+l,i+d 

= - 2 Di+ll2,i+l/2 [(ci+l,j - ci,j)’ + (Ci+l,j+l - Ci,j+# 

- Gi+1 - L.77 - (ci+l,j+l - &+1,jYl, 

which is a finite difference analogue of the quantity 

L J%d2 [(!L)2- (321 
2 axay (31) 

computed for the point (i + i, j + 4). If higher order terms in the 
grid size, d, are neglected, then the expression (31) gives a measure 
of the false production of square vorticity. Whether the total square 
vorticity for the whole domain increases or decreases depends on whether 
the correlation between d2y/dxay and (a[/a~)~ - (ac/d~)~ is positive 
or negative. However, solutions of the vorticity equation seem to prefer 
a positive correlation. For example, where d2yt/dxdy = &/ay = 
- du/dx > 0, an eddy tends to shrink in the x-direction and stretch in 
the y-direction, causing the magnitude of the vorticity gradient in the 
x-direction to be larger than the magnitude in the y-direction, and this 
gives a positive correlation. 

The general form of the finite difference analogue of the Jacobian at 
grid point (i, j), given by (15), may also be rewritten as 

where 

(32) 

(33) 

Corresponding to (18), we obtain 

~ bi,i; i+i”,i+i’, = 0. 
PA” 

Furthermore, corresponding to (20), the integral constraint, luJ( c, ye) = 0, 
which results in the conservation of the kinetic energy in a closed do- 
main, is simulated by requiring that 
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in the finite difference scheme. The usual difference scheme, given 
by (4), does not satisfy this requirement and therefore it does not con- 
serve kinetic energy. 

For simplicity, let us now consider the following four basic second 
order finite difference analogues for a square grid: 

JWL Y) = 4&? L [Gi+1,j - Ll,j) GfJ’i,j+1 - Yi,j-1) 

- (L-+1 - L,j-1) tv’i+,,j - Yi-l,j>l, (36) 

Ja;jYL Y> = 4d2 -!- Ki+1,h+1,j+1 - wi+1,j-1) - Ll,j(Wi-1,j+1 - wi-lj-1) 

- ci,j+l(Yi+l,j+l - Vi-l,j+l) + ti,j-l(Wi+l,j-1 - Wi-l,j-l)], (37) 
1 

W(L tu> = 4d” - [C. z+l,j+lt?4,j+l - Wi+1,J - L-l,j-ltY$*,j - vi,+1) 

- L1,i+1(%+1 - Yi-1.J + L+1,j&i+1,j - wij-&I, (38) 
1 

4yGY Y) = 8d2 __ K+1,j+1 - Ll,i-1) twi-1,i+1 - wi+1,j-1) 

- Gz-1,i+1 - &+1,j-1) twi+1,j+1 - wi-l,j-dl. (39) 

All four of these finite difference Jacobians maintain the integral con- 
straint given by (5) and all have the same order of accuracy, as we shall 
see in Section III. More general finite difference analogues for the 
Jacobian may be obtained by linear combinations of these four basic 
Jacobians. Thus we put 

where a+/3+ y+6= 1. 

For this Jacobian, we have 

ai,i; i+1.j = & b(Yi,j+1 - wi,i-1) + Ph+1,j+1 - ?4+1,j-l)l, (41.1) 

ai,i; i+j = & [- 4wi,i+1 - wi,i-1) - BGfh,j+1 - ?kl,j-l)], (41.2) 

%i: ,i,i+1 = & [- 4%+1,j - wi-1.j) - B(v)i+1,j+1 - yi-1,j+1)], (41 .3) 

aid; i,i-l = & bh+1,i - Yi-1,i) + Bb4+l,f-1 - wi-I,j-dl, (41.4) 
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1 6 
4.i; i+1.i+1 = m Y(Yi,j+1 - Wi+1,j) + Yy (Vi-1,j+1 - Yi+l.i-l)] 9 

(41.5) 
1 

aid; i-l,i-l = 4d2 [ - Y(%-12 - %,i-1) - y (v,-l,j,l - vi,-l,i-1) , 1 
(41.6) 

1 
ai,i; l-~,j+l = __ 4d2 i - Y(iui,i+7 - Pi-1,i) - + (Y'<+l,j+l - Pi-l,j-I)] 9 

(41.7) 
1 

a&,i; i+l,j-1 = __ 4d2 [ Y(Wi+1.j - Vi&l) + y (V’i+1,j+1 - v-l,i-1) . 1 
(41.8) 

From (41.2), (41.4), (41.6), and (41.8), respectively, we get 

1 
ai+l.j; &,j = __ 4d2 [ 

- ‘Y(Wi+1,i+1 - ~~+~,~-d - P(~P~,~-+.~ - Y~,~-~) s41.27 
1 

ai i+i; i,j =& a(Wi+l,i+l - Vi-l,j+d + P(Wi+l,j - 
I 

Yh-1.j) 9 (41.4’) 1 1 
%+1,+1; i.i = 4$” __ - Y(Yi,j+1 - 

[ 
Yi+l, j) - 4 (Wi,j+z - Wi+z,l) 9 (41.6’) 

I 

1 
ai-l,i+l; i.j = __ Y(Yi,f+l 

6 
4d” I 

- Wi-l,j) + Yf  (!Pi,j+Z - Wi-2, j> 
I 

* (41.8’) 

Comparison of (41.2’) with (41.1), (41.4’) with (41.3), (41.6’) with 
(41.9, and (41.8’) with (41.7) reveals that 

o! = P, 6=0 (42) 

are required in order to satisfy (20). Thus, the scheme (x[JtJ(C, y) 
+ J’a;j%, ~11 + Y&W, Y), w h ere 2w + y = I, is a square vorticity 
conserving scheme. 

In a similar way, it can be shown that 

fx = y, 6=0 (43 ) 

are required in order to satisfy (35). Thus, the scheme ~l[J,t,(c, w) 
+ Jilif(T, Y>] + PJ$<C, y), where 2a + B = 1 is an energy conserving 
scheme. 

The scheme which satisfies both the conservation of square vorticity 

and the conservation of energy is given by 

a=/!l=y=g, d=O. (44 
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By the choice of the coefficients (Y, ,8, :’ and 8, one can obtain, a- 
mong others, the forms of the Jacobian in Table I. The table shows 
which of these typical Jacobians, which are sometimes used, satisfy 
JCL Y,) = - J(Y, 5) or conserve the mean square vorticity or the mean 
kinetic energy. Only the linear combination [r$,‘(C, Z,Y) + JQ(C, 1y) 
+ @j’(C, ly)]/3 will satisfy J(C, ~1) = - J(ly, t) and also conserve both 
of the quadratic quantities. 

This last scheme can be written as 

+ (Yt+1,i - Wi,j+l)(ci+l,j+l - C&j) 

+ (Wi,j-1 - Ykl,j)(Ci,i - L-1+1) 

+ (Y'i,j+l - Vi-l,j)(ci-l,j+l - ci,j) 

-t (Vi+1,j - Yci-l)(L,j - ti+l,j-A (45) 

or 

si,i(c* Y') = - +& [(Vi,+1 + Wi+l,j-l - yi,j+l - (lli+l,j+l)(ci+l,j + Ti,]) 

- (Vi-l,i-1 + Wi,i-1 - Vi-l,j+l - YyCj+l)(Ci,j + ti-*,j) 

+ (Wi+l,i + 'I'i+l,i+l - 'Pi-l,j - Vi--l,jil)(ti,j+l + C;,i) 

- (Yi+l,i-1+ Yi+1,j - Y-L-1 - Y-l,J(L,j + ci,j-1) 

+ (Y'i+1,i - Y'i,j+l)(ci+l,j+l + I;;,j) 

- (Yi,i-1 - ?Ll,j)(Ci,j + L,j-1) 

+ (Yyi,j+l - Yi-l,j)(Ci-l,f+l + T&j) 

- (Yt+l,i - Yi,j-l)(Ci,j + Ci+l,j-I)]. (46) 

Equations (45) and (46) correspond to the advective form and the flux 
form of the Jacobian, given by (24) and (25) respectively. The property 
of the Jacobian Si,j(C, y) = - S,,(~,D, C), which requires that /3 = ;‘, 
is automatically satisfied. 
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J(C, VI = - J(Y, 5) 

Square vorticity 
conserved 

Kinetic energy 
conserved 

TABLE I 
PROPERTIES OF TYPICAL JACOBIANS 

- 
5 A check mark indicates that the property in the left-hand column is maintained. 

III. ACCURACY OF THE DIFFERENCE SCHEME 

Since the finite difference scheme for the Jacobian, given by (45) 
or (46), is a linear combination of the basic second order finite difference 
schemes (36), (37), and (38), we can expect that this scheme has an 
accuracy of the same order as that of the basic schemes. Expanding C 
and w  into Taylor series around the point (i, j), we have 

s++cc, y) = JCL Y) 

at a3y ac a9 +$[----- a3c ay a3t aft 
ax ay3 ay a2 +2F~-~a~ -1 

+ O(d4), (47) 

at a3v ac av +A?[------ a3c a* a3c a* 
ax ap ay ax3 +dx3 ~-dy3 ax 

+3 ~--_____ 
( 

a[ ayb a[ day 
) i 

ay ay a2y 
ax ax2ay ay axap 3-J -p-dy2 ) 1 axay 

+ W4), (48) 

ac a3v + a3c a* a3c a* _-- ---- 
ay a2 ax3 ay ap ax 

-3 ----- 
( 

ay aq ay, ay 
ax ax2ay ay axap 1 ( 

-3 g-+gggg 

+ W4), (49 
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where the subscripts i, j are omitted. Since our Jacobian, denoted by 
S,( [, v) in this section, is given by [9++( C, w) + J+x( C, w) + gx+( C, yl)]/3, 
we have 

+ ac a%# ac a31y __--- 
ax ax2ay ay axap 

afj a3y av a3c - 
dxdx2dy 

--- 
ay axay 

+ W4). (50) 

To examine a phase error, we consider a simple stream function: 

y= - UY+AsinkX, (51) 

where (X, Y) are rectangular coordinates obtained by the rotation of 
the coordinate axis through the angle 8. That is, 

X=xcos$+ysin8 

y=- x sin e + y cos 6 1 
. . (52) 

The vorticity is given by 

C = - Ak2 sin kX. (53) 

In a finite difference calculation, the vorticity is also expressed in a 
finite difference form; but, here, the exact form (53) is used in order 
to estimate the error resulting only from the finite difference scheme 
for the Jacobian. 

The error in the usual scheme S++(T, y), given by (47), is 

u a[ (kd)2 ~ - (cos4 8 + sin4 0) + O(d4). 
ax 6 

By contrast, the error in the scheme J1(C, w), given by (50), is 

u aC (kd)2 
- - (cos2 8 + sin2 Q2 + O(d4). 
ax 6 

(541 

(55) 
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In the range 0 5 0 5 n/2, the factor (cos4 0 -t sin4 0) in (54) has the 
maximum value 1 at 0 = 0 and 0 = n/2 and has the minimum value 
l/2 at 8 = z/4. On the other hand, the factor (co? 0 + sin2 Q2 in (55) 
is always 1, which means the orientation error is removed in this case. 
Although the error in this scheme is larger around 8 = n/4, it does not 
exceed the maximum value of the error in the ordinary scheme. 

There are many other schemes, in addition to S,( C, vl), which conserve 
the square of vorticity and the energy. For example, if we use the ad- 
ditional grid points (i + 2,j), (i - 2,j), (i,j + 2) and (i, j - 2), an- 
other scheme, s,(C, vl), defined by 

.&B,(L yl) = i [JXX(L w> + Jx+(L Y’> + J’“(L Y)lY (56) 

also conserves the square of vorticity and the energy. Here JXX(c, w) 
is defined by (39) and 

JW9 w) = & [L,i+1(Wi,j+z - ‘I’i+z,j) - LJ-l(Wi-2,j - Yr.,j-e) 
c 

- Li-1,j+1 wi,i+z ( - VJc-2.i) + ~i+I,i-I(7Pi+2,i - Y)i,j-2)lP (57) 

The accuracy of Jz(C, v) is given by 

J2z(i, Y,) = J(L Y> 

ai a?+) ac a3y +f[----- d3C ay a35 dy 

ax ay3 ay ax3 + dX3 ay ay3 ax 

( 

ac a3y.J ac a3* ,- ~~--~ 
1 ( 

a2c azy day, 
ax ax2ay ay axay2 + dX2 -dy2 ) axay 

_ a* 
i 

aa; dv d3t _ __ - ~ - 
1 ( 

azy! a2v a2c 
ax ax2ay ay axaf ax2 aya 1 1 axay 

-+- U(d4). (59) 

From (50) and (59), we see that 29,([, M) - J2(T, ~,u) is a fourth order 
approximation of the Jacobian; that is, 

2.&P,(t, y) - J2(C, Y) = JCL Y) + Q(d4). (60) 
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IV. CURVILINEAR GRIDS AND BOUNDARY CONDITIONS 

Consider an orthogonal curvilinear coordinate system, (6, 7). Define 
m and n as 

cx 
m=m3 

67 
nro,’ (61) 

where (8~)~ is the increment of distance for a change of SE in 5, and 
(ck),) is the increment of distance for a change of 67 in 7. The wind 
components in the E-direction and r-direction are 

1 dt 
u=mp 

respectively. Divergence and vorticity are 

V .v==mn[$(t)+&(+)], 

and 

(62) 

(63) 

i=k.Vx v=mn[& (J-) --& ($)I. (64) 

The vorticity equation, (l), becomes 

u ac 1’ ac 
n~+y~. 

1 
(65) 

Since V - v = 0 in two-dimensional incompressible flow, we define a 
stream function by 

24 aY V dy -= -- 

all ’ 

-=-* 

at 
(66) n in 

The vorticity equation (65) can be rewritten as 

+ ($) =-& [-$ (+) - f ($1 = JCL Y), (67) 

where 

(68) 
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The integral constraints (5), (6), and (7) hold for this Jacobian, if 
the bar is redefined as the average over the domain in the (E,II) plane. 

We see from (67) that the conservations of mean vorticity, c/mn, mean 

square vorticity, Plrnn, and mean kinetic energy, (~8 + v2)/2mn, in 
a closed domain, along the boundary of which v is constant, again result 
from these integral constraints on the Jacobian. Therefore, for a square 
grid, in the E, 7 plane, which has the grid interval 05 = A7 = d, 
the same difference scheme that was derived above can be applied to 
the right hand side of (67). 

In order to maintain the integral constraints in a bounded domain, 
the boundary must be treated properly. For simplicity, let us consider a 
domain, bounded by the coordinate lines 7 = v. and 7 = 7, = v. + Jd. 
A cyclic change is assumed in the E-direction. If the domain is 
closed, in the sense that (v/m),,,,O and (v/m),,,,, are zero, w  is constant 
along each of the boundaries. We define indicies i, j as E = id and 
7 = q. + jd. The b oundaries are j = 0 and j = J. 

If the finite difference scheme derived in Section II is used for the 
term on the right in (67) at the inner grid points, then 

for j = 1, 2, . . . . J - 1, where Jc,l(T, w) is given by (46). The area rep- 
resented by the grid point (i, j) is (d2/mn)i,j. 

Consider, first, the case where m is finite at the boundary. Let the 
areas represented by the grid points (i,O) and (i,J) be (d2/2mn)i,o and 
(d2/2mn)i,J, respectively. 

For example, let us consider the boundary j = 0. Since the scheme 
given by (69) is used at grid point (i,l), and the general form of the vor- 
ticity and the square vorticity conserving scheme can be written as (25), 
we can write 

a i r 
-3 ) - - at 2 mn i,. = qo; i+1,0(~i.0 + &+1,0) - ai-l,o; i,o(ci-l,o + ci o) 

- 
& C(~'i+1,0 + Yi+1,1 - vi-1,o - wi-1.1) (C&O + &,I) 

+ (YJ’i+1,0 - Yi,l) (Lo + L+1,1) 

+ (Wi.1 - Yi-1,o) CL,1 + Ci.o>l. (70) 
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Corresponding to (18) we have 

Cai,O; i+l.O - ai-l,O; i.0) 

- & Dfk+,,o - bi-LO + wi+1,1 - wi-1,J = 0. (71) 

As vi,0 does not depend on i, (71) can be rewritten as 

ai,O; itI. - & (V&l t Wiil,l - vi.0 - Wi+1,0) 

= ai-1,o; 1.0 - & (Wi-1.1 + l/f&l - Vi-l,0 - Wi.0). (72) 

Since the right-hand side of (72) is obtained by replacing i by i - 1 
in the left-hand side of (72) the quantity LZ~,~; i+l,o - (J+~,~ + !J~+~,~ 

- wi,o - yi+l,o)/12d2 is a constant which does not depend on i. Because 
the right-hand side of (70) must approach - (u/2n)(dT/dQ, it can be 
shown that the constant must be zero. 

Equation (70) becomes 

d 1 t - -__ 
dt 2 mn i,o= ( ) 

- &$ KYi,o t WL+l,O - w1.1 - Y'i+d (Lo + Ci+3,0) 

- (Vi-l.0 + Vi,0 - Vi-l,1 - Vi,l) (T&l,0 + Ti,O) 

+ (Yi+*,o + Yyi+1,1 - Vi-l,0 - vi-1.1) (Ci,o + Ti,J 

+ h+1,0 - V'i,l) vi,0 + Ll,l) 

L (W~,I - Y-1,0) ([;-,,I + Ci,oIl, 
where 

for all i. 

Similarly, we obtain 

Vi.0 = y'O~ 

(73) 

(73’) 

a 1 i 
-( I- 

-___ - 
dt 2 mn i,J 

- & KY'i,J-1 + wi+lJ-1 - Wi,J - vi+1.J) G,J + Ti+l,J) 

- (Vi-LJ-1 + W&J-l - Y'i-1,J - Wi,J) (Ll,J + Ci,J) 

- (wi+l,J--1 + !Ji+w - Yi-L-1 - wi-l,dL,J-1 + L,J) 

- (%,J-l - WC-1,J) L.J-1 + L,J) 

- h+l,J - Mi,J-1) G,J + ri+l,J-l)l, (74) 
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where 

~L,J = y’J, (74’ 1 

for all i. Y’,, and ‘PJ are functions of time only. 
The conservation of vorticity takes the form: 

Consider, now, the finite difference analogues of the vorticity, i, 
and the wind components, u and V, given by 

V (H m iii/Z, j 

z f (Wi+l,j - V’i,j). (78) 

From (75) and (76), we can put 

(79.2) 

It can be shown that the integral constraint wJ( c, yt) = 0 is also main- 
tained if this mean is replaced by 

J-J 

where 4 Ji,o( c, q~), Si,( c, w) and 8 JJ [, y) are given by the right-hand 
sides of (73), (46), and (74), respectively. The finite difference expres- 
sion for the conservation of the kinetic energy, in this scheme, is 
written as 
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Equations (73), (74), (73’), (74’), (79.1), and (79.2) completely define 
the boundary conditions. In the simple case when m and n are functions 
of j only, it is convenient to divide the stream function into two parts: 

-i 
?p;,j = YJ, j- l#J: j 

1 ’ 
‘f/j z yi,j , (81) 

where (-)” denotes the mean in i and the prime denotes the deviation. 
Now, let mi,i = mj and ni,i = ni. From (79.1) and (79.2) we get 

-$ (Y’, - ‘f’,) = - d2 (-y/, $ (-i &)i,, (82) 

-g (‘+‘,-I - v/,) = d2 (+)J-el 2 $ (+ &)&I,, ’ (83) 

where the time derivatives in the right hand sides are given by (73) 
and (74). At the inner points, 0 < j < J, we have 

a 
- [ (“) 
at m j-1/2 

(P,-1 - ‘f’j) - (glJ2 (YJj - ylj+1)] 
-d 

(84) 

For the deviation part, we have 

(85) 
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for O<j<J, and 

y;,o = 0 > d,J = 0. 036) 

The time derivatives on the right-hand sides of (84) and (85) are given 

by (69). 
If m becomes infinite at 7 = Q,, then 7 = Q, becomes a singular 

point, like the pole in a polar coordinate system. In this case, (73) 
must be replaced by 

-g (E Co) = - -& ~l[(8i+l.o + YJi+1,1- Vi-l.0 - v-1,1) (To + T&l) 

and 

+ (Wi+1,0 - Yi,l) (To + c‘+l,l) 
+ (Wi,l - Yi-LO) (L1.1 + t-0) 

I 
(87) 

Yi,o = yo (87’) 

for all i, where Co and !P, are functions of time only. I is the number 
of grid points on the line 7 = v. + d and Ed2 denotes the area repre- 
sented by the singular point. In addition, (79.1) must be replaced by 

; (& CJ = - $ il g (+giliz 

zz - f  g -g ($) wo - Y&1)* 
z 1 i,l/2 

Equations (87), (87’), and (88) completely define the conditions at the 
singular point. 

V. CONCLUSION 

It was shown that in two-dimensional incompressible flow some of 
the integral constraints on quantities of physical importance, such as 
the conservation of mean kinetic energy, mean square vorticity, (and 
mean vorticity itself), can be maintained if the finite difference analogue 
for the advection term is properly designed. 

Since the required constraints are on the advection term, which has 
the form of a Jacobian operator for the flow considered, the finite 
difference scheme for the Jacobian must have a certain restricted form. 
Based upon a consistent interaction between grid points, a general form 
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of finite difference Jacobian, which maintains the integral constraints, 
was derived. Examples were given for the second-order nine-point 
scheme and the fourth-order thirteen-point scheme. The boundary 
conditions at a wall, and the conditions at a singular point in a curvi- 
linear grid, which satisfy the integral constraints, were also indicated. 

When the quadratic quantities are conserved in a finite difference 
scheme, nonlinear computational instability cannot occur. This follows 
from the fact that if the square of a quantity is conserved with time when 
summed up over all the grid points in a domain, the quantity itself 
will be bounded, at every individual grid point, throughout the entire 
period of integration. 

Phillips [2] attributed the cause of nonlinear computational insta- 
bility to “aliasing,” or misrepresentation of an unresolvable short wave 
by a resolvable longer wave in the computed time derivative of the 
stream function. However, aliasing does not necessarily mean a false 
production of energy. Whether amplification does or does not occur 
depends on the phase relation between the misrepresented wave in the 
time derivative and the wave which is already present. 

Aliasing does exist in the finite difference scheme developed in this 
paper. It may appear as a phase error or as a distortion of the spectral 
distribution of energy. But the total energy and the average scale of 
the motion is free from aliasing error in this scheme. 

Lilly [9] compared the aliasing error with first derivative errors in 
a limited component wave system. He used the difference scheme given 
by (45) and found that the aliasing error was smaller than the first 
derivative errors. If a uniform or large-scale flow is superposed on such 
a limited component wave system, as is often done, the first derivative 
errors become even more serious, while there is no additional aliasing 
error. The higher order scheme, derived in Section III, will decrease the 
first derivative errors considerably. 

A numerical example, which uses the scheme derived in this paper, 
will be given in Part II of this paper. Comparisons will be made, there, 
with the results obtained with the usual space difference scheme, showing 
not only the stability of the two schemes but also their influence on the 
spectral distribution of kinetic energy and the frequency distribution of 
vorticity. The time-differencing problem will also be discussed in Part II. 

It is clear that the advective term, in a finite difference scheme, can 
only transfer properties within the range of scales of motion that are 
resolved by the grid. The advection term cannot produce any interaction 
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between the grid-scale motions and subgrid-scale motions, which are 
too small to be resolved by the grid. If we have a certain grid size and 
wish to simulate by finite difference methods the interaction between 
the grid-scale motions and some subgrid-scale motions, then we must 
add to the advective terms of the finite difference scheme some addi- 
tional terms which represent the physical process of grid-scale subgrid- 
scale interaction. The additional terms should be determined by physical 
considerations only, and not by the computational need to absorb any 
falsely generated energy produced by truncation error. 

The finite difference scheme for the Jacobian, derived in this paper 
for two-dimensional incompressible flow, can be applied to equations 
for quasi-nondivergent flow, if the advection terms have the form of 
Jacobians. An example is the quasi-geostrophic system of equations 
[IO], which are the equations of first order approximation for geostro- 
phic motion of type 1 [l 11, that are valid for the cyclone-scale motions 
of the atmosphere. In this case, the conservation of the energy (which 
is now the sum of kinetic energy and available potential energy) and 
the conservation of the mean square potential vorticity, which are 
quadratic quantities, are maintained in this finite difference scheme. 

The fundamental concept of this paper is that a finite difference 
scheme expresses the interaction between grid points. This concept can 
be used to design computing schemes for more general flow. It has al- 
ready been used to obtain a second order computational scheme for the 
so-called “primtive equations.” This scheme is being used for numerical 
experiments with the Mintz-Arakawa general circulation model [12]. 

The higher order scheme, derived in Section III, is being used for quasi- 
geostrophic numerical weather predictions, on an operational basis, 
in Japan [13]. 

The scheme which conserves the mean kinetic energy, but not the 
mean square vorticity, (Eq. (37)), has been used by Lilly [14] for two- 
dimensional convection studies, and by Bryan [15] for ocean current 
calculations. 

A scheme which conserves the mean square vorticity, but not the 
kinetic energy, was independently derived by Fromm [16] and has been 
used by him for computing two dimensional viscous flow. 
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