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ABSTRACT 
 

 
      The thesis deals with Rayleigh-Bénard/Marangoni convection in 

Newtonian/non-Newtonian ferromagnetic/dielectric liquids. The effects of uniform 

internal heat source and thermal radiation are considered. Thermorheological and 

magnetorheological/electrorheological effects are given attention by treating the 

effective viscosity as a function of temperature and magnitude of magnetic/electric 

field. The non-Newtonian fluid descriptions used in the thesis subscribe to Jeffrey, 

Maxwell and Rivlin-Ericksen models. The linear and nonlinear convective 

instability problems are based respectively on the normal mode technique and a 

minimal Fourier series representation. The higher order Rayleigh-Ritz technique is 

exploited to solve the variable coefficient differential equations arising in the linear 

stability problems. The results of the problems investigated in the thesis may be 

useful in application situations with a ferromagnetic/dielectric fluid as working 

medium.        

 
      With the above motivation, the summary of each of the problems investigated 

in the thesis is given below: 

 

(1)  Linear  and  nonlinear  ferro-  and  electro-convection 
 

      Linear and nonlinear analyses of Rayleigh-Bénard convection in a Boussinesq-

ferromagnetic fluid are investigated. In the case of linear theory, the conditions for 

stationary and oscillatory modes of instabilities are obtained using the normal mode 

technique and the parametric perturbation method is used to analyze qualitatively 

the effect of various magnetic parameters on the onset of convection. The nonlinear 

analysis is based on a minimal representation of double Fourier series. The 

autonomous system of differential equations representing the generalized Lorenz 

model of convective process arising in the nonlinear study is solved numerically. 

The transient behaviour concerning the variations in the Nusselt number with time 

has been examined. The effect of magnetic parameters on the nonlinear evolution 
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of convection is analyzed by considering the time-series plots. An analogy between 

nonlinear ferroconvection and nonlinear electroconvection is discussed.     

 

(2) Thermorheological and magnetorheological effects on          
ferroconvection   with   internal   heat   source   

 

      The effect of uniform heat source (sink) on the onset of Rayleigh-

Bénard/Marangoni convection in a horizontal layer of ferromagnetic liquid is 

investigated by means of the classical linear stability analysis. Thermorheological 

and magnetorheological effects are given attention by treating the effective 

viscosity as a function of both temperature and magnetic field strength. The higher 

order Rayleigh-Ritz technique is used to determine the critical values. In the case of 

Rayleigh-Bénard convection, the critical values are obtained for free-free, free-

rigid, rigid-rigid boundary combinations on velocity with isothermal conditions on 

temperature. In the case of Marangoni convection, the critical values are obtained 

for an upper free-adiabatic and a lower rigid-isothermal boundary. General 

boundary conditions on the magnetic potential are considered for both Rayleigh-

Bénard and Marangoni convections. The influence of various magnetic and 

nonmagnetic parameters on the onset of convection has been analyzed. An analogy 

for Rayleigh-Bénard/Marangoni instability problems with heat source (sink) 

between variable-viscosity ferromagnetic and dielectric liquids is discussed.        

 

(3)  Thermal radiation effects on ferroconvection   
 

      The effect of radiative heat transfer on the onset of Rayleigh-Bénard/Marangoni 

convection in a horizontal layer of a ferromagnetic fluid is studied within the 

framework of linear stability analysis. The effective viscosity of the fluid is 

assumed to a function of both temperature and magnetic field strength. The fluid is 

assumed to absorb and emit thermal radiation and the boundaries are treated as 

black bodies. The Milne-Eddington approximation is employed in obtaining the 

initial static state expression for the radiative heat flux. The optical properties of the 

ferromagnetic fluid are considered to be independent of the wavelength of 
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radiation. Consideration is given to two asymptotic cases, viz., transparent and 

opaque layers of fluid. The critical values marking the onset of convection are 

obtained using the Rayleigh-Ritz technique. The influence of radiative and 

magnetic parameters on the stability of the fluid layer has been analyzed. An 

analogy is presented for radiation-affected Rayleigh-Bénard/Marangoni convection 

between variable-viscosity ferromagnetic and dielectric liquids.      

 

(4)  Ferroconvection in viscoelastic liquids 
 
      The influence of thermo- and magneto-rheological effects on the threshold of 

Rayleigh-Benard/Marangoni convection in a Newtonian/viscoelastic ferromagnetic 

liquid is studied theoretically within the framework of linear stability analysis. The 

effective viscosity is assumed to be a quadratic function of both temperature and 

magnetic field strength. Consideration is given to three viscoelastic families, viz., 

Jeffrey, Maxwell and Rivlin-Ericksen. The conditions under which overstable 

motions occur are discussed. The critical values marking the onset of convection 

are computed numerically using the Rayleigh-Ritz technique. The influence of 

viscoelastic, magnetic and nonmagnetic parameters on the onset of convection has 

been analyzed. An analogy is presented between viscoelastic ferromagnetic and 

viscoelastic dielectric liquids.        
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CHAPTER  I 
 

INTRODUCTION 

 
1.1   OBJECTIVE  AND  SCOPE 
 

In most part of the last century the engineering applications of fluid mechanics 

were restricted to systems in which electric and magnetic fields played no role. In 

recent years, the study of the interaction of electromagnetic fields with fluids 

started gaining attention with the promise of applications in areas like nuclear 

fusion, chemical engineering, medicine and high speed noiseless printing. This 

study can be divided into three main categories.  

 
! Magnetohydrodynamics – the study of the interaction between magnetic      

fields and electrically conducting fluids.    
 

! Ferrohydrodynamics – the study of the mechanics of fluid motions   

influenced by strong forces of magnetic polarization and 
 

! Electrohydrodynamics – the branch of fluid mechanics concerned with   

electric force effects.  
 

The investigation of convective heat transfer together with the aforementioned 

electrical and magnetic forces in Newtonian/non-Newtonian fluids is of practical 

importance. A systematic study through a proper theory is essential to understand 

the physics of the complex flow behaviour of these fluids and also to obtain 

invaluable scaled up information for industrial applications. The objective of the 

thesis is, therefore, to study various convective instabilities in 

ferromagnetic/dielectric fluids affected by buoyancy, surface tension and a 

pondermotive force due to magnetization/polarization. The emerging areas of 

applications of magnetic/dielectric fluids have brought to light new thoughts and 

ideas for advanced level research. Most of the technologically important problems 

involving these fluids as working media are non-isothermal in nature. Therefore, 
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there is a need to study convection and heat transfer in these fluids. The variety of 

situations related to these application-oriented problems makes the modelling of the 

same intricate and complex. Since these fluids are basically suspensions which 

respond thermally and to electromagnetic fields, the problems are both 

mathematically and physically challenging. Most of the available works on 

convection and heat transfer in these fluids resort to linear stability theory and a 

Newtonian description. Moreover, they use a set of constitutive equations involving 

constant viscosity and a heat transport equation without heat source/radiation term. 

Accordingly, the scope of the thesis is to study the neglected effects on convection 

and to provide logical explanation on mechanisms of augmenting or suppressing 

convection in ferromagnetic/dielectric fluids. Many reported statements on the 

convection problem are revised on the basis of the investigation in the thesis and 

new statements are putforth. The following information is thus considered 

necessary to achieve the stated objective of the thesis.  

 

1.1.1  Magnetic Fluids  
 

Ferromagnetism is a property of iron, nickel, cobalt and some compounds and 

alloys of these elements. It was thought that to create a magnetic fluid one might 

heat the metal until it becomes molten, but this strategy did not work as 

ferromagnetism disappears above a certain temperature called the Curie point, 

which is invariably well below the melting point of the material. A magnetic fluid, 

better known as ferrofluid, consists of kinetically stabilized ultramicroscopic ferro- 

or ferrimagnetic particles coated with a monomolecular layer of surfactant and 

colloidally dispersed in a magnetically passive liquid. Under the influence of an 

external magnetic field, such a fluid exhibits a large magnetization and as soon as 

the field is removed, the fluid attains its zero magnetization state at once. As each 

particle possesses a giant magnetic moment when compared with paramagnetic 

particles, such a medium is called superparamagnetic i.e. having zero remanence 

and coercivity. Ferrofluids have almost the same magnetic characteristics as a solid, 

but in many respects behave as liquid continua. Magnetic liquids can be controlled 

by magnetic forces.     
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1.1.2  Composition of Magnetic Fluids 
 
      The development of many innovative applications warrants the unique 

combination of magnetic and fluidic property. A magnetic fluid is a two phase 

matter consisting of solid and liquid and a three component system comprising 

magnetic particles, carrier liquid and surfactant. Since randomizing Brownian 

energy may not be sufficient to counteract attractions owing to van der Waal and 

dipole-dipole forces, aggregation and sedimentation are prevented by providing 

suitable repulsive forces either by Coulomb or by steric repulsion. In the former 

case particles are either positively or negatively charged and the fluid is called ionic 

ferrofluid while in the latter case each particle is coated with an appropriate 

surfactant and the resulting fluid is known as surfacted ferrofluid (Figure 1.1).   

 

 
 
                  Figure 1.1: (a) Surfacted ferrofluid  and  (b)  ionic ferrofluid. 
                                           (From Upadhyay, 2000) 
 
      On the other hand, the magnetic fluid should remain stable in the presence of a 

magnetic field, that is, there should be no agglomeration and/or phase separation. 

To meet this requirement, each of the three components should satisfy certain 

conditions. The important features of these three components are discussed in 

Appendix A.    
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      To meet varied market requirements a wide range of ferrofluid-based devices 

have been developed and these are listed below.  

 
Ferromagnetic fluid-based devices 
 

1. Accelerometers – Bailey (1983). 
2.   Seals 
 a) 

b) 
c) 
d) 

Exclusion seals and dynamic process seal – Raj and Moskowitz (1990). 
Environmental seal  – Raj et al. (1995). 
Computer seals – Ferrotec Corporation Brochure. 
Seals for rotary shafts, RF-sputtering seal, six degrees of freedom seal 
and vacuum seal – Raj and Chorney (1998). 

3. Fluid film bearings, NMR probe and magnetic domain detection – Raj and 
Moskowitz (1990). 

4. Transducers, ferrofluids and plants – Anton et al. (1990). 
5. Quenching and separation in magnetic fluids – Gogosov et al. (1990). 
6. Ferrofluids and biological assemblies – Charles (1990). 
7. High-gradient magnetic separation in blood and bone narrow processing –

Roath et al. (1990).                                                    
8. Directed movement of radio-opaque magnetic fluid in intestine – Tsyb et al. 

(1990). 
9. Magnetic fluid as a possible drug carrier for thrombosis treatment – 

Rusetski and Ruuge (1990).  
10. Dispersion media diagnostics – Apsitis et al. (1990). 
11. Viscous inertia dampers, loud speakers, ferrofluid sensors and specialty 

coating systems – Raj et al. (1995). 
12. Magnetic fluid grinding – Umehara et al. (1995). 
13. Transformers and ferrofluid stepper – Raj and Chorney (1998). 
14. Magnetic pattern detection – Ferrotec Corporation Brochure. 
15. Helicopter lag dampers – Kamath et al. (1999). 
16. Optical switches, filters and optical lens – Horng et al. (2001) 
17. Automotive technology – Phulé (2001) 
18. Clinical applications – Jordan et al. (2001). 
19. Nanotechnology – Zhan (2001)  
20. Tribotechnical systems – Uhlmann et al. (2002). 
21. Heat transfer applications – Nakatsuka et al. (2002).  
22. RF-magnetic hyperthermia – Hergt et al. (2004). 
23. Roto system vibration control – Zhu (2005).  
24. Radiation therapy of cancer – Aquino et al. (2005). 
25. Ultra-high-vacuum applications – Li and Raj (2005).  
26. Magnetic drug targeting – Ganguly et al. (2005). 

 
      So far we have discussed about ferromagnetic fluids, their properties and their 

applications. We now move on to discuss about dielectric fluids.  
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1.1.3  Dielectric Liquids 
 

      These liquids are characterized by very slight electrical conductivity. 

Transformer oil (and most other organic substances) and distilled water are 

examples of such fluids. Compared to magnetic liquids, these liquids are easier to 

prepare. Under the influence of an external electric field such a fluid exhibits a 

large polarization and as soon as the field is removed, the fluid attains zero 

polarization state at once. Dielectric liquids can be controlled by electric forces 

(Hughes and Young, 1966; Melcher, 1981).  

 
      To meet varied market requirements a wide range of dielectric liquid-based 

devices have been developed and these are listed below.  

 
Dielectric fluid-based devices 

 

1. Electrogasdynamic pumping – Lawton et al. (1973). 
2. EHD enhanced chemical reactors – Chang (1987). 
3. Dissipative hydrodynamic oscillators – Chu et al. (1989). 
4. Electrohydrodynamic pumps – Richter et al. (1991). 
5. EHD electrode systems applications in power production cycles and in 

refrigeration – Allen and Karayiannis (1995). 
6. Ion-drag dielectric pump for enhanced cooling – Yagoobi  et al. (1995). 
7. Conduction processes in highly insulating liquids and electro-optical image 

reproduction – Watson (1996). 
8. Micropumps for microelectronic cooling – Wong et al. (1996). 
9. Liquid driving electrostatic micromotor – Yokota et al. (1996). 
10. Dielectric fluid motors – Otsubo and Edamura (1997). 
11. Electrogasdynamics of disperse systems – Popkov et al. (1997). 
12. Earthquake protection dampers – Kamath and Wereley (1998). 
13. Aircraft EHD heat exchangers –Paschkewitz (1998). 
14. Computational simulation of microfluidics, electrokinetics and particle 

transport in biological MEMS devices – Giridharan et al. (1999). 
15. Nuclear power plant emergency core cooling system – Piscataway (1999). 
16. Compact bubble detector –Merkel et al. (2000). 
17. ER toners for electrophotography – Otsubo and Suda (2002).  
18. ER fluid assisted polishing – Kim et al. (2003). 
19. Thin fluid films – Shankar and Sharma (2004). 
20. Electrical discharge machining – Leao and Pashby (2004). 
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      Non-isothermal application situations are relevant to the theme of the thesis.      

For most non-isothermal applications, the most sought-after properties of a 

ferrofluid/dielectric liquid are the following (Fertman, 1990; Berkovskii et. al., 

1993; Tao and Roy, 1994; Zhakin, 1997; Upadhyay, 2000):  

 
" Long term stability within the operating temperature range of the device and 

within the range of electromagnetic field strengths.  
 
" High saturation magnetization/polarization and large initial susceptibility. 

 
" Low viscosity and low vapour pressure. 

 
" Stability in gravitational fields and the magnetic field/electric field gradient. 

 
" Absence of significant aggregation in the presence of a uniform magnetic field 

for a ferromagnetic fluid. 
 
" Good thermal conductivity.  

 

      With the stated objective and scope of the thesis in mind literature review has 

been made and the same is presented below. 

 

1.2  LITERATURE  REVIEW 
 

      The main objective of the thesis is to deal with Rayleigh-Bénard/Marangoni 

convection in complex fluids like Newtonian/non-Newtonian 

ferromagnetic/dielectric fluids. Literature pertinent to this is classified as follows. 

 
•  Rayleigh-Bénard/Marangoni convection in Newtonian fluids. 

•  Rayleigh-Bénard/Marangoni convection in Newtonian ferromagnetic fluids. 

•  Rayleigh-Bénard/Marangoni convection in Newtonian dielectric fluids. 

•  Rayleigh-Bénard/Marangoni convection in viscoelastic and viscoelastic 

ferromagnetic/dielectric fluids. 

 
      The relevant literature for the problems posed in this thesis is briefly discussed 

below in keeping with the above classifications. 
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1.2.1  Rayleigh-Bénard/Marangoni Convection in Newtonian Fluids 

 
      Many industrial devices rely on thermal convection for the transfer of heat. 

Aeronautical, biomedical, civil, marine and mechanical engineers as well as 

astrophysicists, geophysicists, space researchers, meteorologists, physical 

oceanographers, physicists and mathematicians have used a little or more heat 

transfer theory here and there in the course of the development of their respective 

field.  Strictly speaking, due to interactions, the three heat transfer mechanisms, 

viz., conduction, convection and radiation are inseparable. In a physical sense, the 

amount of heat transfer in conduction and convection depends upon the 

temperature difference whereas that of radiation depends upon both the temperature 

difference and the temperature level. Natural convection in a horizontal layer of 

fluid heated from below and cooled from above has been the subject of 

investigation for many decades owing to its implications for the control and 

exploitation of many physical, chemical and biological processes. We now make a 

quick and brief review of the linear and nonlinear analysis of the RBC problem in 

Newtonian fluids keeping in mind the objective and scope of the thesis.                             

  
      The earliest experiment which called attention to the thermal instability was 

briefly reported by Thompson (1882). Benard (1901) later presented a much more 

complete description of the development of the convective flow. Lord Rayleigh 

(1916) was the first to study the problem theoretically and aimed at determining the 

conditions delineating the breakdown of the quiescent state. As a result, the thermal 

instability situation described in the foregoing paragraph is referred to as Rayleigh-

Bénard convection (RBC). The Rayleigh theory was generalized and extended to 

consider several boundary combinations by Jeffreys (1926), Low (1929) and 

Sparrow et al. (1964). Chandra (1938) examined the RBC problem experimentally 

for a gas. The most complete theory of the thermal instability problem was 

presented by Pellew and Southwell (1940).  

 
      Malkus and Veronis (1958) investigated finite amplitude cellular convection 

and determined the form and amplitude of convection by expanding the nonlinear 
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equations describing the fields of motion and temperature in a sequence of 

inhomogeneous linear equations. Veronis (1959) studied finite amplitude cellular 

convection in a rotating fluid and showed that the fluid becomes unstable to finite 

amplitude disturbances before it becomes unstable to infinitesimal perturbations.   

 
      Lorenz (1963) solved a simple system of deterministic ordinary nonlinear 

differential equations representing cellular convection numerically. For those 

systems with bounded solutions, it is found that non-periodic solutions are unstable 

with respect to small modifications and that slightly differing initial states can 

evolve into considerably different states.          

 
      Veronis (1966) analyzed the two-dimensional problem of finite amplitude 

convection in a rotating layer of fluid by considering the boundaries to be free. 

Using a minimal representation of Fourier series, he showed that, for a restricted 

range of Taylor number, steady finite amplitude motions can exist for values of the 

Rayleigh number smaller than the critical value required for overstability. Veronis 

(1968) also examined the effect of a stabilizing gradient of solute on thermal 

convection using both linear and finite amplitude analysis. It is found that the onset 

of instability may occur as an oscillatory motion because of the stabilizing effect of 

the solute in the case of linear theory and that finite amplitude instability may occur 

first for fluids with a Prandtl number somewhat smaller than unity.       

 
      Krishnamurthy (1968a, b) presented a nonlinear theory of RBC problem and 

discussed the formation of hexagonal cells and the existence of subcritical 

instabilities. Busse (1975) considered the interaction between convection in a 

horizontal fluid layer heated from below and an ambient vertical magnetic field. It 

is found that finite amplitude onset of steady convection becomes possible at 

Rayleigh numbers considerably below the values predicted by linear theory.   

 
      The literature reviewed so far concerns RBC problems with constant viscosity. 

The classical problem of RBC involves the Boussinesq approximation. However, 

there are situations where the viscosity variation must be accounted for and it is 
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likely that studies of constant viscosity convection could have substantially 

overestimated the vigor of convection. In some cases of convective heat transport, 

in the mantle of Mercury, for example, it is unclear convection occurs at all with 

realistic rheologies (Platten and Legros, 1984; Gebhart et al., 1998).           

       
      Breaking of the top-bottom symmetry is quite generic in experimental 

situations. When the fluid viscosity varies with temperature, the top and bottom 

structures are different. We refer to this as a non-Boussinesq effect (Wu and 

Libchaber, 1991). The fluid viscosity can be a function of magnetic and electric 

fields as well in the case of magnetic and dielectric fluids respectively. Several 

mathematical models proposed for the variable viscosity and their applicability will 

be discussed in Chapter II. We now review the literature pertaining to variable 

viscosity fluids in a RBC situation.        

 
      Palm (1960) showed that for a certain type of temperature-dependence of 

viscosity, the critical Rayleigh number and the critical wavenumber are smaller 

than those for constant viscosity and explained the observed fact that steady 

hexagonal cells are formed frequently at the onset of convection.      

 
      Torrance and Turcotte (1971) investigated the influence of large variations of 

viscosity on convection in a layer of fluid heated from below. Solutions for the 

flow and temperature fields were obtained numerically assuming infinite Prandtl 

number, free-surface boundary conditions and two-dimensional motion. The effect 

of temperature-dependent and depth-dependent viscosity was studied motivated by 

the convective heat transport in earth’s mantle.     

 
      Booker (1976) investigated experimentally the heat transport and structure of 

convection in a high Prandtl number fluid whose viscosity varies by up to a factor 

of 300 between the boundary temperatures. Horne and Sullivan (1978) examined 

the effect of temperature-dependent viscosity and thermal expansion coefficient on 

the natural convection of water through permeable formations. They found that the 

convective motion is unstable at even moderate values of the Rayleigh number and 
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exhibits a fluctuating convective state analogous to the case of a fluid with constant 

viscosity and coefficient of thermal expansion.    

 
      Carey and Mollendorf (1980) presented a regular perturbation analysis for 

several laminar natural convection flows in liquids with temperature-dependent 

viscosity. Several interesting variable viscosity trends on flow and transport are 

suggested by the results obtained. Stengel et al. (1982) obtained, using a linear 

stability theory, the viscosity-ratio dependences of the critical Rayleigh number and 

critical wavenumber for several types of temperature-dependence of viscosity.    

 
      Richter et al. (1983) showed, by an experiment with temperature-dependent 

viscosity ratio as large as 106, the existence of subcritical convection of finite 

amplitude near the critical Rayleigh number. Busse and Frick (1985) analyzed the 

problem of RBC with linear variation of viscosity and showed an appearance of 

square pattern for a viscosity ratio larger than 2.  

 
      White (1988) made an experiment for the fluid with Prandtl number of o(105) 

and studied convective instability with several planforms for the Rayleigh number 

up to 63000 and the temperature-dependent viscosity ratio up to 1000. He found 

that if the viscosity ratio is 50 or 100 and the Rayleigh number is less than 25000, 

stable hexagonal and square patterns are formed in a certain range of wavenumber 

and that their wavenumbers increase with viscosity ratio. The possibility of multi-

valued solution in the thermal convection problem with temperature-dependent 

viscosity has been examined numerically by Hirayama and Takaki (1993).  

 
      Kafoussias and Williams (1995) studied, using an efficient numerical 

technique, the effect of a temperature-dependent viscosity on an incompressible 

fluid in steady, laminar, free-forced convective boundary layer flow over an 

isothermal vertical semi-infinite flat plate. It is concluded that the flow field and 

other quantities of physical interest are significantly influenced by the viscosity-

temperature parameter. Kafoussias et al. (1998) studied the combined free-forced 

convective laminar boundary layer flow past a vertical isothermal flat plate with 
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temperature-dependent viscosity. The obtained results showed that the flow field is 

appreciably influenced by the viscosity variation.    

 
      Severin and Herwig (1999) investigated the variable viscosity effect on the 

onset of instability in the RBC problem. An asymptotic approach is considered 

which provides results that are independent of specific property laws. 

Kozhhoukharova et al. (1999) examined the influence of a temperature-dependent 

viscosity on the axisymmetric steady thermocapillary flow and its stability with 

respect to non-axisymmetric perturbations by means of a linear stability analysis. 

The onset of oscillatory convection is studied numerically by a mixed Chebyshev-

collocation finite-difference method.          

 
      You (2001) presented a simple method which can be applied to estimate the 

onset of natural convection in a fluid with a temperature-dependent viscosity. 

Straughan (2002a) developed an unconditional nonlinear energy stability analysis 

for thermal convection with temperature-dependent viscosity. The nonlinear 

stability boundaries are shown to be sharp when compared with the instability 

thresholds of linear theory.     

 
      Hossain et al. (2002) analyzed the effect of temperature-dependent viscosity on 

natural convection flow from a vertical wavy surface using an implicit finite 

difference method. They have focused their attention on the evaluation of local 

skin-friction and the local Nusselt number. Chakraborty and Borkakati (2002) 

studied the flow of a viscous incompressible electrically conducting fluid on a 

continuously moving flat plate in the presence of uniform transverse magnetic field. 

Assuming the fluid viscosity to be an inverse linear function of temperature, the 

nature of fluid velocity and temperature is analyzed.      

 
      Siddheshwar (2004) studied numerically the thermorheological effect on 

magnetoconvection in fluids with weak electrical conductivity under 1g and µg 

conditions using Rayleigh-Ritz method. The possibility of an over-prediction of the 

critical eigenvalue in the classical approach with constant viscosity is proved.       
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      The literature mentioned above so far dealt with RBC problems where the basic 

temperature gradient is uniform across the layer. In many situations the stability or 

instability of a fluid in the presence of a nonlinear basic temperature profile is of 

practical importance and such a profile arises due to 
 

(i) heat sources in the fluid 

(ii) radiation 

(iii) sudden heating or cooling at the boundaries, 

(iv) throughflow at the boundaries 
 

and so on. In this thesis, we have sought to focus on the effects of heat source and 

radiation on the onset of instability. We now a make a concise review of the RBC 

problem with internal heat source.   

 
      Interest in natural convection in fluids with internal heat sources has been 

stimulated by the demands of nuclear power engineering (Bolshov et al. 2001). 

Joule heating and magnetocaloric effect are responsible for the internal heat sources 

in dielectric and magnetic fluids respectively. Sparrow et al. (1964) investigated the 

problem of RBC with internal heat generation. With increasing departures from the 

linear temperature profile, it is found that the fluid layer becomes more prone to 

instability. It was corroborated by Watson (1968) that the RBC problems with heat 

source and heat sink are identical and the effect of both heat source and heat sink is 

to destabilize the system.    

 
      Yu and Shih (1980) considered the onset of thermal instability of an electrically 

conducting fluid layer subjected to volumetric heating and bounded between two 

rigid surfaces in the presence of a magnetic field. The stability conditions are found 

for different thermal boundary conditions.       

 
      Riahi (1984) studied the problem of nonlinear RBC with an internal heat source. 

The presence of internal heating is found to be able to affect strongly the cell size, 

the stability of the convective motion and the internal motion of the hexagonal 

cells. Riahi (1986) also studied the problem of nonlinear thermal convection in a 
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low Prandtl number fluid with internal heating. It is found that subcritical 

instability associated with the hexagons can occur for a range of the amplitude of 

convection and non-uniform internal heating can affect various flow features and 

the stability of the convective motion.     

 
      Krishnamurti (1997) showed, assuming the heat source to be a function of the 

species concentration, that convection can occur in a fluid layer even when there is 

stable stratification by a species field. Straughan (2002b) studied the linear 

instability and nonlinear stability of a model due to Krishnamurti (1997).       

 
      Kim et al. (2002) examined the time-dependent buoyant convection in an 

enclosure in the presence of internal heat generation under a time-periodic thermal 

boundary condition. Estimations of the resonance frequencies are made and 

physical explanations are offered.   

 
      In what follows we review the literature relating to the problem of RBC in a 

radiating fluid. 

 
      There exist situations in which thermal radiation is important even though the 

temperature may not be high. It is a fact that, even under some of the most 

unexpected situations, the radiation heat transfer could account for a non-negligible 

amount of total heat transfer. Earlier works on heat transfer in Newtonian fluids 

considered convection and conduction and overlooked the effect of thermal 

radiation (Siegel and Howell, 1992; Modest, 1993; Howell and Menguc, 1998). 

The available literature barely delineates the part played by convection in a fluid 

combined with radiation. The formulation of heat transfer by conduction and 

convection leads to differential equations while that by radiation leads to integral 

equations. Thus the complexity involved in the solution of the integro-differential 

equations resulting from the combined convection and radiation problem warrants 

the use of several simplifying assumptions. In this thesis we restrict our attention to 

the case in which the absorption coefficient of the fluid is the same at all 

wavelengths and is independent of the physical state (the so-called gray medium 
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approximation). The equation of radiative transfer is developed in optically thick 

and thin approximations and the effect of scattering is ignored.          

 
      Goody (1956) investigated the RBC problem subject to radiative transfer using 

a variational technique and a gray, two-stream radiative model to find the critical 

conditions for linear stability. He considered the limits of optically thin and thick 

fluids, and free-slip, optically black boundaries. Goody noted that radiative 

damping tends to diminish temperature perturbations and it causes the basic 

temperature profile in the interior of the domain to have a more stable lapse rate.   

 
      Spiegel (1960) considered the RBC problem in a radiating fluid layer for rigid 

boundaries and for the entire range of optical thickness but neglected the effect of 

conduction. The principle of exchange of stabilities is proved and the critical value 

for instability is given as a function of the optical thickness of the layer. Following 

Goody’s approach, Murgai and Khosla (1962) and Khosla and Murgai (1963), 

respectively, included the effects of magnetic field and rotation. The principle of 

exchange of stabilities and the concept of overstability have been discussed.    

 
      Christophorides and Davis (1970) added thermal conduction and Goody’s static 

temperature profile to Spiegel’s integral formulation when limited to optically thin 

media. An estimate for the convective heat transport in a transparent medium is 

made using the shape factor assumption and compared with non-radiative 

convection.     

 
      Arpaci and Gozum (1973) were the first to introduce the effects of fluid non-

grayness and boundary emissivities. Using the analysis of Arpaci and Gozum, 

Onyegegbu (1980) added the rotation effect, and Yang (1990) introduced external 

convective boundary conditions for rigid boundaries, which is suitable for solar 

collector applications. Bdeoui and Soufiani (1997) provided a sophisticated 

treatment of nongray fluids and also a short review of prior work. Mansour and 

Gorla (1999) presented a regular perturbation analysis for the radiative effects on 

laminar natural convection with temperature-dependent viscosity.        
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      Larson (2001) studied linear and nonlinear stability properties of Goody’s 

model analytically. When thermal diffusivity is zero, the energy method is used to 

rule out subcritical instabilities. When thermal diffusivity is nonzero, the energy 

method is used to find a critical threshold below which all infinitesimal and finite 

amplitude perturbations are stable.  

 
      Lan et al. (2003) analyzed the stability of a fluid subject to combined natural 

convection and radiation using a spectral method. Black boundaries and a gray 

medium are prescribed. The influences of conduction-radiation parameter, Rayleigh 

number and optical thickness on flow instabilities and bifurcations are discussed.     

 
      We now briefly review the literature on Marangoni convection (MC) in 

Newtonian fluids. 

 
      Block (1956) was of the view that Bénard cells in shallow pools are actually 

produced by variations in surface tension rather than due to buoyancy force which 

are in turn due to non-uniformities in temperature over the free surface, which 

would account for the surface depressions over upwelling hot liquid. This 

mechanism is called the Marangoni effect.  

 
      Pearson (1958) theoretically demonstrated that surface tension force is 

sufficient to cause hydrodynamic instability in a liquid layer with a free surface, 

provided there is a temperature or concentration gradient of proper sense and of 

sufficient magnitude across the layer. Thus, Pearson (1958) showed that, variation 

of surface tension with temperature would drive steady Marangoni convection in a 

fluid layer provided the non-dimensional Marangoni number is sufficiently large 

and positive. The most significant limitation of Pearson’s (1958) work is that it 

considers only the case of a non-deformable free surface corresponding to the limit 

of strong surface tension.  

 
      Nield (1964) studied the effect of non-uniform temperature gradient on the 

onset of Marangoni convection subject to the constant heat flux on the upper free 

surface. Using a single-term Galerkin technique, he obtained critical Marangoni 
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number for different temperature profiles. Nield (1966) also studied the effect of  

vertical magnetic field in an electrically conducting fluid on the onset of combined 

RBC and MC problems. It is shown that, as the magnetic field strength increases, 

the coupling between the two agencies causing instability becomes weaker so that 

the values of Rayleigh number at which convection begins are independent of 

surface-tension effect and similarly the critical Marangoni number is unaffected by 

the buoyancy forces provided the Rayleigh number is less than critical. 

 
      Vidal and Acrivos (1966) and Takashima (1970) found that, when surface 

deformation was neglected, the principle of exchange of stabilities is valid in the 

case of Marangoni instability. 

 
      Davis (1969) examined the linear and nonlinear Rayleigh-Bénard-Marangoni 

convection using energy method. The subcritical instability was found in a small 

range of the Marangoni convection. It is shown that the equations governing the 

energy theory are independent of the linear theory problem and that the surface 

tension behaves like a bounded perturbation to the Bénard problem. The effects of 

surface tension and buoyancy on the convective instability of a fluid layer with a 

mean parabolic temperature distribution are examined by Debler and Wolf (1970). 

 
      Sarma (1979, 1981 and 1985) analyzed the effect of both uniform rotation and 

magnetic field on the onset of steady Marangoni convection in a horizontal fluid 

layer with a deformable free surface for a variety of combinations of thermal and 

magnetic boundary conditions. He demonstrated the stabilizing effect of 

rotation/magnetic field on the Marangoni instability of a fluid layer with a 

deformable free surface. Takashima (1981a, 1981b) examined the effect of a free 

surface deformation on the onset of stationary and oscillatory surface tension 

driven instability using linear stability theory.  

 
      Lebon and Cloot (1984) studied the nonlinear analysis of the combined RBC 

and MC in a horizontal fluid layer of infinite extent. They used the Gorkov-Malkus-

Veronis technique, which consists of developing the steady solution in terms of a 
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small parameter measuring the deviation from the marginal state and solved the 

nonlinear equations describing the fields of temperature and velocity. 

 
      Lam and Bayazitoglu (1987) solved the problem of MC in a horizontal fluid 

layer with internal heat generation using the sequential gradient-restoration 

algorithm (SGRA) developed for optimal control problems. It is shown that the 

temperature-dependent viscosity plays a larger role than the surface tension in 

determining the critical conditions.     

 
      Maekawa and Tanasawa (1988) studied theoretically the onset of MC in an 

electrically conducting fluid subject to a vertical magnetic field. It is found that 

convection always sets in the form of longitudinal rolls whose axes are aligned with 

the horizontal component of the magnetic field and that only the vertical 

component of the magnetic field has any effect on the critical Marangoni number.  

 
      Benguria and Depassier (1989) studied linear stability of a fluid with a free 

deformable upper surface. They found that when the heat flux on the upper and 

lower surface is plane and isothermal, oscillatory instability occurs at lower values 

of the Rayleigh number than the critical value for the onset of steady convection.  

 
      Gouesbet et al. (1990) investigated the overstability for the combined RBC and 

MC problem by means of small disturbance analysis. The influence of Prandtl, 

Bond and Crispation numbers, the modification induced by interfacial viscosities, 

heat transfer at the free surface, buoyancy with respect to the pure Marangoni 

mechanism and different thermal conditions at the rigid wall are discussed in the 

analysis. Perez-Garcia and Carneiro (1991) analyzed the effects of surface tension 

and buoyancy on the convective instability in a layer of fluid with a deformable 

free surface. Their analysis is restricted to fixed values of a Prandtl number and 

Biot number in order to determine the role of the Crispation number on convection.  

 
      Wilson (1993a, 1993b) investigated the effect of a uniform magnetic field on 

the onset of Marangoni instability in a horizontal layer of quiescent electrically 

conducting fluid in the presence as well as in the absence of buoyancy force using a 
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combination of analytical and numerical techniques. The vertical magnetic field 

was found to have a stabilizing effect .Wilson (1994) studied the problem of MC in 

an electrically conducting fluid with a uniform vertical temperature gradient 

subjected to a prescribed heat flux at its rigid lower boundary. The critical 

Marangoni number obtained was different from that of the isothermal case.  

 
      Char and Chiang (1994a) studied the problem of MC in fluids with internal heat 

generation. Thess and Nitschke (1995) derived asymptotic expressions for the first 

unstable mode of surface tension driven instability in an electrically conducting 

fluid subjected to a strong magnetic field. The spatial structure of the velocity, 

temperature and electric current density is characterized in terms of Hartmann 

boundary layers.      

 
      Parmentier et al. (1996) performed the first weakly nonlinear analysis of the 

combined RBC and MC problem without surface deformation in the case of finite 

Prandtl number. They concluded that hexagons are preferred near the onset of 

convection and found that the direction of motion in the cells depends on the value 

of the Prandtl number.  

 
      Wilson (1997) used a combination of analytical and numerical techniques to 

analyze the effect of uniform internal heat generation on the onset of steady 

Marangoni convection. He obtained for the first time a closed form analytical 

solution for the onset of steady Marangoni convection and presented 

asymptotically- and numerically-calculated results for the linear growth rates of the 

steady modes. Char et al. (1997) investigated the onset of oscillatory instability of 

MC in a horizontal fluid layer subject to the Coriolis force and internal heat 

generation. The upper surface is assumed to be deformably free and the lower 

surface is rigid. The Crispation number is found to be significant for the occurrence 

of oscillatory modes.              

 
      Selak and Lebon (1997) studied coupled surface tension and gravity driven 

instabilities in fluids with variable thermophysical properties. Viscosity is assumed 
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to vary exponentially with temperature, while linear laws are assumed for the heat 

capacity and thermal conductivity. Computations for glycerol and liquid potassium 

show that temperature dependence of the thermophysical properties may have a 

significant effect on the onset of convection.  

 
      Hashim and Wilson (1999a, b) have analyzed the effect of a uniform vertical 

magnetic field on the onset of oscillatory MC and on the linear growth rates of 

steady MC in a horizontal layer of electrically conducting fluid heated from below. 

Their investigations showed that the presence of a magnetic field could cause the 

preferred mode of instability to be oscillatory rather than steady and that the effect 

of increasing the magnetic field strength was always to stabilize the layer by 

decreasing the growth rate of the unstable modes. Hashim and Wilson (1999c) have 

also investigated the effects of surface tension and buoyancy on the convective 

instability in a planar horizontal layer of fluid in the most physically relevant case 

when the non-dimensional Rayleigh and Marangoni numbers are linearly 

dependent. The comprehensive asymptotic analysis of the marginal curves in the 

limit of both long and short wavelength disturbances are studied.  

 
      Kozhoukharova and Roze (1999) studied stationary and oscillatory Marangoni 

instability in a fluid layer with a deformable upper surface. The viscosity is 

assumed to be temperature-dependent and the problem has been solved numerically 

by Taylor series expansion method. The results of the study reveal that oscillatory 

convection is possible only when the surface deformability is considered. Bau 

(1999) demonstrated for the first time the critical Marangoni number for transition 

from the conduction state to the motion state can be increased through the use of 

feedback control strategies.       

 
      Hashim (2001) obtained for the first time an analytical description of the 

marginal mode for the onset of oscillatory MC in the presence of uniform heat 

sources in the asymptotic limit of short waves. Hashim and Arifin (2003) presented 

numerically a necessary and sufficient condition for oscillatory MC in a horizontal 

layer of electrically conducting fluid in the presence of a vertical magnetic field.     
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      For detailed descriptions of linear and nonlinear problems of both RBC and 

MC, one may refer to the books of Chandrasekhar (1961), Gershuni and 

Zhukhovitsky (1976), Kays and Crawford (1980), Zierep and Oertel (1982), Platten 

and Legros (1984), Gebhart et al. (1988), Getling (1998), Colinet et al. (2001) and 

Straughan (2004). Chapters on thermal convection are included in the books by 

Turner (1973), Joseph (1976a, b), Tritton (1979) and Drazin and Reid (1981). 

Reviews of recent research on convective instability have been given by Normand 

et al. (1977), Davis (1987) and Bodenschatz et al. (2000). 

 
      We have so far reviewed the literature relating to Newtonian fluids in both RBC 

and MC situations. In what follows we review the literature pertaining to a 

Newtonian ferrofluid.    

 
1.2.2  Rayleigh-Bénard/Marangoni Convection in Newtonian Ferromagnetic      

Fluids 
       
      The problem of convection in a ferromagnetic fluid is different from 

magnetoconvection even though the influence of the magnetic field exists in both 

the problems. In the case of magnetoconvection, the fluid is electrically conducting 

and we see the influence of a body force, known as, Lorentz force. Magnetic fluids 

are not electrically conducting and hence the Lorentz force does not appear. As a 

result of the magnetization of the micron-sized suspended ferrite particles a 

pondermotive force, analogous to the Lorentz force, appears and gives rise to a 

dynamically different situation than the type that occurs in the magnetoconvection 

problem. 

 
      Finlayson (1970) made a detailed study of convective instability in a 

ferromagnetic fluid. He showed that convection is caused by a spatial variation in 

the magnetization which is induced when the magnetization is a function of 

temperature and a temperature gradient is established across the fluid layer. He also 

predicted the critical temperature gradient for the onset of convection when only 

the magnetic mechanism is important as well as when both the magnetic and 

buoyancy mechanisms are operative. The magnetic mechanism is shown to 
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predominate over the buoyancy mechanism in fluid layers which are about 1 mm 

thick. For fluid layers contained between two free boundaries, which are 

constrained flat, the exact solution has been obtained for some parameter values 

and oscillatory stability is ruled out. For rigid boundaries, an approximate solution 

for stationary instability using a higher order Galerkin method is obtained. It is 

shown that, the Galerkin method yields an eigenvalue which is stationary to small 

changes in the trial functions because the Galerkin method is equivalent to an 

adjoint variational principle.  

 
      Lalas and Carmi (1971) investigated a nonlinear analysis of the convective 

stability problem in magnetic fluids using the energy method. They showed that the 

linear and energy theories give identical results for stationary ferromagnetic flow 

under the assumption that the magnetization is independent of the magnetic field 

intensity. Subcritical instabilities were ruled out. 

 
      Berkovskii and Bashtovoi (1971) investigated the problem of gravitational 

convection in an incompressible non-conducting ferromagnetic fluid resulting from 

the magnetocaloric effect. This problem is shown to be equivalent to the problem of 

natural convection with a vertical temperature gradient. Closed form solutions for 

both velocity and temperature are obtained in this study and numerical estimates of 

the critical magnetic field gradients are given. Kamiyama et al. (1988) investigated 

an analogous problem both numerically and analytically using a perturbation 

procedure. Elaborate comments on Oberbeck convection in magnetic fluids have 

been made.  

 
      Shilomis (1973) studied the conditions under which instability arises in the 

equilibrium of a non-uniformly heated ferrofluid in a gravitational field and a non-

uniform magnetic field. Shulman et al. (1976) experimentally investigated the 

effect of a constant magnetic field on the heat transfer process in ferromagnetic 

suspensions by varying the type and concentration of the disperse phase, the 

strength of the magnetic field and the orientation of the field relative to the 

direction of the temperature gradient. They observed that the thermal resistance of 
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disperse systems depends on the size, shape, nature and surface purity of the 

particles of the disperse phase. The effective thermal conductivity of ferromagnetic 

suspensions has been shown to be anisotropic in character. 

 
      Berkovsky et al. (1976) presented numerical and experimental study of 

convective heat transfer in a vertical layer of a ferromagnetic fluid. A critical 

relationship is given between heat transfer and characteristic parameters.    

 
      Nogotov and Polevikov (1977) studied Oberbeck convection in a vertical layer 

of a magnetic liquid in a magnetic field of current carrying sheet. The dependence 

of heat transfer on Rayleigh number, Prandtl number and aspect ratio were clearly 

exhibited. The convective stability of a vertical layer of magnetic fluid in a uniform 

longitudinal magnetic field was studied by Bashtovoi and Pavlinov (1978). 

Rosensweig et al. (1978) established experimentally the penetration of ferrofluids 

in the Heleshaw cell. 

 
      Gupta and Gupta (1979) investigated thermal instability in a layer of 

ferromagnetic fluid subject to Coriolis force and permeated by a vertical magnetic 

field. It is substantiated that overstability cannot occur if the Prandtl number is 

greater than unity. Gotoh and Yamada (1982) investigated the linear convective 

instability of a ferromagnetic fluid layer heated from below and confined between 

two horizontal ferromagnetic boundaries. The Galerkin technique is used and the 

Legendre polynomials are taken as the trial functions. It is shown that the 

magnetization of the boundaries and the nonlinearity of fluid magnetization reduce 

the critical Rayleigh number and the effects of magnetization and buoyancy forces 

are shown to compensate each other.  

 
      Schwab et al. (1983) performed an experiment to examine the influence of a 

homogeneous vertical magnetic field on the Rayleigh-Bénard convection in a 

ferrofluid layer. The results agreed with theoretical predictions. Schwab and 

Stierstadt (1987) demonstrated the preparation and visualization of distinct 

wavevectors for thermal convection in ferrofluids.      
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      Blums (1987) examined the possibility of having convection in ferromagnetic 

fluids as a result of magneto-diffusion of colloidal particles which give rise to non-

uniform magnetization. Kamiyama et al. (1988) studied both analytically and 

numerically the effect of combined forced and free steady convection in a vertical 

slot of ferromagnetic fluid in the presence of a transverse magnetic field taking into 

account the magnetocaloric effect. The relative magnitudes of the magnetization 

parameter and thermal Rayleigh number along with the uniform pressure gradient 

are shown to significantly influence the dynamics of the ferrofluid in a vertical slot.  

 

      Ageev et al. (1990) studied magnetic fluid convection in a non-uniform 

magnetic field. Results from both numerical and experimental studies are 

presented. Nakatsuka et al. (1990) studied the effect of thermomagnetic convection, 

which arises when a temperature sensitive magnetic fluid is heated in a vessel 

under a non-uniform magnetic field.  

 
      Stiles and Kagan (1990) examined the thermoconvective instability of a 

horizontal layer of ferrofluid in a strong vertical magnetic field. Their paper also 

questioned the satisfactory agreement claimed to exist between the experiments and 

the theoretical model of Finlayson which has been generalized by them. Schwab 

(1990) investigated the stability of flat layers of ferrofluid subject to a vertical 

temperature gradient and a vertical magnetic field experimentally. It is shown that 

magnetostatic stresses reinforce the surface deformation of Marangoni convection 

but they work against the surface deformation of Rayleigh-Bénard convection.  

 
      Abdullah and Lindsay (1991) examined convection in a nonlinear magnetic 

fluid under the influence of a non-vertical magnetic field. It is found that both 

stationary and overstable instabilities can be expected to be realizable possibilities. 

Sekhar and Rudraiah (1991) studied convective instability in magnetic fluids 

bounded by isothermal non-magnetic boundaries with internal heat generation. 

Oscillatory convection is ruled out by proving the validity of the principle of 

exchange of stabilities. The solutions are obtained using a higher order Galerkin 

expansion technique. 



 24

      Blennerhassett et al. (1991) analyzed the linear and weakly nonlinear 

thermoconvective stability of a ferrofluid, confined between rigid horizontal plates 

at different temperatures and subjected to a strong uniform external magnetostatic 

field in the vertical direction. When the ferrofluid is heated from above and when 

convection is due to magnetic forces, the Nusselt numbers for a given supercritical 

temperature gradient are significantly higher than when the ferrofluid is heated 

from below. Following the analysis of Blennerhassett et al. (1991), Stiles et al. 

(1992) analyzed linear and weakly nonlinear thermoconvective stability in weakly 

magnetized ferrofluids. They showed that if the ferrofluid is heated from above, the 

magnitudes of the critical horizontal wavenumbers are substantially higher than 

those when the ferrofluid is heated from below.        

 
      Rudraiah and Sekhar (1992) analyzed the thermohaline convection in a 

Boussinesq-ferrofluid layer confined between rigid-rigid boundaries using the 

Galerkin method. The conditions for direct and oscillatory modes are established. It 

is shown that the concentration gradient and the diffusivity ratio significantly 

influence the stability of the system.    

 
      Siddheshwar (1993) investigated the RBC problem of a Newtonian 

ferromagnetic fluid with second sound. It is shown that oscillatory convection is 

possible for heating from above. He further showed that the critical eigenvalue for 

stationary convection, when heated from below, is significantly influenced by 

second sound effects. Aniss et al. (1993) made an experimental investigation of the 

RBC problem in a magnetic fluid contained in an annular Hele-Shaw cell.  

  
      Qin and Kaloni (1994) developed a nonlinear stability analysis based on energy 

method to study the effects of buoyancy and surface tension in a ferromagnetic 

fluid layer which is heated from below. The free surface is assumed to be flat and 

non-deformable. The possibility of the existence of subcritical instabilities is 

pointed out. Venkatasubramanian and Kaloni (1994) studied the effects of rotation 

on the thermoconvective instability in a horizontal layer of ferrofluid heated from 

below in the presence of a uniform vertical magnetic field.  
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      Aniss et al. (1995) made a theoretical investigation of Rayleigh-Bénard 

convection in a magnetic liquid enclosed in a Hele-Shaw cell. It is shown that the 

Hele-Shaw approximation leads to two nonlinear problems; each one depending on 

the order of magnitude of the Prandtl number. Results of linear and weakly 

nonlinear analysis of stability near the onset of convection are presented.  

 
      Odenbach (1995a) investigated the convective flow generated by the interaction 

of a magnetic field gradient with a gradient in magnetization in a magnetic fluid. 

This gradient was caused by the diffusion of the magnetic particles in the field 

gradient. Odenbach (1995b) investigated the onset and the flow profile of 

thermomagnetic convection in a cylindrical fluid layer experimentally. Under 

microgravity conditions and with periodic boundary conditions, he established 

counter-rotating vortices.     

 
      Russell et al. (1995) examined heat transfer in strongly magnetized ferrofluids 

in the case of strong heating from above. The convective patterns at critical 

conditions have a large wave number and this is used to derive simplified equations 

for the temperature field in the ferrofluid. The results show that the heat transfer 

depends nonlinearly on the temperature difference.  

 
      Siddheshwar (1995) studied convective instability of a ferromagnetic fluid in 

the Rayleigh-Bénard situation between fluid-permeable, magnetic boundaries and 

subject to a uniform, transverse magnetic field. The Galerkin method is used to 

predict the critical eigenvalue for free-free and rigid-rigid boundaries. This paper 

reaffirmed the qualitative findings of earlier investigations which are in fact 

limiting cases of the present study. 

 
      Weilepp and Brand (1996) presented a linear stability analysis of a layer of a 

magnetic fluid with a deformable free surface, which is heated from below and 

exposed to a uniform, vertically applied magnetic field. In this configuration the 

temperature dependence of the surface tension, the buoyancy and the focusing of 

the magnetic field due to surface fluctuations act as destabilizing effects. It is 
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demonstrated that there is no oscillatory instability in the regions of the parameter 

space considered in this problem.  

 
      Odenbach (1996) investigated the behaviour of a magnetic fluid under the 

influence of an inhomogeneous magnetic field gradient. The onset of the 

convective flow is described by a model based on a time-dependent dimensionless 

parameter. Zebib (1996) performed a theoretical study of the character and stability 

of thermomagnetic flow in a microgravity environment. Convection is driven 

owing to imposed radial magnetic and temperature gradients in a cylindrical shell 

containing a ferrofluid. It is shown that convection sets in as a stable supercritical 

bifurcation.   

 
      Bajaj and Malik (1997) have investigated a nonlinear convective instability in a 

layer of magnetic fluid in the presence of an applied magnetic field and temperature 

gradient. The stability of steady state patterns resulting from the convective 

instability has been discussed using bifurcation theory. Rolls are found to be stable 

on both the square and hexagonal lattices.  

 
      Morimoto et al. (1998) investigated the dissipative structure of thermomagnetic 

convection by microgravity experiments through linear and nonlinear numerical 

simulations. The effect of the aspect ratio of the magnetic fluid layer on the pattern 

formations is investigated. In the case of linear theory, the critical magnetic 

Rayleigh number and the critical wave number have been obtained by solving the 

eigenvalue equations using harmonic analysis and the finite difference method. 

Linear stability theory results agree with the microgravity experiments. The 

nonlinear equations have been solved by the control volume finite difference 

method. The flow patterns obtained by the nonlinear calculation coincide with 

those obtained by the microgravity experiments. It is found that the critical 

magnetic Rayleigh number obtained by the nonlinear analysis agrees with that 

obtained by the linear stability analysis and the bifurcations from one pattern to 

another are clearly demonstrated as a problem of probability. 
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      Bajaj and Malik (1998) studied pattern formation due to double-diffusive 

convection in ferrofluids in the presence of an externally applied transverse 

magnetic field. The critical value of the Rayleigh number for steady state 

bifurcation is found to be different from that for Hopf-bifurcation in contrast to 

ordinary fluids where the two critical values are the same.  

 
      Siddheshwar and Abraham (1998) considered the problem of convection in 

ferromagnetic fluids occupying a rectangular vertical slot with uniform heat flux 

along the vertical walls. A closed form solution based on the Oseen-linearization 

technique is obtained. It is found that the effect of the magnetization is to increase 

the Nusselt number. Rudraiah et al. (1998) examined the effect of non-uniform 

concentration distribution on double diffusive convection in a Boussinesq-magnetic 

fluid layer confined between two rigid boundaries analytically using the Galerkin 

method. The conditions for direct and oscillatory modes for different nonlinear 

basic concentration distributions have been established.  

 
      Russell et al. (1999) examined the structure of two-dimensional vortices in a 

thin layer of magnetized ferrofluid heated from above in the limit as the critical 

wave number of the roll cells become large. They present a nonlinear asymptotic 

description of the vortex pattern that occurs directly above the critical point in the 

parameter space where instability first sets in. Tangthieng et al. (1999) investigated 

heat transfer enhancement in ferrofluids subjected to steady magnetic fields. Luo et 

al. (1999) examined novel convective instabilities in a magnetic fluid.  

 
      Yamaguchi et al. (1999) studied experimentally and numerically the natural 

convection of a magnetic fluid in a two dimensional cell whose aspect ratio is one. 

Results obtained reveal that the vertically imposed magnetic field has a 

destabilizing influence and at the supercritical state the flow mode becomes quite 

different from that without the magnetic field. 

 
      Sekar et al. (2000) studied the effect of ferrothermohaline convection in a 

rotating medium heated from below and salted from above. The effect of salinity is 
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included in the magnetization and density of the ferrofluid. The conditions for both 

stationary and oscillatory modes have been obtained using linear stability analysis 

and it is found that the stationary mode is favored in comparison with oscillatory 

mode. Auernhammer and Brand (2000) investigated the effect of rotation on RBC 

in a ferrofluid using both a linear and a weakly nonlinear analysis of the governing 

hydrodynamic equations in the Boussinesq approximation.  

 
      Aniss et al. (2001) investigated the effect of a time-sinusoidal magnetic field on 

the onset of convection in a horizontal magnetic fluid layer heated from above. The 

Floquet theory is used to determine the convective threshold for free-free and rigid-

rigid cases. The possibility to produce a competition between the harmonic and 

sub-harmonic modes at the onset of convection is discussed.   

 
      Rudraiah et al. (2002) and Shivakumara et al. (2002) investigated the effect of 

different basic temperature gradients on the onset of MC, and on the onset of the 

combined RBC and MC in ferrofluids respectively in the presence of a vertical 

uniform magnetic field. The mechanism of suppressing or augmenting the 

ferroconvection is discussed.    

 
      Abraham (2002a) investigated the RBC problem in a micropolar ferromagnetic 

fluid layer in the presence of a vertical uniform magnetic field analytically. It is 

shown that the micropolar ferromagnetic fluid layer heated from below is more 

stable as compared with the classical Newtonian ferromagnetic fluid. Lange (2002) 

studied the thermomagnetic convection of magnetic fluids in a cylindrical geometry 

subject to a homogeneous magnetic field. The general condition for the existence of 

a potentially unstable stratification in the magnetic fluid is derived.         

       
      Siddheshwar and Abraham (2003) examined the thermal instability in a layer of 

a ferromagnetic fluid when the boundaries of the layer are subjected to 

synchronous/asynchronous imposed time-periodic boundary temperatures (ITBT) 

and time-periodic body force (TBF). It is shown that the stability or instability of 

ferrofluids can be controlled with the help of ITBT and TBF.     
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      Kaloni and Lou (2005) presented linear and weakly nonlinear analysis of 

thermal instability in a layer of ferromagnetic fluid rotating about a vertical axis 

and permeated by a vertical magnetic field. The amplitude equation is developed by 

multiscale perturbation method and it is found that the ratio of heat transfer by 

convection to that by conduction decreases as magnetic field increases.  

 
      Bajaj (2005) considered thermosolutal convection in magnetic fluids in the 

presence of a vertical magnetic field and bifrequency vertical vibrations. The 

regions of parametric instability have been obtained using the Floquet theory. 

Vaidyanathan et al. (2005) obtained the condition for the onset of 

thermoconevctive instability in ferrofluids due to the Soret effect. Both stationary 

and oscillatory instabilities have been investigated.           

 
      We have so far reviewed the works related to both RBC and MC problems in a 

Newtonian ferrofluid. We now review the literature pertaining to Newtonian 

dielectric fluids.  

 

1.2.3 Rayleigh-Bénard/Marangoni Convection in Newtonian Dielectric           
Fluids 

 

      Turnbull (1968a, b) investigated both theoretically and experimentally the 

electroconvective instability with a temperature gradient. The analysis shows that 

for liquids with short or moderate electrical relaxation times, the electric field 

causes the internal gravity wave propagating downward to become stable. Turnbull 

(1969) examined the effect of dielectrophoretic forces on the Bénard instability. 

The principle of exchange of stabilities is shown to hold for a certain set of 

boundary conditions. Approximate solutions for the critical temperature gradient as 

a function of the wavelength and the electric field are found using the variational 

principles and the Galerkin method. 

 
      The effect of uniform rotation on the onset of convective instability in a 

dielectric fluid under the simultaneous action of a vertical ac electric field and a 

vertical temperature gradient was considered by Takashima (1976). It is shown that 
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the principle of the exchange of stabilities is valid for most dielectric fluids. It is 

shown that, even when the electrical effects are taken into account, the Coriolis 

force has an inhibiting effect on the onset of instability and as the speed of rotation 

increases the coupling between the two agencies causing instability (electrical and 

buoyancy force) becomes tighter.  

 
      Bradley (1978) studied overstable electroconvective instabilities. It is found that 

overstable modes can be excited by an electric field of sufficient strength.  

 
      Takashima and Ghosh (1979) analyzed the problem of the onset of instability in 

a horizontal layer of viscoelastic dielectric liquid under the simultaneous action of a 

vertical ac electric field and a vertical temperature gradient. It is shown that 

oscillatory modes of instability exist only when the thickness of the liquid layer is 

smaller than about 0.5 mm and in this case the force of electrical origin is much 

more important than the buoyancy force.   

 
      Castellanos and Velarde (1981) analyzed the effect of a temperature-dependent 

dielectric constant in the stability analysis of a liquid layer subjected to an electric 

field, weak unipolar injection and temperature gradient.  

 
      Takashima and Hamabata (1984) examined the effect of a horizontal ac electric 

field on the stability of natural convection which occurs in a dielectric fluid 

between two parallel vertical plates maintained at different temperatures. The linear 

stability theory is considered. Using the power series method, the eigenvalue 

equation is obtained which is then solved numerically. It is shown that when the 

electrical Rayleigh number is less than about 2130, the electrical field has no effect 

on the stability of natural convection and that when it exceeds this value the electric 

field and the natural convection flow are coupled strongly.  

 
      Oliveri and Atten (1985) studied electroconvection between nonparallel 

electrodes. The linear critical conditions are determined for various values of the 

different parameters. Using this analysis it is possible to model general atmospheric 

circulation. Atten et al. (1988) examined the basic properties of electroconvection 
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resulting from unipolar injection into an insulating liquid. It is shown that for very 

weak injection the induced motion of the liquid has only a negligible influence on 

the total current across the layer.    

 
      Ko and Kim (1988) studied electrohydrodynamic convective instability in a 

horizontal fluid layer with temperature gradient. Nonlinear evolution of 

disturbances near the onset of convection is also considered. It is found that 

subcritical instabilities are also possible for small or high enough values of the 

Prandtl number.  

 
      Stiles (1991) investigated the problem of an electrically insulating liquid layer 

confined between horizontal conducting electrodes, the upper of which is warmer. 

It is found that the system becomes unstable with respect to the onset of steady 

convection when the electric field strength reaches a critical value, which in a 

rapidly varying ac field is due to the polarization body force. 

 
      Maekawa et al. (1992) considered the convective instability problem in ac and 

dc electric fields. Linearized perturbation equations are solved by the Galerkin 

method. Stiles and Kagan (1993), using a linear stability analysis, predicted the 

onset of convective instability in an annulus of a pure dielectric liquid between two 

long coaxial cylinders where the liquid experiences a radial temperature gradient 

and a strong radial ac electric field. When the two cylinders are stationary, the 

results obtained have been in good agreement with experimental data on silicone 

oils. 

   
      Stiles et al. (1993) studied the problem of convective heat transfer through 

polarized dielectric liquids. It is shown that for a critical voltage, as the 

gravitational Rayleigh number becomes increasingly negative, the critical 

wavenumber at the onset of convection becomes very large. As the temperature 

drop between the plates increases the fraction of the heat transfer associated with 

convection is found to pass through a maximum value when the critical horizontal 

wavenumber is close to 4 times its value when gravity is absent.  
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      Haque et al. (1993) studied the effect of non-uniform electric field on 

convective heat transfer in a colloidal fluid. The electroconvective heat transfer 

coefficient exhibits a ‘timing’ effect as well as an ‘aging’ effect. An ac field always 

enhances the heat transfer, whereas a dc field produces an enhancement that is 

almost vertical in the vicinity of the origin. An increase in particle concentration 

increases the heat transfer coefficient, while a sharp rise in heat transfer coefficient 

is observed when the surface charge of the colloidal particle is increased. When the 

inclination of the cylinder is changed from the horizontal to the vertical position the 

convective heat transfer coefficient increases.  

 
      Char and Chiang (1994b) presented a theoretical study of the Bénard-

Marangoni instability problem for a liquid layer with a free upper surface, which is 

heated from below by a heating coil through a solid plate in an ac electric field. The 

boundary effects of the solid plate, which include its thermal conductivity, electric 

conductivity and thickness, have great influence on the onset of convective 

instability in the liquid layer. The problem is analyzed using the linear stability 

theory and the eigenvalue equations obtained solved by using the fourth order 

Runge-Kutta-Gill’s method with the shooting technique. The results indicate that 

the solid plate with a higher thermal or electric conductivity and a bigger thickness 

tends to stabilize the system.  

 
      Haque and Arajs (1995a, b) examined convective specific heat transfer in 

liquids in the presence of non-uniform electric fields. The heat transfer coefficient 

has been evaluated under the influence of ac and dc electric fields, and the 

efficiency obtained in a dc field is found to be higher than in the ac field. A similar 

trend is also noticed for the electric Nusselt number. 

 
      El Adawi et al. (1996) examined the problem of natural convection in an 

inclined fluid layer with uniform heat source in the presence of a normal ac electric 

field. The power series method is used to obtain the stable and unstable solutions. 

El Adawi et al. (1997) using a linear stability theory examined the effect of a 

normal ac electric field on the stability of the natural convection that occurs in a 
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dielectric fluid layer between two inclined plates that are maintained at different 

temperatures. The power series method is used to obtain the eigenvalue equation 

which is then solved numerically to obtain the stable and unstable solutions.  

 
      Orlik et al. (1998) investigated the electrochemical formation of luminescent 

electrohydrodynamic convective patterns in a thin layer of cells. Koulova-Nenova 

and Atten (1998) presented linear analysis of hydrodynamic instability of 

superposed layers of conducting and insulating liquids when injecting ions from the 

above a metallic electrode into an insulating liquid. Two instability mechanisms, 

convective and interfacial, are examined and the role of injection on decreasing the 

critical values is discussed.     

 
      Smorodin et al. (1999) have given results about the parametric excitation of 

thermoelectric instability in a fluid layer subject to a harmonically time varying 

heat flux normal to its top open surface. The boundaries of instability and 

characteristics of critical disturbances are found for the cases of coupled 

phenomena between thermoelectric effects and surface tension gradients and 

thermoelectric effects and buoyancy.      

 
      Ezzat and Othman (2000) investigated the effect of a vertical ac electric field 

on the onset of convective instability in a dielectric micropolar fluid heated from 

below under the simultaneous action of the rotation of the system and the vertical 

temperature gradient. The power series method is adopted to obtain the eigenvalue 

equation which is then computed numerically. 

 
      Smorodin and Velarde (2000) investigated the electrothermoconvective 

instability of a plane horizontal layer of a poorly conducting, Ohmic liquid 

subjected to a varying electric field in the EHD approximation. Floquet theory is 

applied for finding various instability thresholds in the linear approximation with 

and without the effect of buoyancy. It is shown that, depending on the amplitude 

and frequency of modulation, the electric field can stabilize an unstable basic state 

or destabilize the equilibrium of the liquid.       
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      Smorodin (2001) analyzed the effect of an alternating arbitrary-frequency 

electric field on the stability of convective flow of a dielectric liquid occupying a 

vertical layer in the EHD approximation. The stability thresholds are determined in 

the linear approximation using Floquet theory.      

 
      Kosvintsev et al. (2002) investigated the effect of electrization of a poorly 

conducting liquid and the action of an electric field on the stability of the base flow 

in a vertical layer with unequal but constant temperatures at its vertical boundaries 

using a linear dependence of conductivity on temperature.    

 
      Siddheshwar (2002a) presented an analogy between Rayleigh-Bénard 

instability in Newtonian ferromagnetic/dielectric fluids by considering free-free, 

isothermal boundaries. The results obtained reveal that the problem of RBC in 

dielectric liquids could be extracted from an analogous problem in ferromagnetic 

liquids.       

 

1.2.4  Rayleigh-Bénard/Marangoni Convection in Viscoelastic and Viscoelastic 
Ferromagnetic/Dielectric Fluids 

 

      Herbert (1963) and Green (1968) analyzed, for the first time, the problem of 

oscillatory convection in a viscoelastic fluid under the influence of infinitesimal 

disturbances. Herbert (1963) examined the stability of plane Couette flow heated 

from below and showed that finite elastic stress in the undisturbed state is 

necessary for the oscillatory motion. He also showed that the presence of elasticity 

has a destabilizing effect on the flow. Green (1968) through his investigations 

revealed that a large restoring force sets up an oscillating convective motion in a 

thin rectangular layer of the fluid heated from below.  

 
      Vest and Arpaci (1969) made significant contribution to the study of convection 

in a viscoelastic fluid layer heated from below. It is found that overstability would 

occur at the lowest value of possible adverse temperature gradient at which the rate 

of change of kinetic energy can balance in a synchronous manner.  



 35

      Sokolov and Tanner (1972) studied Rayleigh-Bénard convection in a general 

viscoelastic fluid using an integral form of the constitutive equation. It has been 

shown that under certain conditions oscillatory motions are possible. Van der 

Borght et al. (1974) made theoretical investigations of finite amplitude thermal 

convection of non-Newtonian fluids in the steady state.  

 
      Nonlinear convection in viscoelastic fluids have been studied by Riahi (1976). 

The boundary layer method is used by assuming large Rayleigh number, Prandtl 

number and a small value of elasticity parameter. The study shows that elasticity 

effects do not affect the horizontal wavenumber significantly and also that the heat 

flux depends strongly on elasticity parameter and decreases with increasing 

elasticity parameter. 

 
      Eltayeb (1977) studied the linear and nonlinear Rayleigh-Bénard convection in 

a viscoelastic fluid using the Oldroyd model. He found that, in the study of 

nonlinear effects for slightly supercritical Rayleigh number, the plane disturbances 

for the case where the exchange of stabilities is valid and plane disturbances for the 

case of overstability are governed by equations similar to that for the plane 

Poiseuille flow. Eltayeb also studied the effect of linear and nonlinear convection 

and showed that the elasticity effect is to stabilize the layer in the linear theory and 

to destabilize it in the nonlinear theory provided the ratio of the mean temperature 

gradient of the layer to the actual temperature difference across the layer is large 

enough. 

 
      Stastna (1985) obtained sufficient conditions for the exchange of stabilities in 

the RBC problem of a viscoelastic fluid with different types of boundary 

conditions. A differential and a single integral model are applied and it is shown 

that the possibility of overstable motions can be ruled out.     

 
      Barbara et al. (1986) studied the multi-criticality in viscoelastic fluids heated 

from below. The phase diagrams near co-dimensions of two bifurcation points are 

analyzed for a Maxwell fluid. It is found that the phase diagram exhibit a novel 
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mixed phase in which both stationary and oscillatory modes are present. It is also 

shown that the system exhibit direct transition from the conductive to the mixed 

phase depending upon the coupling between the two modes. 

 
      Agrait and Castellanos (1986) investigated both stationary and oscillatory 

convection in a horizontal layer of a dielectric Oldroyd fluid under the 

simultaneous action of a vertical ac field and a vertical temperature gradient. The 

physical mechanisms relevant to the problem are expounded using a heuristic 

argument. They found that the observation of overstability could be possible in the 

case of low viscosity, high relaxation time fluid with the help of an ac potential.    

 
      Khayat (1994, 1995a) examined the onset of aperiodic or chaotic behaviour in 

viscoelastic fluids, viz., Oldroyd-B and upper-convected Maxwellian fluids in the 

context of the RBC problem. The truncated Fourier representation of the 

constitutive equations for the fluids considered leads to a generalized Lorenz 

model. He found that fluid elasticity tends to destabilize the convective cell 

structure, precipitating the onset of chaotic motion, at a Rayleigh number that may 

be well below that corresponding to Newtonian fluids. He also showed that, 

depending on the value of the Prandtl number, chaos is found to set in through the 

quasiperiodic route or periodic doubling.          

 
      Khayat (1995b) also analyzed the existence of overstability in the presence of 

non-negligible inertia for an Oldroyd-B fluid. Based on the generalization of the 

classical Lorenz system for a Newtonian fluid, he obtained conditions for the 

existence of the corresponding Hopf-bifurcation as a function of fluid elasticity, 

retardation and thermal conductivity.    

 
      Park and Lee (1995) investigated nonlinear hydrodynamic stability analysis for 

viscoelastic fluids heated from below by adopting a general constitutive model. The 

study confirms that the rigid boundaries cause smaller convective amplitudes and 

Nusselt number compared with free boundaries. The study also revealed that rigid 

boundaries have more tendency to cause subcritical bifurcation than the free 
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boundaries when compared at the same value of the elasticity parameter. Park and 

Lee (1996) also analyzed the Hopf-bifurcation of viscoelastic fluids heated from 

below with rigid-rigid and rigid-free boundary conditions for the range of 

viscoelastic parameters where the Hopf-bifurcation occurs. The nonlinear analysis 

based on power series methods reveals that various parameters have significant 

effects on hydrodynamic stability and suggest that Rayleigh-Bénard convective 

systems may be used at least in part, as a useful rheometric tool to assess the 

suitability of constitutive equations. 

 
      Khayat (1996) investigated the influence of weak shear thinning on the onset of 

chaos in thermal convection for a Carreau-Bird fluid. He found that the critical 

Rayleigh number at the onset of thermal convection remains the same as for a 

Newtonian fluid but the shear thinning dramatically alters the amplitude and nature 

of the convective cellular structure.        

 
      Otsubo and Edamura (1998) studied the viscoelasticity of a dielectric fluid in 

non-uniform electric field generated by electrodes with flocked fibers. They 

demonstrated that the electrorheological effect can be attributed to the 

electrohydrodynamic convection and external shear.       

 
      Siddheshwar (1998) studied the problem of oscillatory convection in an 

Oldroyd-Boussinesq-ferromagnetic fluid analytically. The linear stability analysis 

reveals the stabilizing nature of the strain retardation parameter, and the 

destabilizing effect of stress relaxation parameter and the magnetization 

parameters.    

 
      Kolodner (1999) presented experimental observations of the convective flow 

produced by heating a horizontal layer of viscoelastic fluid from below in a long 

narrow angular geometry. He observed that convective patterns take the form of 

spatially standing and travelling waves which exhibit small amplitudes and 

extremely long oscillation periods and that the threshold Rayleigh number for the 

onset of oscillation is lower than the value measured for steady convection in a 
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Newtonian fluid in the same apparatus. They also exhibit a decreasing trend with 

increasing elastic relaxation time. This behaviour agrees with the theoretical 

prediction of the linear instability of viscoelastic convection.  

 
      Siddheshwar (1999) studied the effect of second sound in the RBC problem of a 

second order ferromagnetic fluid. It is found that the results are noteworthy at short 

times and the critical eigenvalues are less than the classical ones. Odenbach (1999) 

examined the possibilities for combined terrestrial and microgravity investigations 

on viscoelastic behaviour in ferrofluids.    

 
      Martinez-Mardones et al. (1999) studied convective and absolute instabilities in 

viscoelastic fluids. Further, they analysed pattern selection and stability in 

deterministic and stochastic systems and discussed the possibility of noise induced 

phase transitions. The problem of the onset of convection in a horizontal layer of 

viscoelastic dielectric liquid (Walters’ liquid B) in the presence of a vertical ac 

electric field is examined by Othman (2001).      

 
      Siddheshwar and Srikrishna (2002) made linear and nonlinear analyses of 

convection in a second-order fluid describable by the Rivlin-Ericksen constitutive 

equation. The linear theory, based on the normal mode technique, leads to a critical 

eigenvalue which is independent of viscoelastic parameters. The nonlinear analysis, 

based on the truncated representation of Fourier series, reveals that finite 

amplitudes have random behaviour. The onset of chaotic motion is also discussed.  

 
      Siddheshwar (2002b) studied oscillatory convection in viscoelastic 

ferromagnetic and dielectric liquids of the Rivlin-Ericksen, Maxwell and Oldroyd 

types. It is found that the Maxwell liquids are more unstable than the one 

subscribing to the Oldroyd description whereas the Rivlin-Ericksen liquid is 

comparatively more stable.        

 
      Ramadan et al. (2003) have considered a four-dimensional Lorenz model for an 

Oldroyd-B fluid to examine the viscoelastic flow in the context of RBC set-up. It is 

shown that fluid elasticity and fluid retardation alter the flow behaviour in 
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comparison to inertia-dominated Newtonian flow and the fluid elasticity tends to 

precipitate the onset of chaos. Numerical simulations are performed and the results 

are studied by means of time signature, phase portraits, power spectrum, Poincaré 

map, Lyapunov exponents and bifurcation diagrams.      

 
      Othman and Zaki (2003) analyzed the problem of the onset of instability in a 

horizontal layer of viscoelastic dielectric liquid under the simultaneous action of a 

vertical ac electric field and thermal relaxation time. Most recently, Siddheshwar 

(2005a) has studied the problems of RBC and MC in third-grade and Careau-Bird 

ferromagnetic/dielectric liquids.       

 

1.3  PLAN  OF  WORK 
 
      Nowadays, the knowledge of the many processes involving ferromagnetic and 

dielectric fluids has reached a stage where a modelling may be done with a certain 

confidence. The problems of Rayleigh-Bénard and Marangoni convection in these 

fluids are extremely important from the viewpoint of technological and commercial 

applications. In many heat transfer problems involving these fluids as working 

media, it is now being increasingly realized that these may have 

enhanced/diminished heat transfer compared to classical Newtonian fluids. In the 

light of the above, the thesis is organized as follows:    

 

      The Second Chapter consists of basic equations, approximations, boundary 

conditions and a discussion on the dimensionless parameters. In Chapter III, linear 

and nonlinear analyses of ferroconvection are studied. The linear analysis is based 

on a normal mode technique. The nonlinear analysis exploits the representative 

Lorenz model of convection arrived at by considering a truncated Fourier series 

representation for the field variables. This chapter ends with a logical analogy 

between ferroconvection and electroconvection and the results are discussed in the 

last chapter.        
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      The results of the study of the previous chapter are mathematically significant 

albeit physically restrictive. In Chapter IV, the effect of internal heat source/sink 

and the two non-Boussinesq effects, viz., thermorheological and 

magnetorheological effects, are brought in. A higher order Rayleigh-Ritz technique 

is used for solving the resulting system of differential equations with space-varying 

coefficients. Both terrestrial and microgravity situations are considered and an 

analogy is presented between ferroconvection and electroconvection. The results 

obtained are discussed in the last chapter.        

 
      Chapter V deals with the effect of thermal radiation on Rayleigh-

Bénard/Marangoni convection in a variable viscosity ferromagnetic fluid. The 

Milne-Eddington approximation is employed in obtaining the basic state and the 

limits of optically thin and thick fluid layer are considered. Higher order Rayliegh-

Ritz method is used to handle the variable coefficient differential equations and an 

analogy between ferroconvection and electroconvection is presented. The important 

results of this chapter are given in the last chapter.           

 
      Chapter VI is devoted to the consideration of Rayleigh-Bénard/Marangoni 

convective instabilities in viscoelastic ferromagnetic/dielectric liquids with variable 

viscosity. Three constitutive equations of Jeffrey, Maxwell and Rivlin-Ericksen are 

considered and are shown to be limiting cases of the Jeffrey description. The results 

are discussed in the last chapter.    

 
      Finally, in Chapter VII, the main conclusions drawn from the investigation of 

the problems in chapters III – VI are stated. An exhaustive bibliography follows 

this last chapter.  
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CHAPTER  II 
 

BASIC  EQUATIONS, APPROXIMATIONS, BOUNDARY 
CONDITIONS  AND  DIMENSIONLESS  PARAMETERS 

 
 
      In this chapter, we discuss the mathematical modelling of convective 

phenomena involving a variable-viscosity ferromagnetic/dielectric liquid. 

Viscoelasticity of the fluid, the third mode of heat transport and volumetric internal 

heat generation have been considered in the modelling exercise. The relevant 

boundary conditions and dimensionless parameters arising in the problem are 

explained in a general manner.  

 
      It is now well-known that ferrofluids represent a class of magnetizable liquids 

with interesting properties capable of having a substantial impact on technology. In 

many commercial applications, ferrofluid is an essential component of the system 

or is an addition, which enhances the performance. Since the force exerted by a 

magnetic field gradient on the fluid is proportional to its susceptibility, even weak 

magnetic fields can exert reasonable forces to magnetic fluids.      

 
      It should be remarked that, upon application of a magnetic field, the entropy 

associated with the magnetic degree of freedom in magnetic fluids is changed due 

to the field-induced ordering. If performed adiabatically, this leads to a temperature 

change in the fluid (Resler and Rosensweig, 1964; Parekh et al., 2000). The 

magnitude of this effect depends on the physical and magnetic properties such as, 

size, temperature dependence of magnetization, heat capacity of the material and 

carrier liquid. We note, in view of this, that the energy conservation equation 

should account for heat sources (sinks) which have implications for magnetocaloric 

pumping. In the case of dielectric liquids, Joule heating by an alternating current 

provides the volumetric energy source (Kulacki and Goldstein, 1972) which proves 

to be beneficial in microfluidic ion-drag pumping.        
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      On the other hand, if the magnetic force is to have any engineering application 

to the control of fluid motion, there must be an interface or temperature gradients. 

In what follows we elucidate briefly the development of some of the classical 

instabilities that arise in ferromagnetic fluids.     

 
      The interfacial phenomena provide an area where the fluid mechanics of a 

ferromagnetic liquid differs from that of a non-magnetic material. It is shown both 

theoretically and experimentally that when a vertical magnetic field is applied on a 

magnetic fluid having a flat surface with air above, the flat surface becomes 

unstable when the applied magnetic field exceeds the critical value of the magnetic 

field (Rosensweig and Cowley, 1967). This normal field instability (also known as 

Rosensweig instability) is a direct consequence of the interaction of nonlinear 

instabilities in magnetic fluids (Bajaj and Malik, 1996) and thanks to which a 

pattern of spikes appear on the fluid surface.     

 
      It is well-known that parametric stabilization can also be observed in fluid 

dynamics, the most impressive example being the inhibition of the Rayleigh-Taylor 

instability: a horizontal fluid layer placed above another one of smaller density 

could be stabilized by vertically vibrating their container (Racca and Annett, 1985). 

However, this requires a container with a rather small horizontal extension because 

modes with a large enough wavelength are not parametrically stabilized. It should 

be remarked that the parametric excitation of surface waves, the so-called Faraday 

instability, can also be achieved in magnetic fluids by temporal modulation of an 

external field (Mahr and Rehberg, 1998).       

 
      As has been discussed in Chapter I, dissipative instabilities, such as Rayleigh-

Bénard instability arising due to density variation and Marangoni instability arising 

owing to surface-tension variation in ferromagnetic fluids in the presence of a 

temperature gradient, have been studied by many researchers (Finlayson, 1970; 

Siddheshwar, 1995; 2005; Zebib, 1996; Auernhammer and Brand, 2000; Abraham, 

2003). It is worth noting that, in contrast to the dissipative Marangoni instability in 

magnetic fluids, the Rosensweig instability is static whose critical wavelength is 
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nearly independent of the layer thickness (Weilepp and Brand, 1996). It has been 

predicted recently that the Rosensweig instability could be inhibited by vertical 

vibrations with an appropriate choice of the fluid and vibration parameters (Muller, 

1998; Petrelis et al., 2000).    

 
      It is interesting to note that the surface instability, similar to that proposed by 

Cowley and Rosensweig (1967), arises when an electric field is applied in the 

direction normal to the surface of a dielectric liquid (Melcher, 1963; Taylor and 

McEwan, 1965; Neron de Surgy et al., 1993). However, these studies reveal that 

the surface instability effect in magnetic fluids is much stronger than that of electric 

instability.          

 
      The foregoing remarks essentially suggest that a colloidal suspension of 

magnetic particles such as ferrofluid can be manipulated by field gradients. Most 

successful applications use permanent magnets to form field gradients and hold the 

liquid in position. Once in position, secondary properties of the liquid can be 

exploited such as its viscosity, its lubricity and the like.     

 
 
Table 2.1:  The ratio of some physical properties of various fluids at temperature of 

20oC and 50oC (Shin and Cho, 1996).   
 
 

 
 

Fluid 

Density 
 
o

o

20 C

50 C

ρ
ρ

 

Specific heat 
capacity 

o

o

20 C

50 C

p

p

c
c

 

Thermal 
conductivity  

o

o

20 C

50 C

k
k

 

Dynamic 
viscosity 

o

o

20 C

50 C

µ
µ

 

Water 1.011 1.000 0.940 1.816 
Ethylene 

glycol 
 

1.021 
 

0.945 
 

0.961 
 

3.263 

Mineral oil 
(10 � NF)  

 

1.022 
 

0.933 
 

1.027 
 

3.592 

FC � 77 
(dielectric 

liquid) 

 
1.041 

 
0.954 

 
1.041 

 
1.616 

Glycerin 1.015 0.923 0.997 8.809 
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      The viscosity of any liquid system is related to the internal friction. Many 

works on convective instability took for granted the Boussinesq approximation 

which implies, in particular, that the fluid viscosity µ is temperature-independent. 

However, it is well-known that for a given class of fluids (Table 2.1), viscosity may 

vary significantly with temperature: the so-called thermorheological effect. Further, 

it is evident from Table 2.1 that viscosity decreases more drastically with 

temperature compared with other variations.         

   
      The viscosity of a magnetic fluid is greater than that of a carrier liquid due to 

the presence of suspended particles. In the absence of a magnetic field, the 

viscosity of dilute magnetic fluids can be described by the relations derived for 

non-magnetic colloidal solutions. Einstein gave the following relation for the 

effective viscosity µ  of a dilute system, that is, for very small concentrations 

( 0.05sϕ ! ) of spherical particles       

 

 51
2c sµ µ ϕ = + 

 
,                                                                                  (2.1) 

 
where cµ  is the viscosity of the carrier liquid and sϕ  is the solid volume fraction. 

Other fractions for the effective viscosity of magnetic fluids accounting for high 

concentration, fractional volume of surfactant and polydispersivity can be found 

elsewhere (Hall and Busenberg, 1969; Rosensweig, et al., 1969; Fertman, 1990; 

Upadhyay, 2000).   

 
      In the classical experiment of McTague (1969), the viscosity of a suspension of 

cobalt nanoparticles was measured with an external magnetic field applied parallel 

and perpendicular to the flow direction (Figure 2.1). It was found that the external 

field hinders the free rotation of the magnetic particles and thus increases the 

viscosity of the fluid: the so-called magnetorheological effect. A theoretical 

treatment for the magnetically induced relative viscosity change rµ µ µ= ∆  was 

given by Shliomis (1972). The magnetorheological effect has subsequently been 

the subject of many works (Kamiyama, et al., 1987; Kamiyama and Satoh, 1989; 
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Kobori and Yamaguchi, 1994; Chen et al., 2002; Bossis, et al., 2002 and references 

therein). These studies have assumed different laws of viscosity-magnetic field 

strength which include linear, quadratic and exponential proportionalities.            

 

 
 
          Figure 2.1 : Magnetic-field dependence of the viscosity of sample #12 
                               for  magnetic field  parallel and  perpendicular to the flow 
                               (from McTague, 1969). 
 

 
 
        Figure 2.2 : Relative increase of the effective viscosity in magnetic field  
                             for pure water (from  Balau et al., 2002). 
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      More recently, Balau et al., (2002) substantiated experimentally that 

magnetorheological effect is of significant importance in water-based and 

kerosene-based solutions, and in physiological-solution based magnetic liquids 

even for moderate strengths of applied magnetic field (Figure 2.2). It is pertinent to 

note here, although not considered in the present study, that Shliomis and Morozov 

(1994) postulated a negative viscosity contribution ( µ∆ < 0) for a certain range of 

the field strength and frequency of the applied magnetic field. This negative 

viscosity effect can be understood as a transfer of energy from the magnetic field 

into rotational motion of the particles (Rosensweig, 1996).         

   
      The control of the effective viscosity of a dielectric suspension by an electric 

field has been intensively studied during the last two decades (Halsey, 1992; Sun 

and Rao, 1996; Klingenberg, 1998; Hao, 2002; Ma et al., 2003) because of the 

numerous possible applications. Most of these studies have shown that the viscosity 

increases when an electric field is applied to a suspension of dielectric particles.  

 

 
 

     Figure 2.3 :  Effect of field strength on electroviscosity of silica dispersions  
                          at different volume fractions (from Klass and Martinek, 1967).      
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      In fact, it was shown experimentally (Klass and Martinek, 1967) that the 

electroviscosity continues to increase with the applied electric field (Figure 2.3). 

This effect, referred to as electrorheological effect, is due to a chain formation of 

the particles of the suspension induced by their polarization under an electric field. 

The concept of negative viscosity, that is a decrease in viscosity when an electric 

field is applied, has also been reported by a few authors (Wu and Conrad, 1997; 

Lobry and Lemaire, 1999). In this case the electric field is a dc field and the 

particles carry electric charges. In what follows we provide with several 

temperature-dependent viscosity correlations available in the literature. 

 
a)  Linear law   

     (Busse and Frick, 1985; Cloot and Lebon, 1985; Lam and Bayazitoglu, 1987;       
Selak and Lebon, 1993; Kozhoukharov and Roze, 1999; Straughan, 2002a)  

 
 [ ]1 1( ) 1 ( )aT T T= − −µ µ γ .                                                                     (2.2) 
 
b)  Palm-Jenssen law 

      (Palm, 1960; Jenssen, 1963; Stengel et al., 1982) 

 
 [ ]1 2( ) 1 cos (1 )T Tµ µ γ π= − − .                                                               (2.3) 
 

c)  Exponential laws 

     (Torrance and Turcotte, 1971; Stengel, et al., 1982; Hirayama and Takaki, 1993;     
Selak and Lebon, 1993; 1997)         

       
 (i)  ( )1 3( ) exp aT T Tµ µ γ = − −  .                                                        (2.4a) 
 

 (ii)  1
1( ) exp
2eT Tµ µ γ  = −    

.                                                           (2.4b) 

 
d)   Inverse linear law  

      (Lai and Kulacki, 1990; Kafoussias and Williams, 1995; Chakroborty and       
Borkakati, 2002) 

 

 [ ]4
1

1 1 1 ( )
( ) aT T
T

γ
µ µ

= + − .                                                                    (2.5) 
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e)  Linear-quadratic law  

     (Straughan, 2004) 
 
 2

1 1 5( ) 1 ( ) ( )a aT T T T Tµ µ γ γ = − − − −  .                                            (2.6) 

 
f)  Quadratic law  

     (Straughan, 2004; Siddheshwar, 2004; Siddheshwar and Chan, 2005) 
 
 2

1 5( ) 1 ( )aT T Tµ µ γ = − −  .                                                                  (2.7) 

 

      In the above equations (2.2) � (2.7), 1 ( )aT=µ µ , aT  is the average 

temperature, 3

3

1log
1e
γγ
γ
+=
−

 and iγ  (i = 1, 2, 3, 4, 5) are small positive constants. 

It should be mentioned that the viscosity laws given by Eqs. (2.3) � (2.7) have been 

introduced thanks to the fact that the linear viscosity law given by Eq. (2.2) is 

found to be inadequate in delineating the essential attributes of temperature-

dependent viscosity. Extensive investigation is required to be done on the 

temperature and electromagnetic field dependency of the viscosity and other 

physical properties of the complex liquids considered in the thesis. The theoretical 

investigation reported in the thesis is a first step in this direction. It is also on this 

reason that we take the specific heat capacity and thermal conductivity to be 

temperature-independent.        

 
      In the present study, the effective viscosity is taken to be a quadratic function of 

both temperature and strength of a uniform dc magnetic field in so far as the 

magnetic fluids are concerned. We have neglected the inertia of the suspended 

particles and their rotation so that the equations of motion could be tractable. 

Likewise, in the case of dielectric liquids, the effective viscosity is assumed to be a 

quadratic function of both temperature and magnitude of a uniform ac electric field.     

 
      In this thesis we are concerned with Rayleigh-Bénard/Marangoni convection in 

Newtonian ferromagnetic/dielectric liquids and also viscoelastic 

ferromagnetic/dielectric liquids. We now discuss about the basic equations 
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pertaining to the problems reported in the thesis after documenting the 

nomenclature of different quantities used in the governing equations and boundary 

conditions.      

 

NOMENCLATURE  
 

a  dimensionless wavenumber 

B
→

 magnetic induction 

Bi  Biot number 

EVC  effective heat capacity at constant volume and electric field 

HVC  effective heat capacity at constant volume and magnetic field 

d depth of the fluid layer 

D
→

 electric displacement 

E
→

 electric field  

oE  root mean square value of the electric field at the lower surface 

g
→

 gravitational acceleration    (0, 0, � g ) 

G rate of radiative heating per unit volume 

H
→

 magnetic field 

CH  convective heat transfer coefficient 

oH
→

 applied uniform vertical magnetic field 

TH  rate of heat transfer per unit area 

I +  intensity of radiation in the upward direction 

I −  intensity of radiation in the downward direction 

( , , )i j k
∧ ∧ ∧

 unit vectors in the x, y and z directions respectively 

k dimensional wave number 

1k  thermal conductivity 

1K  pyromagnetic coefficient  
,

( ( ) )
aH TM T= − ∂ ∂

o
 

aK  absorption coefficient of the fluid 
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,x yk k  wavenumber in the x and  y directions 

M
→

 Magnetization 

1M  buoyancy-magnetization parameter 

3M  non-buoyancy-magnetization parameter 

Ma  thermal Marangoni number 

EMa  electric Marangoni number 

HMa  magnetic Marangoni number 

oM  mean value of magnetization at oH H= , aT T=   

SN  heat source (sink) parameter 

Nu  Nusselt number 
p effective pressure  ( )* m sp p p= + +    

*p  hydrostatic pressure 

mp  fluid magnetic pressure   o
0

H
µ M dH

 
= 
 

∫  

sp  magneto-strictive pressure   o
,0

H

H T

Mµ V dH
V

 ∂ =   ∂  
∫  

P
→

 dielectric polarization 

BP  Planck black-body intensity  ( )4
acS T π=  

Pr Prandtl number 

q→  velocity vector   (= (u, v, w) ) 

R  thermal Rayleigh number 

ER  electric Rayleigh number 

MR  magnetic Rayleigh number 

S strength of volumetric heat source per unit volume and per unit time 

cS  Stefan-Boltzmann constant 

rs  heat content per unit volume  

t time 
T temperature 
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1T  constant temperature of the lower boundary  o( ∆ )T T= +  

aT  arithmetic mean of boundary temperatures  o 1( ( ) 2)T T= +  

oT  constant temperature of the upper boundary 

Tr transpose  
(x, y, z) Cartesian coordinates with z-axis vertically upwards  

T∆  temperature difference between the lower and upper 
surfaces 1 o( )T T= −  

∇  vector differential operator   ( ) ( ) ( )x i y j z k
∧ ∧ ∧ = ∂ ∂ + ∂ ∂ + ∂ ∂ 

 
 

D Dt  material or substantial derivative  ( ( ) ).t q→= ∂ ∂ + ∇  

2∇  three dimensional Laplacian operator  

( )2 2 2 2 2 2( ) ( ) ( )x y z= ∂ ∂ + ∂ ∂ + ∂ ∂  

2
1∇  two dimensional Laplacian operator   ( )2 2 2 2( ) ( )x y= ∂ ∂ + ∂ ∂  

 

Subscripts  
b basic state 
c critical value 

 

Greek symbols 

α  thermal expansion coefficient    ( )o( 1 ( ) )aT Tρ dρ dT == −  

β  adverse basic temperature gradient ( ∆ )dT=  

Φ  magnetic (electric) scalar potential 

κ  thermal diffusivity 
τ  absorptivity parameter 
µ  temperature and electric/magnetic field strength dependent effective 

viscosity 

1µ  reference viscosity at oH H= , aT T=  

2µ  fluid elasticity coefficient 

oµ  magnetic permeability of vacuum 

1λ  stress-relaxation coefficient 



 52

2λ  strain-retardation coefficient 

Γ  effective viscosity parameter    

VΓ  stress-relaxation parameter 
η  viscoelastic  parameter 

oε  electric permittivity of free space 

rε  relative permittivity or dielectric constant 

θ  non-dimensional temperature  ∆( ( ) )b a TT T= −  

ρ  fluid density 

oρ  reference density at aT T=  

ω  frequency of oscillations 

oσ  reference surface tension at oH H= , aT T=  

rσ  growth rate 

sσ  temperature and electric/magnetic field strength dependent surface 
tension 

χ  conduction-radiation parameter 

eχ  electric susceptibility 

mχ  magnetic susceptibility   
,

( ( ) )
aH TM H= ∂ ∂

o
 

 
 
2.1  BASIC  EQUATIONS 
 
2.1.1  Basic Equations for a Newtonian Ferromagnetic Liquid 

 
      To derive the basic equations, we make the following approximations: 
 
a) The ferromagnetic fluid is a homogeneous, incompressible medium and the 

total magnetic moment of the particles is equally distributed throughout any 

elementary fluid volume. Since the carrier fluids are good insulators, forces due 

to interaction of magnetic fields with currents of free charge, such as found in 

magnetohydrodynamics, are negligible (Cowley and Rosensweig, 1967). The 

particles are prevented from agglomerating in the presence of a magnetic field 

as they are surrounded by a surfactant such as oleic acid. The combination of 
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the short-range repulsion due to the surfactant and the thermal agitation yields a 

material which behaves as a continuum (Papell and Faber, 1966).   

 
b) Since we are considering small particle concentrations dipole-dipole 

interactions are negligible and hence the applied magnetic field is not distorted 

by the presence of the ferromagnetic fluid (Bean, 1955). Hysteresis is unlikely 

in ferromagnetic fluids since the applied magnetic field is not rapidly changing 

(Cowley and Rosensweig, 1967).     

 
c) When the fluid is at equilibrium, the flow field is isothermal, i.e., the      

temperature of the fluid is everywhere below the boiling point leading to an 

equation of state where the density of the fluid is a linear function of 

temperature according to ( )o 1 aρ ρ α T T = − −  . 

 
d) The Boussinesq approximation is assumed to be valid, i.e., 

(1 )( ) .ρ Dρ Dt q→<< ∇ . As a result, the equation of continuity, viz., 

( ) ( ) 0.Dρ Dt ρ q→+ ∇ = , reduces to 0. q→∇ = . In other words, Boussinesq 

fluids behave as incompressible fluids. This assumption also allows the fluid 

density to vary only in the buoyancy force term in the momentum equation and 

elsewhere it is treated as a constant. This is valid provided the velocity of the 

fluid is much less than that of sound, i.e., Mach number << 1. The basic idea of 

this approximation is to filter out high frequency phenomena such as sound 

waves since they do not play an important role in transport processes (Spiegel 

and Veronis, 1960). 

 
e) Maxwell�s equations are considered for non-conducting liquids with no 

displacement currents. 

 
f) The effective viscosity is assumed to be a function of both temperature 

(thermorheological effect) and magnitude of the magnetic field 

(magnetorheological effect).  
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g) Other fluid properties such as thermal conductivity and heat capacity are 

assumed to be constants. 

 
h) The heating due to magnetocaloric effect of the magnetic substance in the 

presence of a magnetic field is assumed negligible.   

 
i) The effect of internal heat generation in the liquid is considered in Chapter IV 

and the volumetric heat source is assumed to be uniform.   

 
j) The viscous dissipation effect is neglected. The influence of radiative heat 

transfer on the onset of convection is considered in Chapter V. The radiating 

fluid is assumed to be gray and the effect of scattering is neglected.  

 
k) The temperature range of operation is below the Curie point. 

 
l) Magnetization induced by temperature variations is small compared to that 

induced by the external magnetic field, i.e. ( )1 o1 mK T H∆ << +χ .  

 
m) The magnetization is assumed to get aligned with the magnetic field. 

Experiments indicate that there is only a small dependence of viscosity and 

surface tension on magnetization. Thus, the magnetization is taken as a function 

of both magnetic field and temperature. 

 
      The governing equations for ferrofluids (Neuringer and Rosensweig, 1964;   

Finlayson, 1970) are the following: 

 

Conservation of Mass (Continuity Equation) 

 
The general form of the continuity equation is  

 

 q 0.Dρ ρ
Dt

→ + ∇ = 
 

.                                        (2.1.1) 

 

Eq. (2.1.1), for a fluid with Boussinesq approximation, reduces to 
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. 0q→∇ = .                                                 (2.1.2) 
 

Conservation of Momentum (Momentum Equation) 
 
      The momentum equation for a ferromagnetic fluid under the Boussinesq 

approximation with variable viscosity is 
 

( ) ( )o o ( ) ,. . TrD qρ p g k µ M H µ H T q q
Dt

ρ
→ → →∧ → → 
= −∇ − + ∇ +∇ + ∇∇   . (2.1.3) 

 
      The left side of Eq. (2.1.3) represents the rate of change of momentum per unit 

volume. The first, second, third and fourth terms on the right side represent 

respectively the pressure force due to normal stress, body force due to gravity, 

pondermotive force arising due to the magnetization of the fluid, called the 

Maxwell�s stress, and the viscous force arising due to shear. For a constant 

viscosity ferromagnetic fluid, the last term on the right side simplifies to 2 q→∇µ .      

 

Conservation of Energy  

 
      The heat transport equation for the considered ferromagnetic fluid which obeys 

modified Fourier law is  

 
2

o 1 oV H V H
r

DT Gρ C k T S ρ C
Dt s

= ∇ + + .                                               (2.1.4)      

 
      The second and third terms on the right side of Eq. (2.1.4) account for the 

uniform heat source and radiation respectively.  

 

Equation of State 
 
The equation of state for a single component fluid is   

 
( ) ( )o 1 aT T T = − − ρ ρ α .                   (2.1.5) 
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      Eq. (2.1.5) is derived by expanding the density ( )Tρ  using a Taylor�s series at 

aT T=  and neglecting the second and higher terms. The expression for temperature 

and magnetic field strength dependent surface tension ( , )s H Tσ  for a single 

component fluid can be, in a similar fashion, written as  

 
( ) ( ) ( )o o, H T as H T H H T Tσ σ σ σ= + − − − ,                 (2.1.6) 

 
where , o( )H aH Tsσ σ H= ∂ ∂  and o , ( )T aH Tsσ σ T= − ∂ ∂ .  
 

Maxwell’s  Equations 
 
      Maxwell�s equations, simplified for a non-conducting ferromagnetic fluid with 

no displacement currents, become 
 

 0. B
→

∇ = , 0H
→ →

∇× = .                       (2.1.7a, b) 
 

      The magnetic induction B
→

, in terms of the magnetization M
→

 and magnetic 

field H
→

, is expressed as 

 

oB µ M H
→ → → = + 

 
.                              (2.1.8) 

 
      Since the magnetization is aligned with the magnetic field and is a function of 

temperature and magnetic field, we have 
 

( ),HM M H T
H

→
→
= .                    (2.1.9) 

 
      The magnetic equation of state is linearized about the magnetic field oH  and 

the average temperature aT  to become  

( ) ( )o o 1m aM M χ H H K T T= + − − − .                         (2.1.10) 
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2.1.2  Basic Equations for a Newtonian Dielectric Liquid 
 

In deriving the basic equations we make the following assumptions: 

 
a) The dielectric liquid is a non-conducting, homogeneous, incompressible 

continuum and the total dipole moment of the particles is equally distributed 

throughout any elementary fluid volume. 

 
b) When the fluid is at equilibrium, the flow field is isothermal, i.e., the      

temperature of the fluid is everywhere below the boiling point leading to an 

equation of state where the density of the fluid is a linear function of 

temperature according to ( )o 1 aρ ρ α T T = − −  . 

 
c) The Boussinesq approximation is assumed to be valid. 

 
d) Maxwell�s equations are considered for non-conducting fluids with no 

displacement currents. 

 
e) The effective viscosity is assumed to be a function of both temperature 

(thermorheological effect) and magnitude of the electric field 

(electrorheological effect).  

 
f) Other fluid properties such as thermal conductivity and heat capacity are 

assumed to be constants. 
 
g) If the frequency of the electric field becomes too high, there can be      

appreciable heating associated with dielectric loss. We assume this form of 

dielectric heating is negligible for the frequencies discussed in our problem. 
 
h) The effect of internal heat generation in the liquid is considered in Chapter IV 

and the volumetric heat source is assumed to be uniform. 
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i) The viscous dissipation effect is neglected. The influence of radiative heat   

transfer on the onset of convection is considered in Chapter V. The radiating 

fluid is assumed to be gray and the effect of scattering is neglected.  
 

j) The applied electric field E
→

 is assumed to be an ac field and the root mean 

square of the magnitude of the electric field is assumed as the effective value.  

 
k) Polarization induced by temperature variations is small compared to that 

induced by the external electric field, i.e., ( )1 ee T∆ << +χ  where the quantity e 

is defined below following Eq. (2.1.18).    

 
l) The dielectric constant rε  is assumed to be a linear function of temperature.   

 
      The governing equations for a variable-viscosity dielectric liquid (Stiles  et al., 

1993) under the Boussinesq approximation are 

 

. 0q→∇ = ,                                                         (2.1.11) 

( ) ( )o ( . ) . , TrD qρ p g k P E µ E T q q
Dt

ρ
→ → →∧ → → 
= −∇ − + ∇ +∇ + ∇∇   ,      (2.1.12) 

 
2

o 1 oV E V E
r

DT Gρ C k T S ρ C
Dt s

= ∇ + + ,                                             (2.1.13)      

 
( ) ( )o 1 aT T T = − − ρ ρ α ,                 (2.1.14) 

 
where the third term on the right side of Eq. (2.1.12) represents a polarization force 

called the dielectrophoretic force. The expression for temperature and electric field 

strength dependent surface tension ( , )s E Tσ  takes the form    

 
( ) ( ) ( )o o, E T as E T E E T Tσ σ σ σ= + − − − ,               (2.1.15) 

 

where , o( )E E Tasσ σ E= ∂ ∂  and 
o , ( )T aE Tsσ σ T= − ∂ ∂ . 
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The electrical equations are 

 0. D
→

∇ = , 0E
→ →

∇× = ,                     (2.1.16a, b) 
 

where 

oD E P
→ → →
= +ε ,   ( )o 1rP Eε ε

→ →
= − .                                               (2.1.17a, b)          

 

The equation of state for the dielectric constant rε  is 

 ( )o
r r ae T T= − −ε ε ,                                                                                     (2.1.18) 

 
where o ( )r r aTε ε=  and ( )r T Ta

e Tε == − ∂ ∂ . It is expedient to write 

o (1 )r eε χ= +  for it facilitates us to arrive at the conventional definition 

o eP ε χ E
→ →

=  in the absence of the temperature dependence of  rε , i.e., when  e = 0. 

In writing Eq. (2.1.18), we have assumed that rε  varies with the electric field 

strength quite insignificantly (Stiles  et al., 1993). 

 

2.1.3  Basic Equations for a Viscoelastic Liquid 

 
      Viscoelastic fluids are non-Newtonian fluids which are viscous and have an 

elastic nature. The viscoelasticity in a fluid is indicated by the existence of normal 

stress differences. Non-Newtonian fluids demonstrate a nonlinear dependence of 

shearing stress on velocity gradient. Fluids belonging to this category are any 

number of thick gooey substances such as paste, printer�s ink and slurries. As we 

noted earlier, the most famous influence of magnetic fields on magnetic fluids is 

the change of viscosity provided by the hindrance of free rotation of the particles in 

a shear flow due to the action of magnetic field. As extension of this effect the 

appearance of viscoelasticity in magnetic fluids has been discussed for many years 

(Odenbach, 1999).  

 



 60

      Viscoelastic fluids do have the property of partially recovering their original 

state after the stress is removed. In other words, fluids possessing a certain degree 

of elasticity in addition to viscosity are called viscoelastic. The elastic property of 

such fluids leads to several unusual behaviour, such as, the Weissenberg effect or 

the rod-climbing phenomenon. If a rotating rod is immersed in a Newtonian liquid, 

the liquid surface is depressed near the rod because of the centrifugal force, 

whereas in a viscoelastic liquid, the liquid climbs up the rod because of normal 

stress generated by elastic properties, which can also be observed during 

polymerization reactions. It is found that the rise of a free fluid surface at a rotating 

axis is too small in viscoelastic ferromagnetic fluids to be observed under normal 

terrestrial conditions and that the microgravity situations can help to amplify the 

effect of the normal stress differences (Odenbach, 1999).  

 
      Another phenomenon is the marked swelling in a viscoelastic liquid issuing 

from a die. As a result, extrusion dies must be designed with care to produce the 

desired product cross section. Markovitz and Coleman (1964) demonstrated these 

phenomena. When a viscoelastic fluid is in motion, certain amount of energy is 

stored up in the fluid as the strain energy and some is dissipated in order to 

overcome viscous forces. In viscoelastic fluids, therefore, we have to consider the 

strain however small it may be. The strain is responsible for the partial recovery of 

the fluid to the original state and that ensures the reverse flow when the stress is 

removed. When flow takes place, the natural state of the fluid constantly changes 

and it tries to attain the instantaneous position of the deformed state but does not 

succeed completely. This lag is referred to as the memory of the fluid which is a 

measure of elasticity of the fluid. Thus for viscoelastic fluids the flow behaviour 

cannot be represented as a relation between stress and shear rate alone, but it 

depends on the recent history of these quantities as well as their current values. The 

constitutive equations for such fluids must therefore involve shear stress, shear rate 

and their local time derivatives and can be written only by a nonlinear functional 

relation. However, linear viscoelasticity has been studied in great detail, as it 

represents a property of the material in well-defined limits.  
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      Oldroyd (1950, 1958) considered rheological equations of state for idealized, 

incompressible, viscoelastic fluids whose behaviour at small variable shear stress is 

characterized by 1µ , the coefficient of viscosity, 1λ  the relaxation time and           

2λ  (< 1λ ), the retardation time. Frohlich and Sack (1946) gave the following 

rheological equation for constant viscosity viscoelastic liquids      

 

2
1 o 2 11 1D q g k p q

t Dt t
λ ρ ρ λ µ

→ ∧ →
    ∂ ∂ + + + ∇ = + ∇    ∂ ∂    

.              (2.1.19) 

 
This equation is based on a structural model for a colloidal suspension in which 

Hookean elastic spherical particles are supposed to be distributed in a Newtonian 

viscous liquid. The material is essentially a liquid and the physical model is such 

that 1 2λ λ> . When 1λ  tends to 2λ , the material reduces to a Newtonian fluid of 

viscosity 1µ .  

 
      Eq. (2.1.19) for a viscoelastic ferromagnetic fluid with temperature- and 

magnetic field strength-dependent viscosity becomes 
 

( ) ( )

1 o o

2

1 ( )

1 ,

.

. Tr

D q g k p M H
t Dt

H T q q
t

λ ρ ρ µ

λ µ

→ → →∧

→ →

  ∂  + + + ∇ − ∇   ∂   
  ∂= + ∇ + ∇∇    ∂ 

.                (2.1.20) 

 
      Similarly, Eq. (2.1.19) for a viscoelastic dielectric liquid with temperature- and 

electric field strength-dependent viscosity becomes 

 

( ) ( )

1 o

2

1 ( . )

1 ,. Tr

D q g k p P E
t Dt

E T q q
t

λ ρ ρ

λ µ

→ → →∧

→ →

  ∂  + + + ∇ − ∇   ∂   
  ∂= + ∇ + ∇∇    ∂ 

.                 (2.1.21)    
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      Several limiting cases of Eqs. (2.1.19) � (2.1.21) including both Newtonian and 

viscoelastic descriptions are documented in Table 2.2. 

 
Table 2.2:  Limiting cases of Eqs. (2.1.19) � (2.1.21) for a constant viscosity liquid. 
 

      Nature of     
             liquid 
                  →→→→ 
Type of  
  liquid   ↓↓↓↓  

 
 

Ordinary viscous 
liquid 

 

 
 

Ferromagnetic 
liquid 

 
 

Dielectric liquid 
 

 
 

Newtonian 
1 2λ λ=   

in Eq. (2.1.19) 
(Chandrasekhar, 1961) 

1 2λ λ=   
in Eq. (2.1.20)     

(Finlayson, 1970) 

1 2λ λ=   
in Eq. (2.1.21)  

(Stiles et al.,1993)   
 
 

Maxwell 
2 0λ →   

in Eq. (2.1.19)  
(Vest and Arpaci, 

1969) 

2 0λ →   
in Eq. (2.1.20)     
(Siddheshwar, 
1998; 2002b) 

2 0λ →   
in Eq. (2.1.21)  
 (Siddheshwar, 

2002b) 
 

 

Jeffrey 
Eq. (2.1.19) as it is 

(Sokolov and Tanner, 
1972)         

Eq. (2.1.20) as it is 
(Siddheshwar, 

2002b) 

Eq. (2.1.21) as it is 
(Takashima and 
Ghosh, 1979) 

 
 

Rivlin - 
Ericksen 

1 0λ →  and  

2 2 1λ µ µ→  
 in Eq. (2.1.19) 

(Siddheshwar and 
Srikrishna, 2002)       

1 0λ →  and 

2 2 1λ µ µ→  
in Eq. (2.1.20)    
(Siddheshwar, 
1999; 2002b) 

1 0λ →  and 

2 2 1λ µ µ→  
in Eq. (2.1.21)     
(Siddheshwar, 

2002b) 
 

      In what follows we discuss about various boundary conditions arising in the 

convective instability problems of ferromagnetic/dielectric liquids.   

 

 

2.2  BOUNDARY CONDITIONS 
 
2.2.1  Velocity Boundary Conditions  

 
      The boundary conditions on velocity are obtained from conservation of mass, 

the no-slip condition and the Cauchy�s stress principle depending on the nature of 

the bounding surfaces of the fluid. The following combinations of boundary 

surfaces are considered in the convective instability problems:  
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  (i)  Both lower and upper boundary surfaces are rigid. 

 (ii)  Both lower and upper boundary surfaces are free. 

(iii)  Lower surface is rigid and upper surface is free. 

 
a)  Rigid  surfaces 

 
      If the fluid layer is bounded above and below by rigid surfaces, then the viscous 

fluid adheres to its bounding surface; hence the velocity of the fluid at a rigid 

boundary surface is that of the boundary. This is known as the no-slip condition 

and it indicates that the tangential components of velocity in the x and y directions 

are zero, i.e. u = 0, v = 0. If the boundary surface is fixed or stationary, then in 

addition to u = 0, v = 0, the normal component of velocity .q n
∧→  is also zero, i.e.,   

w = 0. Hence at the rigid boundary we have  

 
u = v = w = 0.                                                  (2.2.1) 

 

      Since u = v = 0 for all values of  x and y at the boundary, we have 0u
x
∂ =
∂

 and  

0v
x
∂ =
∂

, and hence from the continuity equation subject to the Boussinesq 

approximation, it follows that  

 

0w
z
∂ =
∂

 

 
at the boundaries. Thus, in the case of rigid boundaries, the boundary conditions for 

the z-component of velocity are 

 

0ww
z
∂= =
∂

.                                                             (2.2.2) 
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b)  Free surfaces 

 
      In the case of a free surface the boundary conditions for velocity depend on 

whether we consider the surface-tension or not. If there is no surface-tension at the 

boundary, i.e., the free surface does not deform in the direction normal to itself, we 

must require that 

 
w = 0.                      (2.2.3) 

 
      We have taken the z-axis perpendicular to the xy plane, therefore w does not 

vary with respect to x and y, i.e. 

 

 0w
x
∂ =
∂

  and  0w
y
∂ =
∂

.                    (2.2.4) 

 
      In the absence of surface tension, the non-deformable free surface (assumed 

flat) is free from shear stresses so that 
 

0u v
z z
∂ ∂= =
∂ ∂

.                    (2.2.5) 

 
From the equation of continuity subject to the Boussinesq approximation, we have 
 

0u v w
x y z
∂ ∂ ∂+ + =
∂ ∂ ∂

.                   (2.2.6) 

 
Differentiating this equation with respect to �z� and using Eq. (2.2.5) yields 
 

2

2 0w
z
∂ =
∂

.                     (2.2.7) 

 
      Thus, in the absence of surface-tension, the conditions for the z-component of 

velocity at the free surfaces are 
 

2

2 0ww
z
∂= =
∂

.                    (2.2.8) 

This condition is the stress-free condition. 
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      In the presence of surface-tension, the boundary conditions for a �constant 

viscosity fluid� can be obtained by equating the shear stresses at the surface to the 

variations of surface-tension, i.e., 

 

xz
su w

z x x
στ µ   ∂∂ ∂= + = ∂ ∂ ∂ 

                                       (2.2.9) 

and 

y z
sv w

z y y
στ µ   ∂∂ ∂= + = ∂ ∂ ∂ 

,                                    (2.2.10) 

 
where µ  is assumed constant for a moment. The expression for the surface-tension 

sσ , appearing in the above equation, is given by Eqs. (2.1.6) and (2.1.15). Using 

Eq. (2.2.3), differentiating Eq. (2.2.9) with respect to �x� and Eq. (2.2.10) with 

respect to �y� and adding the two, we obtain 

 
2
1 s

u v
z x y

µ σ ∂ ∂ ∂+ = ∇ ∂ ∂ ∂ 
.                           (2.2.11) 

 
      In arriving at Eq. (2.2.11) we have used the fact that x and y variations of w 

cease to exist at the boundaries. 

 
Eq. (2.2.11), using the continuity equation (2.2.6), reduces to  

 
2

2
12 s

w
z

µ σ∂− = ∇
∂

.                    (2.2.12) 

 
Equation (2.2.12), on using Eq. (2.1.6), becomes 

 
2

2 2
1 12 T H

w T H
z

µ σ σ∂ = ∇ − ∇
∂

.                  (2.2.13) 

 
      Thus the boundary conditions for a free surface of magnetic fluids in the 

presence of surface-tension and magnetic field are 
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w = 0   and  
2

2 2
1 12 T H

w T H
z

µ σ σ∂ = ∇ − ∇
∂

.                      (2.2.14a) 

      Similarly, using Eq. (2.1.15), the boundary conditions for a free surface of 

dielectric liquids in the presence of surface-tension and an ac electric field become 

 

w = 0   and  
2

2 2
1 1 12 E

w T E
z

µ σ σ∂ = ∇ − ∇
∂

.                      (2.2.14b) 

      We stress once more that the boundary conditions given by Eqs. (2.2.14a) and 

(2.2.14b) are applicable to constant viscosity ferromagnetic and dielectric liquids 

respectively. The modified boundary conditions which include the variable 

viscosity effect are discussed in Appendix B. These new boundary conditions 

involving surface-tension have not been reported in the literature so far.        

 

2.2.2  Thermal Boundary Conditions 

 
      The thermal boundary conditions depend on the nature of the boundaries 

(Sparrow et al., 1964). Four different types of thermal boundary conditions are 

discussed below. 

 
(i)  Fixed surface temperature 

 
      If the bounding wall of the fluid layer has high heat conductivity and large heat 

capacity, the temperature in this case would be spatially uniform and independent 

of time, i.e. the boundary temperature would be unperturbed by any flow or 

temperature perturbation in the fluid. Thus 

 
T  = 0                    (2.2.15) 
 

at the boundaries. The effect is to maintain the temperature and this boundary 

condition is known as isothermal or boundary condition of the first kind which is 

the Dirichlet type boundary condition. 

 
 



 67

(ii)  Fixed surface heat flux 
 
      Heat exchange between the free surface and the environment takes place in the 

case of free surfaces. According to Fourier�s law, the heat flux TQ  passing through 

the boundary per unit time and area is 

 

1T
TQ k
z
∂= −
∂

                  (2.2.16) 

 

where T
z
∂
∂

 is the temperature gradient of the fluid at the boundary. If TQ  is 

unperturbed by thermal or flow perturbations in the fluid, it follows that 

 
T
z
∂
∂

 = 0                     (2.2.17) 

 
at the boundaries. This thermal boundary condition is known as adiabatic boundary 

condition or insulating boundary condition or boundary condition of the second 

kind which is the Neumann type boundary condition. 

 
(iii)  Boundary condition of the third kind 

 
This is a general type of boundary condition on temperature which is given by 
 

T Bi T
z
∂ = −
∂

.                             (2.2.18) 

 
      When Bi→ ∞ , we are led to the isothermal boundary condition T = 0 and when 

0Bi → , we obtain the adiabatic boundary condition 0T
z
∂ =
∂

. 

 
      The boundary conditions that we are discussing in what follows concern 

magnetic and electric potential. These new boundary conditions are the first of their 

kind in literature and suggest that most theoretical investigations in the area need to 

be reworked and analyzed.    
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2.2.3  Magnetic Potential Boundary Conditions 

 
      The general boundary conditions for the perturbed magnetic potential Φ  are  

 
10 at ,

1 2
10 at ,

1 2

m

m

aΦDΦ T z
χ

aΦDΦ T z
χ

+ − = = + 

− − = = −
+ 

                                                (2.2.19) 

 

where dD
d z

= . If we take a → ∞  in Eq. (2.2.19), we obtain the boundary 

condition of the first kind, i.e., Φ  = 0 at both the boundaries. This type of boundary 

condition has been used by Gotoh and Yamada (1982) for a liquid layer confined 

between two ferromagnetic boundaries. In this case the magnetic permeability of 

the boundary is much higher than that of the fluid. If we consider isothermal 

boundary conditions for temperature and take mχ → ∞  in (2.2.19) at both 

boundaries, we obtain the boundary condition of the second kind, i.e., 0DΦ = . 

Finlayson (1970) used this type of boundary condition in order to obtain exact 

solution to the convective instability problem of ferromagnetic fluids for free-free, 

isothermal boundaries. The derivation of the new, general boundary conditions in 

Eq. (2.2.19) is given in detail in Appendix B.    

 

2.2.4  Electric Potential Boundary Conditions 

 
We take the general boundary conditions for the perturbed electric potential Φ as 

 
10 at ,

1 2
10 at ,

1 2

e

e

aΦDΦ T z
χ

aΦDΦ T z
χ

+ − = = + 

− − = = −
+ 

                                                 (2.2.20) 

 
      If we take a → ∞  in Eq. (2.2.20), we obtain the boundary condition of the first 

kind, i.e., Φ  = 0 at both the boundaries. This type of boundary condition signifies 
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perfect electrically conducting surfaces and has been used by Stiles (1991). If we 

consider isothermal boundary conditions for temperature and take mχ → ∞  in 

(2.2.20) at both boundaries, we obtain the boundary condition of the second kind, 

i.e. 0DΦ = . Takashima and Ghosh (1979) used this type of boundary condition in 

order to obtain exact solutions to the problem of electrohydrodynamic instability in 

a viscoelastic fluid layer for free-free isothermal boundaries. The derivation of the 

new, general boundary conditions in Eq. (2.2.20) is given in detail in Appendix B.    

 

2.3  DIMENSIONAL  ANALYSIS  AND  SCALING 
 

      Exact solutions are rare in many branches of fluid mechanics because of 

nonlinearities and general boundary conditions. Hence to determine approximate 

solutions of the problem, numerical techniques or analytical techniques or a 

combination of both are used. The key to tackle modern problems is mathematical 

modelling. This process involves keeping certain elements, neglecting some, and 

approximating yet others. To accomplish this important step one needs to decide 

the order of magnitude, i.e., smallness or largeness of the different elements of the 

system by comparing them with one another as well as with the basic elements of 

the system. This process is called non-dimensionalization or making the variables 

dimensionless. Expressing the equations in dimensionless form brings out the 

important dimensionless parameters that govern the behaviour of the system. The 

first method used to make the equations dimensionless is by introducing the 

characteristic quantities and the other is by comparing similar terms. We use the 

former method of introducing characteristic quantities. The scales used in the thesis 

for non-dimensionalization are as given below: 
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Quantity 
Characteristic quantity used 

for scaling 

Time 2d κ  

Length d 

Velocity dκ  

Temperature T∆  

Magnetic potential 1 1 mK T d χ∆ +  

Electric potential o 1 eeE T d χ∆ +  

Wavenumber 1 d  

 
 

2.4  DIMENSIONLESS  PARAMETERS 
 
      We have seen from the previous sections that the flows considered are governed 

by a system of nonlinear partial differential equations. Using dimensional analysis, 

these complicated differential equations can be reduced to simpler dimensionless 

form. The two general methods of obtaining dimensionless parameters are             

(i) inspectional analysis and (ii) dimensional analysis (Hughes and Young, 1966) of 

which the latter method is used in the present study in obtaining the dimensionless 

parameters. Study of the effect of dimensionless parameters appearing in the 

equations helps us understand the qualitative and quantitative nature of the flows.  

 

The dimensionless parameters appearing in the thesis are the following: 

 
 
(i)  Thermal Rayleigh number – R  

 
The thermal Rayleigh number is defined as  

 
3

o

1

g T dR ∆= αρ
µ κ

. 
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      The thermal Rayleigh number plays a significant role in fluid layers where the 

buoyancy forces are predominant. Physically it represents the balance of energy 

released by the buoyancy force and the energy dissipation by viscous and thermal 

effects. We observe from the expression of R  that the terms in the numerator drive 

the motion and the terms in the denominator oppose the motion. Mathematically, 

this number denotes the eigenvalue in the study of stability of thermal convection 

in the absence of surface-tension. The critical thermal Rayleigh number is the value 

of the eigenvalue at which the conduction state breaks down and convection sets in.  

Thermal Rayleigh number can also be interpreted as the non-dimensional form of 

the temperature by writing R   as  1
3

o
∆R T

gd

 
=   

 

µ κ
α ρ

. 

 
(ii)  Thermal Marangoni number – Ma  

 
The thermal Marangoni number is defined as 

 

1

T T dMa ∆= σ
µ κ

, 

where Tσ  represents the rate of decrease of surface tension with increase in 

temperature. The thermal Marangoni number plays a significant role in fluid layers 

where the surface tension force is predominant. It represents the relative importance 

of surface tension forces to viscous forces. At a critical value of the thermal 

Marangoni number, TcMa , convection sets in. The thermal Marangoni number 

TMa  is an eigenvalue in the study of problems of thermal convection driven by 

surface tension (Pearson, 1958). 

 
(iii)  Prandtl  number – Pr 

 
The Prandtl number, which is a property of a particular fluid, is defined as 
 

1

o
Pr µ

ρ κ
=  . 
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      Pr is the ratio between diffusivity of momentum and vorticity to diffusivity of 

heat. High Pr liquids are very viscous ones and low Pr ones have high thermal 

diffusivities. When Pr is large the velocity boundary layer is thick compared with 

the temperature boundary layer. The Prandtl number is very high for non-

Newtonian fluids. 

 
(iv)  Nusselt number – Nu 
 
The Nusselt number is defined as 
 

 THNu
T

d
κ

=
∆ 

 
 

. 

 
      Nusselt number measures the ratio of the total heat transport across a horizontal 

plane to the heat transport by conduction alone. In general, the Nusselt number is a 

function of z but should be constant in a steady state. For Rayleigh numbers below 

the critical value, the heat transport is purely by conduction and in that case the 

Nusselt number turns out to be unity.      

 
(v)  Biot number – Bi  
 
The Biot number is defined as 
 

 CH dBi
κ

= . 

 
      Biot number represents the ratio of conductive resistance within the fluid layer 

to convective resistance at the free surface of the fluid layer. The Biot number plays 

a significant role in the heat transfer problems where the fluid layer has a free 

surface. As has been mentioned earlier, small enough values of Bi  describe the 

insulating boundary condition on temperature, while large values signify an 

isothermal boundary condition. 
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(vi)  Heat source (sink) parameter – SN  

 

 
2

1∆
S

SdN
k T

= . 

 
      The parameter SN  measures the ratio of strength of the internal heat source to 

external heating. Positive values of SN  characterize either the effect of heat source 

(S > 0) on the stability of a fluid which is heated from below ( T∆ > 0) or the effect 

of heat sink (S < 0) on a fluid layer which is heated from above ( T∆ < 0). On the 

other hand, negative values of SN  describe either the effect of heat source on the 

stability of a fluid which is heated from above or the effect of heat sink on a fluid 

layer which is heated from below. In the thesis, as we are only interested in the case 

in which the fluid layer is heated from below, it is clear that positive values of SN  

signify a heat source and the negative values a heat sink.  

 
(vii)  Buoyancy-magnetization parameter – M1  

 
The parameter 1M  is defined as 
 

( )
2

o 1
1

o

∆
1 m

K TM
g d
µ

α ρ χ
=

+
. 

 
      1M  is a ratio of the magnetic to gravitational forces. Large values of 1M  imply 

that the magnetic mechanism is very large when compared to the buoyancy effect. 

When both magnetic and buoyancy forces cause convection, the Rayleigh number 

depends on 1M  and both are coupled. When the buoyancy force has a negligible 

influence (that is, for very large 1M ), we define another parameter, referred to as 

the magnetic Rayleigh number, 2
1 o 1 1( ∆ ) (1 )M mR R M µ K T d χ µ κ= = + . The 

latter definition is also applicable to a thin layer of ferromagnetic fluid where the 

surface tension force is important. When 1M = 0, we obtain the nonmagnetic 

classical Rayleigh-Bénard problem for buoyancy induced convection (Finlayson, 

1970). 
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(viii)  Non-buoyancy-magnetization parameter – M3  

 
We define 3M  as 
 

( )

o

o
3

1

1 m

M
H

M
χ

 
+ 

 =
+

. 

 

      The parameter 3M  measures the departure of linearity in the magnetic equation 

of state. 3M  = 1 corresponds to linear magnetization. As the equation of state 

becomes more nonlinear (i.e. 3M  large), the fluid layer is destabilized slightly. 

When 3M →∞ , which means very strong nonlinearity of magnetization of the 

fluid, the entire problem reduces to the classical Rayleigh-Bénard problem                

(Finlayson, 1970). 

 
(ix)  Electric Rayleigh number – ER  

 
The electric Rayleigh number ER  is defined as 
 

2 2

1

( )
(1 )E

e

ε E eβdR
µ κ χ

=
+

o o . 

 
      The electric Rayleigh number ER  (also called Roberts number) is the ratio of 

electric forces to viscous forces. The electric Rayleigh number plays a significant 

role in not-so-thin fluid layers where the buoyancy and electric forces are equally 

predominant. It has been shown (Roberts, 1969) that in the absence of gravity, 

electrically induced convection commences when ER  reaches a critical value. 

Since ER  depends on the square of the temperature gradient, this result is 

independent of whether the upper or lower plate is warmer (Stiles et al., 1993).   
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(x)  Effective viscosity parameter – ΓΓΓΓ 

 
The effective viscosity parameter Γ  is defined as  
 

2(∆ )Γ δ T= . 
 

      The quantity δ  appearing in the above expression is defined in the context of 

Chapter IV. The dominance of magnetic/electric field strength dependency over 

temperature dependency of the effective viscosity is signified by 0Γ < , while 

0Γ >  characterizes dominance of temperature dependency.      

 
(xi)  Magnetic Marangoni number – HMa  

 
The dimensionless number HMa  is defined as 
 

1

1

∆
(1 )

H
H

m

K Tσ dMa
µ κ χ

=
+

. 

 
      The magnetic Marangoni number, HMa , is the ratio of magnetorheological 

factors affecting motion to forces opposing motion. In general, HMa  has a 

negligible influence on the stability or instability of a ferromagnetic fluid layer and 

hence we neglect the same in the present study.   

 
(xii)  Electric Marangoni number – EMa  

 
We define the electric Marangoni number EMa  as 
 

 o

1 (1 )
E

E
e

eE Tσ dMa
µ κ χ

∆=
+

. 

 
      The dimensionless number EMa  is the ratio of electrorheological factors 

affecting motion to forces opposing motion. In general, EMa  has a negligible 

influence on the stability or instability of a dielectric fluid layer and hence we 

neglect the same in the present study.   
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(xiii)  Conduction-radiation parameter – χχχχ  

 
We define χ  as 
 

 4
3 a r

Q
K s
πχ
κ

= , 

 
where 34 acQ S T π= . The conduction-radiation parameter χ  is indicative of the 

temperature in the equilibrium state. The results pertaining to non-radiating fluids 

can be obtained in the limit of 0→χ  (Khosla and Murgai, 1963).    

 
(xiv)  Absorptivity parameter – ττττ  

 
The absorptivity parameter τ  is defined as 
 
 3 (1 )aτ K d χ= + . 
 
      The dimensionless parameter τ  is the characteristic of absorption coefficient 

and distance between the horizontal planes. The results relating to non-radiating 

fluids can be obtained in the limit of 0→τ  (Khosla and Murgai, 1963).    

 
(xv)  Stress-relaxation parameter – VΓ  

 
The stress-relaxation parameter VΓ   is defined as 
 

1
2V d

λ κΓ =  . 

 
      The parameter VΓ  indicates the non-dimensional relaxation time. It is an 

elastic parameter which may be interpreted as a Fourier number in terms of 1λ        

(Vest and Arpaci, 1969).  
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(xvi)  Viscoelastic parameter – ηηηη  

 
We define η  as 
 

2

1

λη
λ

= , 

 
which is the ratio of the retardation time to the relaxation time (Sokolov and 

Tanner, 1972). The results of the Newtonian viscous fluid can be obtained by 

taking both VΓ  and η  to be zero. Alternatively, we could take 1η = . 

 

      In Table 2.3, we have documented the actual values of the important physical 

quantities pertaining to four different ferromagnetic liquids.        

 

 

 



 

 

 
 
Table 2.3. Physical data of the ferro liquids EMG 905, EMG 901, 90 G and W-40. 

The value of magnetic permeability of vacuum, oµ , is 74π×10−  W / A .m.                   
 

Ferro liquid  type 
Hydrocarbon-based Water-based  

 
 

Properties 
 
 

EMG 905 
(Stiles and 

Kagan, 1990)  

EMG 901 
(Weilepp and 
Brand, 1996) 

90 G 
(Tangthieng    
et al., 1999) 

W-40 
(Snyder et al., 

2003) 
Density   

oρ   (kg / m3) 
 

1.22× 103 
 

1.53× 103 
 

0.972× 103 
 

1.4× 103 

Thermal expansion 
coefficient          
α  (K� 1) 

 
8.6× 10� 4 

 
6× 10� 4 

 
9× 10� 4 

 
0.026× 10� 4 

Heat capacity 

V HC   (J / kg . K) 
 

2.09× 103 
 

1.45× 103 
 

1.764× 103 
 

3× 103 

Thermal 
conductivity  
1k   (W / m . K) 

 
2.2× 10� 1 

 
1.85× 10� 1  

 
1.5× 10� 1 

 
27× 10� 1 

Thermal diffusivity 
κ   (m2 / s) 

 

8.6× 10� 8 
 

8.2× 10� 8 
 

8.7× 10� 8 
 

64.3× 10� 8 

Dynamic viscosity 
1µ   (kg . m� 1 . s� 1) 

 
8.25× 10� 3 

 
9.95× 10� 3 

 
15× 10� 3 

 
3.99× 10� 2 

Pyromagnetic 
coefficient  
1K  (A / m . K) 

 
27.3 

 
~  30 

 
30 

 
240 

Prandtl number  Pr  78.4 79.3 176.4 44.3 
 

Rayleigh number  
R   

( g = 9.8  m / s2) 

14.492 
(1.479× 10� 6) 

K�1 mm�3 ∆T d3 

11.026 
(1.126× 10� 6) 

K�1 mm�3 ∆T d3 

6.569 
(6.666× 10� 7) 

K�1 mm�3 ∆T d3 

0.001 
(1.419× 10� 10) 
K�1 mm�3 ∆T d3 

Buoyancy -
magnetization 
parameter 1M  

 
0.046 

K�1 mm ∆T  d�1 

 
0.063 

K�1 mm ∆T  d�1 

 
0.066 

K�1 mm ∆T  d�1 

 
1014.04 

K�1 mm ∆T  d�1 

Magnetic Rayleigh 
number MR  

0.659 
K� 2mm� 2∆T 2d2 

0.693 
K�2mm�2∆T 2d 2 

0.431 
K� 2mm� 2∆T 2d 2 

1.409 
K� 2mm� 2∆T 2d 2 

 

Note:  1.  Values of R  in the parentheses are calculated for g = 10� 6  m / s2. 

           2. At the present time data is not available for these liquids on their viscosity 
variation with temperature and magnetic field.    
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CHAPTER  III 
 

LINEAR  AND  NONLINEAR  FERRO- AND   
ELECTRO-CONVECTION 

 

3.1  INTRODUCTION 
 

      The occurrence of cellular convection in nonmagnetic liquid layers heated from 

below is generally ascribed to two different mechanisms: the buoyancy and surface 

tension mechanisms. The buoyancy driven convection is popularly known as 

“Rayleigh-Bénard Convection (RBC)” while the surface-tension driven convection 

is referred to as “Marangoni Convection (MC)”. In the case of magnetic liquids, 

thermally and magnetically induced gradients of magnetization also contribute to 

the convective motion besides the two aforesaid candidates pertaining to 

nonmagnetic liquids. The problem of convection in ferromagnetic fluids is of 

relevance in many fields of applications as discussed in Chapter I. The Rayleigh-

Bénard convection in ferromagnetic fluids, using the classical linear stability 

theory, has been exhaustively studied (Finlayson, 1970; Sekhar, 1990; 

Siddheshwar, 1993; 1995; 1999; 2002a; Siddheshwar and Abraham, 1998; 2003; 

Abraham, 2002a; 2002b and references therein). 

 
      The study of finite amplitude convection (Veronis, 1966), using a truncated 

Fourier representation, has gained momentum in recent years owing to its 

simplicity and nonlinear complexity of the solution. It is found handy by the 

researchers at least for four reasons: It can be used (i) to determine the plan-forms 

of cellular motion that can occur in the fluid, (ii) to explicate the convective 

processes of many non-isothermal situations of practical interest, (iii) to quantify 

the heat transfer and (iv) to advance a bit closer to the challenging problem of the 

onset of chaotic motion. More recently, the use of a minimal representation of 

Fourier series in finite amplitude analysis finds its mention in the study of chaotic 

thermal convection in viscoelastic fluids of different genre (Khayat, 1994; 1995a; 
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1995b; Siddheshwar and Srikrishna, 2002; Ramadan et al., 2003 and references 

therein). Khayat (1996) examined, using a truncated Fourier representation of the 

flow and temperature fields, the influence of weak shear thinning on the onset of 

chaos in thermal convection for a Carreau-Bird fluid. He found that the critical 

Rayleigh number at the onset of thermal convection remains the same as for a 

Newtonian fluid but the shear thinning dramatically alters the amplitude and nature 

of the convective cellular structure.  

  
      The reported works on nonlinear convection in ferromagnetic fluids are very 

scant owing to the involvedness of both the governing equations and the solution 

procedure. Blennerhassett et al. (1991) examined steady convective heat transfer in 

strongly magnetized ferro fluids heated from above and predicted that the Nusselt 

numbers for a given supercritical temperature gradient are significantly higher than 

when the ferrofluid is heated from below. Stiles et al. (1992) presented a weakly 

nonlinear, steady thermoconvective stability in a thin layer of ferrofluid heated 

from above and confined between two rigid horizontal plates. They found that the 

magnitude of the critical horizontal wavenumber is substantially higher than that 

when the ferro fluid is heated from below.  

 
      Qin and Kaloni (1994) developed a nonlinear energy stability theory to study 

the buoyancy-surface tension effects in a ferromagnetic fluid layer heated from 

below. Assuming the free surface to be flat and non-deformable, they pointed out 

the existence of sub-critical instabilities. Russell et al. (1995) studied the long 

wavenumber steady convection in a strongly magnetized ferrofluid which is heated 

from above and deduced that the heat transfer depends nonlinearly on the 

temperature difference. Elhefnawy (1997) considered the heat and mass transfer in 

ferrofluids using a nonlinear approach.  Kaloni and Lou (2004) carried out a weakly 

nonlinear analysis to investigate the thermal instability of a rotating ferromagnetic 

fluid. Making use of the multi-scale perturbation method, they found that the ratio 

of heat transfer by convection to that by conduction decreases as magnetic field 

increases. Most recently, Siddheshwar (2005b) has made a spectral study of 
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nonlinear ferroconvection wherein cross interaction of different modes and effect of 

magnetization parameters on nonlinear ferroconvection is discussed.        

                  
      We note that the study of finite amplitude Rayleigh-Bénard convection in a 

ferromagnetic fluid by means of a minimal Fourier series representation does not 

seem to have been undertaken. Accordingly, we study in this chapter a weakly 

nonlinear analysis of thermal convection in a ferromagnetic fluid permeated by a 

vertical uniform magnetic field. An analogy for nonlinear RBC problem between 

ferromagnetic and dielectric liquids is also presented.    

 

3.2 MATHEMATICAL  FORMULATION 
 
      Consider an infinite horizontal layer of a Boussinesquian, electrically non-

conducting ferromagnetic fluid of depth ‘d’ that supports a temperature gradient 

T∆  and a dc magnetic field oH
→

 in the vertical direction. The upper and lower 

boundaries are maintained at constant temperatures oT  and oT T+ ∆  ( 0T∆ > ) 

respectively. The schematic of the same is shown in Figure 3.1. For mathematical 

tractability we confine ourselves to two-dimensional rolls so that all physical 

quantities are independent of  y, a horizontal co-ordinate. Further, the boundaries 

are assumed to be free and perfect conductors of heat. In this chapter we assume the 

effective viscosity µ  to be constant and the reference viscosity 1µ  will be used to 

denote the constant viscosity.  

 
      The governing equations describing the Rayleigh-Bénard instability situation in 

a constant viscosity ferromagnetic fluid in the notation of Chapter II are  

 

0. q
→

∇ = ,                                                                                                (3.2.1) 
 

2
o o 1( ). .q q q p g k M H q

t
ρ ρ µ µ

→ → →∧→ → →
 ∂   + ∇ = −∇ − + ∇ + ∇  ∂  
 

,       (3.2.2) 
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2
o 1.V H

Tρ C q T k T
t

→ ∂  + ∇ = ∇  ∂   
.                                                    (3.2.3) 

 

      The effects of heat source and radiation are assumed to be negligible in writing 

the energy equation (3.2.3).  

 
The density equation of state is  

 
( )o o1 T T = − − ρ ρ α .                   (3.2.4) 

 

      It should be observed that the nonlinear terms ( )q q
→ →

∇.  and q
→

∇ Τ.  plus the 

nonlinear terms arising in the term ( ).M H
→ →

∇  are to be retained in this analysis and 

are the overriding objects of interest in so far as the finite amplitude theory is 

concerned.  

 
      Maxwell’s equations, simplified for a non-conducting ferromagnetic fluid with 

no displacement current, become 
 

0, 0. B H
→ → →

∇ = ∇× = ,                                               (3.2.5) 

 

oB M H
→ → → = + 

 
µ .                                                                                   (3.2.6) 

 
      We assume that the magnetization is aligned with the magnetic field, but allow 

a dependence on the magnitude of the magnetic field as well as on the temperature. 

Thus the magnetic equation of state is  
 

( ) ( )o o 1 omM M H H K T T= + − − −χ .                    (3.2.7) 
 

      The magnetic boundary conditions specify that the normal component of the 

magnetic induction and tangential component of the magnetic field are continuous 

across the boundary. Taking the components of temperature, density, magnetization 
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and magnetic field in the basic state to be ( )bT z , ( )b zρ , [0, ( )]bM z  and 

[0, ( )]bH z , we obtain the quiescent state solution 
 

( )

( ) ( )

o o

1 1
o o

0, 0 , , 1 ,

, .
1 1

b bb

b b
m m

T Tq T T z z
d d

K T K TH H z k M M z k
d d

ρ ρ α

χ χ

→

→ →∧ ∧

∆ ∆ = = − = +    


   ∆ ∆ = − = +    + +       

            (3.2.8) 

 
On this basic state we superpose finite amplitude perturbations of the form 
 

( ) ( )1 3 1 3

( , ) , , , ,

, , , ,

b b bb

b b

q q u w T T T p p p

M M M M H H H H

ρ ρ ρ→ →

→ → → →

′′′ ′ ′ = + = + = + = + 

′ ′ ′ ′= + = + 

             (3.2.9) 

 
where the prime indicates perturbation. Using Eq. (3.2.9) in Eq. (3.2.7), we obtain 
 

( )

o 1
1 1 1

o o

3 3 3 1

1 ,

1 ,m

M K TM H H
H H

M H H K Tχ

 
′  ′ ′ ′+ = + −      




′ ′ ′ ′+ = + − 

                                             (3.2.10) 

 
where we have assumed ( )1 o1 mK T Hχ∆ << + . The second of Eq. (3.2.5) implies 

one can write H Φ
→ ′′ = ∇ , where Φ ′  is the perturbed magnetic scalar potential.  

 
      Since we consider only two-dimensional disturbances, we introduce the stream 

function ψ ′  
 

,u w
z x

ψ ψ′ ′∂ ∂′′ = = −
∂ ∂

,                                                                      (3.2.11) 

 
which satisfy the continuity equation (3.2.1) in the perturbed state. Introducing the 

magnetic potential Φ ′ , eliminating the pressure p in Eq. (3.2.2), incorporating the 
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quiescent state solution and non-dimensionalizing the resulting equation as well as 

Eq. (3.2.3) using the following definition 

( ) ( )* * * * * *
2

1

1
, , , , , , mx z Tx z t t T

d d T K T dd
χκ ψψ Φ Φ

κ

′′ +  ′= = = = =  ∆ ∆ 
,                 

                              (3.2.12) 
 

we obtain the dimensionless form of the vorticity and heat transport equations as 

 

( ) ( )

( )

2
2 4

1 1

2
1

1 1

1, , ,

TR M RM
Pr t x x z

R M J T J
z Pr

Φψ ψ

Φ ψ ψ

∂ ∂ ∂∇ = − + + + ∇
∂ ∂ ∂ ∂

 ∂+ + ∇ ∂ 

                    (3.2.13) 

 

( )2 ,T T J T
t x

ψ ψ∂ ∂= − + ∇ +
∂ ∂

,                                                        (3.2.14) 

where the Jacobian, J, is defined as  
 

 ( , ) f h f hJ f h
x z z x

∂ ∂ ∂ ∂= −
∂ ∂ ∂ ∂

                                                          

 
and the Laplacian operator for the two-dimensional case takes the form 

2 2 2 2 2( ) ( )x z∇ = ∂ ∂ + ∂ ∂ . In the above equations, the asterisks have been 

dropped for simplicity and we continue doing so in the remaining part of the 

chapter. Using Eq. (3.2.10) into the first of Eq. (3.2.5) and non-dimensionalizing 

the resulting equation, we obtain  
 

2 2

3 2 2 0TM
zx z

Φ Φ∂ ∂ ∂+ − =
∂∂ ∂

.                                                                  (3.2.15) 

 
      The non-dimensional parameters appearing in Eqs. (3.2.13) – (3.2.15) are as 

defined in Chapter II. Equations (3.2.13) – (3.2.15) are solved using the boundary 

conditions 
 

2

2 0T
zz

ψ Φψ ∂ ∂= = = =
∂∂

     at  z = 0, 1.                                                (3.2.16)  
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      From Eq. (3.2.16) it is clear that the boundaries are taken to be flat, stress-free 

and perfect conductors of heat. We also note that the boundary condition for the 

magnetic potential Φ , which allows periodic solutions in the vertical direction, is 

tantamount to assuming that the magnetic susceptibility mχ  with respect to the 

perturbed field is large at both the boundaries (Finlayson, 1970). In the next 

section, we discuss the linear stability analysis, which is of great utility in the local 

nonlinear stability analysis. 

 

3.3  LINEAR  STABILITY  THEORY 

      In order to study the linear theory we consider the linear version of Eqs. 

(3.2.13) – (3.2.15) and assume the solutions to be periodic waves of the form 

(Chandrasekhar, 1961) 
 

o

o

o

sin sin

cos sin

cos cos

t

ax z

ax zT

ax z

eσ

ψ π πψ

θ π π

Φ π πΦ π

            =                 

,                                              (3.3.1)  

 
which satisfy the boundary conditions in Eq. (3.2.16). In Eq. (3.3.1), r iσ σ ω= + , 

in which rσ  is the growth rate and ω  is the frequency of oscillations, aπ  is the 

horizontal wavenumber and π  is the vertical wavenumber. o o,ψ θ  and oΦ  are, 

respectively, amplitudes of the stream function, temperature and the magnetic 

potential. Substituting Eq. (3.3.1) into the linear version of Eqs. (3.2.13) – (3.2.15), 

we obtain 
 

( )2 2
1 1 o 1 o 1 o1 0R M a RM a

Pr
σ η η ψ π θ π Φ + + + + = 

 
,               (3.3.2) 

 
2

o 1 o 0a
Pr
σπ ψ η θ + + = 

 
,                                                                 (3.3.3) 

 

( )2
o 3 o1 0M aθ Φ+ + = ,                                                                       (3.3.4) 
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where ( )2 2 2
1 1 aη π= + . For a non-trivial solution for o o,ψ θ  and oΦ , we require 

 

( ) ( )2 2 2 2
1 1 1 3

2 2 2 2
3 1 3

1

1

M a
PrR

a M a M M a

σσ η η η

π

 + + + 
 =
 + + 

.                                              (3.3.5) 

 

      The onset of convection in ferromagnetic liquids can occur in one of the 

following ways: 

 
  (i)  stationary convection (steady convection), 

 (ii)  oscillatory convection (unsteady convection). 
 

      The thermal Rayleigh number R  is the eigenvalue of the problem that throws 

light on the stability or otherwise of the system. The critical value of R, i.e., cR  

signifies the onset of convection via one of the above modes. cR  of stationary is 

different from cR  of oscillatory. If cR  of stationary convection is less than that of 

oscillatory convection, then we say the “Principle of Exchange of Stabilities (PES)” 

is valid. We now move over to the discussion on the stationary instability followed 

by that on the validity or otherwise of the PES. 

 
3.3.1  Marginal State 
 
      If σ  is real, then the marginal instability occurs when 0σ = . This gives the 

stationary thermal Rayleigh number (Finlayson, 1970) 

 

( )
( )

2 6
3 1

2 2 2 2
3 1 3

1

1
s M a

R
a M a M M a

η

π

+
=

+ +
.                                                      (3.3.6) 

 
The critical wavenumber ca  satisfies the equation 
  

( ) ( )22 2 2 2
1 3 3

2 2
1 3

1 2 1 2 1

2 0 .

c c c

c c

M M a M a a

M M a a

   + + + −    
 + − = 

                                       (3.3.7) 
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      Equation (3.3.7) clearly shows that ca  depends on the magnetic parameters 1M   

and 3M . When 1 0M = , we obtain the results of the classical Rayleigh-Bénard 

instability with 2 0.5ca =  and 657.5c
sR =  (Chandrasekhar, 1961). 

 

3.3.2  Oscillatory Motions 
 
     Taking iσ ω=  (ω  being the frequency of oscillations) in Eq. (3.3.5) and 

separating the real and imaginary parts, we obtain the oscillatory thermal Rayleigh 

number 

( )
( )

2 2
6 2 1
1 3

2 2 2 2
3 1 3

o
1

1

M a
Pr

R i N
a M a M M a

ω ηη
ω

π

 
+ − 

  = +
+ +

,                                        (3.3.8) 

 

where 
( )

( )
4 2
1 3

2 2 2 2
3 1 3

11 1

1

M a
PrN

a M a M M a

η

π

 + + 
 =
+ +

.  

 

     Since oR  is a real quantity, the imaginary part of Eq. (3.3.8) has to vanish. This 

gives us two possibilities:  

 
 (i)  0, 0Nω ≠ =   (oscillatory instability),    

(ii)  0, 0Nω = ≠   (stationary instability).  

      Taking 0N = , we get ( )4 2
1 3

11 1 0M a
Pr

η  + + = 
 

, which is independent of ω . 

In problems wherein oscillatory convection is preferred to stationary, the condition 

0N =  leads to an expression for 2ω  that is in turn substituted in the real part of the 

expression for oR , thereby yielding the oscillatory thermal Rayleigh number. In 

view of the fact that N is independent of ω , we infer that oscillatory convection is 

not possible in the present problem. In support of the impossibility of the 

occurrence of oscillatory instability in Rayleigh-Bénard ferroconvection, we can 
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also seek the assistance of the Einstein formula for the effective viscosity, viz., 

(1 (5 2) )c s sφµ µ α= + , where cµ  is the viscosity of the carrier liquid, sφ  is the 

solid volume fraction and sα  is the shape factor. For a sphere sα  takes a value of 1. 

From the above formula it is obvious that the viscosity of the ferromagnetic liquid 

is much higher than the viscosity of the carrier liquid and thus the former has to 

have a large Pr value in the presence of a magnetic field. Thus oscillatory 

instability can justifiably be discounted. This essentially means that the PES holds 

good for the problem at hand. 

 

3.3.3 Parametric Perturbation Method 
 
      Our main objective in this section is to decipher analytically the effect of 

magnetic parameters 1M  and 3M  on the monotonicity of the thermal Rayleigh 

number R using the concept of self-adjoint operator. In view of the fact that the 

PES is valid, we consider steady motions. 

 
      We assume the steady solution to the linear version of Eqs. (3.2.13) – (3.2.15) 

in the form 

 
( )
( )
( )

sin
cos
cos

z ax
T z ax

z ax

ψ ψ π
θ π

Φ Φ π

  
   =   
     

.                                                                      (3.3.9) 

 
Substituting Eq. (3.3.9) into the linear form of Eqs. (3.2.13) – (3.2.15), we obtain 
 

( ) ( )
22 2 2

1 11 0D a a R M T RM a Dπ ψ π π Φ− + + − = ,                      (3.3.10) 

( )2 2 2 0a D a Tπ ψ π− − = ,                                                                  (3.3.11) 

( )2 2 2
3 0DT D M aπ Φ− − = ,                                                                 (3.3.12) 

where dD
d z

= . Eliminating Φ  between Eqs. (3.3.10) and (3.3.12), we obtain  
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( ) ( ) ( ){ }22 2 2 2 2 2 2 2 2
3 1 31 0D a D M a a R D M M a Tπ π ψ π π− − + − + = .   

                     (3.3.13) 
 
Eq. (3.3.11) can be rewritten as 
 

( )

( ) ( )

2 2 2
1 3

2 2 2 2 2 2
1 3

1

1 0 .

a R D M M a

R D a D M M a T

π π ψ

π π

 − + 
 − − − + = 

                   (3.3.14) 

 
We now define a symmetric operator L as follows: 

 

     
( ) ( ){ }

( ){ } ( ) ( ){ }

22 2 2 2 2 2 2 2 2
3 1 3

2 2 2 2 2 2 2 2 2
1 3 1 3

1

1 1

D a D M a a R D M M a
L

a R D M M a R D a D M M a

π π π π

π π π π

  − − − +  
=  
 − + − − − +  

.   

                                                                                                               (3.3.15) 
 

      We next define a vector V
→

 such that V
T
ψ→  =  
 

. Eqs. (3.3.13) and (3.3.14) can 

now be written as   
 

0L V
→ →

= .                                                                                              (3.3.16) 
 

We define the inner product between two vectors a→  and b
→

 such that  

 
*

, .
Tr

V

a b a b dV
→ →→ →

< > = ∫ ,                                                                  (3.3.17) 

 

where V represents the domain of the integral operator in which a→  and b
→

 are 

defined, the asterisk represents the complex conjugate and Tr represents the 

transpose. As the operator L and the boundary conditions in Eq. (3.2.16) are 

symmetric, one may easily prove that L is self-adjoint and so are the boundary 

conditions in Eq. (3.2.16). 
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      To seek information on the variation of R with respect to 1M , we differentiate 

Eq. (3.3.16) with respect to 1M  and obtain  

 

1 1d dL V h
→ →

= ,                                                                                       (3.3.18) 
 
where  
 

( )( ){ }3 3 2 2 2
3 1 1 3

1

1

0

d
d

a RM a R D M M a T
h

π π π→
 − − + =  
  

  

 
and the subscript ‘d1’ represents the derivative with respect to 1M . Applying a 

Fredholm alternative condition to Eq. (3.3.18), we obtain 

 
( )* 2 2 *

1 1 3

3 3 *
3

( ) 1 ( )

( ) .

d
V V

V

a R D DT dV M M a T dV

a RM T dV

π ψ π ψ

π ψ

 + + 
 

= −

∫ ∫

∫
               (3.3.19) 

 
      From the above equation it is clear that 1 0dR <  if  R  is positive. This means 

that R is a decreasing function of 1M  and hence the effect of 1M  is to destabilize 

the system. In order to extract information on the dependence of R on the parameter 

3M , we differentiate Eq. (3.3.16) with respect to 3M  and obtain 

 

 3 3d dL V h
→ →

= ,                                                                              (3.3.20) 
 
where  
 

        

( )
( ){ ( ) }3

22 2 2 2 2

3 3 3 3 2
3 1 3 1 31 1

0

dd d

a D a

a R M M a R M R D Th

π π ψ

π π πα
→

  −    
 + + + + −=  
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and the subscript ‘d3’ represents differentiation with respect to 3M . On applying 

the solvability condition, we obtain 
 

( )

( )

* *2 2
3 1 3

23 3 * 2 2 2
1

2 26 6 4 4

1 ( ) ( )

1 ( )

2 0 .

d
V V

V V

V V

aR M M a T d V D DT dV

a R M T dV a D d V

a d V a D d V

π π ψ ψ

π ψ π ψ

π ψ π ψ

 + + 
 

= − + −

− − <

∫ ∫

∫ ∫

∫ ∫

                (3.3.21) 

 
This yields the condition that R decreases if 3M  increases. 

 

3.4  NONLINEAR  THEORY 
 
      The linear theory discussed in a previous section reveals that the stationary 

mode of instability is preferred to the oscillatory one. In deed, the linear theory 

predicts only the condition for the onset of convection and is silent about the heat 

transfer. We now embark on a weakly nonlinear analysis by means of a truncated 

representation of Fourier series for velocity, temperature and magnetic fields to find 

the effect of various parameters on finite amplitude convection and to know the 

amount of heat transfer. We note that the results obtained from such an analysis can 

serve as starting values while solving a more general nonlinear convection problem. 

 
      The first effect of nonlinearity is to distort the temperature field through the 

interaction of ψ  and T, and Φ  and T. The distortion of temperature field will 

correspond to a change in the horizontal mean, i.e., a component of the form 

( )sin 2 zπ  will be generated. Thus a minimal double Fourier series which describes 

the finite amplitude convection in a ferromagnetic fluid is  

 

 

( )

( )

( )

( ) ( )

sin sin 0

cos sin sin 2

1 cos cos 0

A t ax z

T B t ax z C t z

E t ax z

ψ π π

π π π

Φ π π
π

    
    
    = +    
    
         

,                     (3.4.1) 
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where the amplitudes A, B, C and E are to be determined from the dynamics of the 

system. Substituting Eq. (3.4.1) into Eqs. (3.2.13) – (3.2.15), equating the 

coefficients of like terms, we obtain the following nonlinear autonomous system 

(generalized Lorenz model, Sparrow, 1981) of differential equations 
 

2
2 1 1 1
1 2 2 2

1 1 1

(1 )R a Pr M R a PrM RM a PrA Pr A B E CEπ π πη
η η η

• += − − − −  

           (3.4.2) 
 

2 2
1B a A B a ACπ η π

•
= − − − ,                                                               (3.4.3) 

 
2

24
2

aC AB Cπ π
•
= − ,                                                                     (3.4.4) 

 
2

30 (1 )B M a E= + + ,                                                                            (3.4.5) 
 
where the over dot denotes time derivative. It is important to observe that the 

nonlinearities in the equations (3.4.2) – (3.4.5) stem from the convective terms in 

the energy equation (3.2.3) as in the Lorenz system (Lorenz, 1963) and from the 

Maxwell’s stress term in Eq. (3.2.2). This is in contrast to the case of a viscoelastic 

fluid, where the type of nonlinearity is the same as in the Lorenz system 

(Siddheshwar and Srikrishna, 2002; Ramadan et al., 2003).   

 
      It is advantageous to eliminate the variable E between Eqs. (3.4.2) and (3.4.5) 

noting that Eq. (3.4.5) does not have a time derivative term on the left side. This 

process reduces the system of equations (3.4.2) – (3.4.5) to     
 

( )
( ) ( )

2 2 23 1 32 1
1 2 2 2 2

3 1 3 1

1

1 1

R a Pr M a M M a RM a PrA Pr A B BC
M a M a

π πη
η η

• + +
= − − +

+ +
,                        

                        (3.4.6)  
 

2 2
1B a A B a ACπ η π

•
= − − − ,                                                               (3.4.7) 

 
2

24
2

aC AB Cπ π
•
= − .                                                                     (3.4.8) 
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      The third order Lorenz system described by Eqs. (3.4.6) – (3.4.8) is uniformly 

bounded in time and possesses many properties of the full problem. Moreover, the 

phase-space volume contracts at a uniform rate 
 

( ) 2 2
1Pr 1 4A B C

A B C
η π

• • •
∂ ∂ ∂  + + = − + + ∂ ∂ ∂

,                                            (3.4.9) 

 
which is always negative and therefore the system is bounded and dissipative. As a 

result, the trajectories are attracted to a set of measure zero in the phase-space; in 

particular, they may be attracted to a fixed point, a limit cycle or perhaps, a strange 

attractor. Before solving the nonlinear system of equations, we consider the linear 

autonomous system and analyze the critical points. The nature of the critical points 

obtained from the linear system discloses information about the trajectories in the 

phase plane. The nature of these trajectories is retained by the nonlinear system but 

with distortions dictated by the nonlinear terms. 

 

3.4.1  Linear Autonomous System 

 
The linearized autonomous system is 

 

 
( )
( )

2 2
3 1 32

1 2 2
3 1

1

1

R a Pr M a M M a
A Pr A B

M a

π
η

η

• + +
= − −

+
,                             (3.4.10) 

 

 2
1B a A Bπ η

•
= − − ,                                                                               (3.4.11) 

 

 24C Cπ
•
= − .                                                                                        (3.4.12) 

 

      To explore the critical points of the above linear autonomous system of 

equations, we follow Simmons (1974) and write the auxiliary equation 
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( )
( )

2 2
3 1 32

1 2 2
3 1

2
1

2

1
0

1

0 0

0 0 4

R aPr M a M M a
Pr

M a

a

π
η ξ

η

π η ξ

π ξ

− + +
− −

+

− − − =

− −

. 

 
On expansion, we obtain 
 

          ( ) ( )
( )

2 2 2 2
3 1 32 2 4

1 1 2 2
3 1

1
1 0

1

R a Pr M a M M a
Pr Pr

M a

π
ξ η ξ η

η

 + +
 + + + − =
 +
 

. (3.4.13) 

 
      Let 1ξ  and 2ξ  be the roots of Eq. (3.4.13). We now discuss three cases 

according to the nature of these roots. 

 
Case (i)  1ξ  and 2ξ  are real and equal. In this case, we have 
 

 ( ) ( )
( )

2 2 2 2
3 1 32 4 4

1 1 2 2
3 1

1
1 4

1

R a Pr M a M M a
Pr Pr

M a

π
η η

η

 + +
 + = −
 +
 

.      

 
On simplification, the above yields an expression for R 
 

 
( ) ( )

( )
2 2 6

3 1

2 2 2 2
3 1 3

4 1 1

4 1

Pr Pr M a
R

a Pr M a M M a

η

π

 − + +  =
+ +

.                                               (3.4.14) 

  
      For the above value of R, the critical point is a node and the system becomes 

stable as the paths approach and enter the critical point. 

 
Case (ii)  1ξ  and 2ξ  are real and distinct. In this case, we have the condition 
 

 
( ) ( )
( )

2 2 6
3 1

2 2 2 2
3 1 3

4 1 1

4 1

Pr Pr M a
R

a Pr M a M M a

η

π

 − + +  >
+ +

.                                             (3.4.15) 
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      For this range of values of R, the critical point is a saddle point and the system 

is unstable as paths never approach the critical points. 

 
Case (iii)  1ξ  and 2ξ  are imaginary. The requirement in this case takes the form 
 

 
( ) ( )

( )
2 2 6

3 1

2 2 2 2
3 1 3

4 1 1

4 1

Pr Pr M a
R

a Pr M a M M a

η

π

 − + +  <
+ +

.                                               (3.4.16) 

 
      For this range of values of R, the critical point is a spiral and the system is 

asymptotically stable if paths approach the critical point as t → −∞  and the system 

becomes unstable as t → ∞  if the paths spiral out. 

 
      Having made a qualitative analysis of the linear autonomous system, we note 

that the nonlinear system of autonomous differential equations (3.4.6) – (3.4.8) is 

not amenable to analytical treatment for the general time-dependent variables and 

we need to solve it by means of a numerical method. However, in the case of steady 

motions, these equations can be solved in closed form. Such solutions prove very 

useful because they may show that a finite amplitude steady solution to the system 

is possible for sub-critical values of the thermal Rayleigh number and that the 

minimum value of R for which finite amplitude steady solution is possible lies 

below the critical values corresponding to a steady infinitesimal disturbance or an 

overstable infinitesimal disturbance. Thus in the case of steady motions, Eqs. 

(3.4.6) – (3.4.8) take the form 

 
 ( ) ( )2 4 2 2 2

3 1 3 1 3 11 1 0M a A R a M a M M a B R M a BCη π π+ + + + − = ,          

                               (3.4.17) 
 
 2 2

1 0a A B a ACπ η π+ + = ,                                                          (3.4.18) 
 
 8 0C a AB− = .                                                                                    (3.4.19) 
 

      Writing B and C in terms of A using Eqs. (3.4.18) and (3.4.19) and substituting 

the resulting expressions into Eq. (3.4.17), we obtain 
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( ){ }
( )
( )

22 2
4 4 4 2 2 6 2 2

1 1 1

2 2 2 2
3 1 32 6

1 1 2
3

2 1
8 8

0
1

1

A Aa a R M a

A
R a M a M M a

M a

π η π η π

π
η η

      + − +             =  + +  + −  +   

.    (3.4.20) 

 
      The solution A = 0 corresponds to pure conduction and the rest of the solutions 

are given by  
 

 
( )

( ){ }( )
( ) ( ){ } ( )

2

2 2 2 4
3 1

2 2 6 2
1 1 3

.22 2 2 6 2
1 3 1 1 3

1
8 2 1

1 2 1

1 1 4 1

A
a M a

R a M M a

a R R a M M a M M a

π η

π η

π π η

 
 =
 +
 
 + − +
 

×  
± + + − + 
 

      

                                                                (3.4.21) 

 
      We take the positive sign in front of the radical in Eq. (3.4.21) on the ground 

that the amplitude of the stream function is real.  

 

3.5  HEAT  TRANSPORT 
 
      In the study of convection in ferromagnetic fluids the quantification of heat 

transport across the layer plays a crucial role. This is because the onset of 

convection, as the thermal Rayleigh number R is increased, is more readily detected 

by its effect on the heat transfer. In the basic state, heat transport is due to 

conduction alone. Hence if TH  is the rate of heat transfer per unit area, then we 

have 

 total

0
T

z

TH
z

κ
=

∂= −
∂

,                                                                         (3.5.1) 

 
where the angular bracket denotes a horizontal average and 
 

 ( )total o , ,TT T z T x z t
d
∆= − + .                                                              (3.5.2) 
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      Substituting the second of Eq. (3.4.1) into Eq. (3.5.2) and using the resultant in 

Eq. (3.5.1), we obtain 

 

 2T
T TH C

d d
κ κ π∆ ∆= − .                                                                     (3.5.3) 

 

The Nusselt number Nu is defined as 
 

 1 2THNu C
T

d

π
κ

= = −
∆ 

 
 

.                                                                     (3.5.4) 

 
      Writing C in terms of A using Eqs. (3.4.17) – (3.4.19) and substituting the 

resulting expression into Eq. (3.5.4), we obtain  

 

 

2
2 2

2
2 2 2
1

2
8

1

8

Aa
Nu

Aa

π

η π

 
  
 = +
 

+   
 

.                                                          (3.5.5) 

 
      The second term on the right side of Eq. (3.5.5) characterizes the convective 

contribution to the heat transport.  

 
      Numerous works have appeared in parallel on ferroconvection with a dc 

magnetic field and electroconvection with an ac electric field. In a recent study 

Siddheshwar (2002a, b) has proved an analogy between the Rayleigh-Bénard 

instability in ferromagnetic and dielectric liquids. In what follows we discuss an 

analogy for finite amplitude convection between ferromagnetic and dielectric 

liquids.  
 

3.6 ANALOGY FOR NONLINEAR CONVECTION BETWEEN 
FERROMAGNETIC AND DIELECTRIC LIQUIDS 

 
      The system of equations of electrohydrodynamics describing the Rayleigh-

Bénard instability situation in a constant viscosity dielectric liquid, using the 

notation of Chapter II, becomes  
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 0. q
→

∇ = ,                                          (3.6.1) 
 

 2
1o . .q q q p g k P E q

t
ρ ρ µ

→ →∧ →→ →→
 ∂     + ∇ = −∇ − + ∇ + ∇    ∂    
 

,              (3.6.2) 

 

 2
o 1.V E

Tρ C q T k T
t

→ ∂  + ∇ = ∇  ∂   
,                                               (3.6.3) 

 
( )o o1 T Tρ ρ α = − −  ,                   (3.6.4) 

 

 0. D
→

∇ = ,  0E
→ →

∇× = ,                                                                     (3.6.5) 
 

 oD E P
→ → →

= +ε ,   ( )o 1rP Eε ε
→ →

= − ,                                                       (3.6.6) 
 
 ( )o

or r e T Tε ε= − − ,                                                                                       (3.6.7) 
 

where E
→

 is an ac electric field, which is assumed to oscillate sufficiently rapidly so 

as to make the body force on any free charges in the liquid inconsequential, Φ  is 

the scalar electric potential and the rest of the quantities have their usual meaning. 

We note here that the assumed strength of E
→

 is such that it does not induce any 

non-Newtonian characteristics in the dielectric liquid. 

 
      It is expedient to write ( )o 1r eε χ= + , where eχ  is the electric susceptibility, for 

it enables us to arrive at the conventional definition o eP Eε χ
→ →

=  in the absence of 

the temperature dependence of rε , that is, when e = 0. We continue using Eq. 

(3.6.7) with o
rε  replaced by ( )1 eχ+  in the remaining chapters. In writing Eq. 

(3.6.7) we have assumed that rε  varies with the electric field strength quite 

insignificantly (Stiles et al., 1993). 

 
      We restrict ourselves to the two-dimensional analysis, as in the case of 

ferroconvection, so that all physical quantities are independent of y, a horizontal               
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co-ordinate. The electric boundary conditions are that the normal component of the 

electric displacement D
→

 and tangential component of the electric field E
→

 are 

continuous across the boundaries.  

 
      Taking the components of polarization and electric field in the basic state to be 

( )0, bP z    and ( )0, bE z   , we obtain the quiescent state solution 

 

 

( )

( )
( )

( )
( )

o o

o
o o

0, 0 , , 1 ,

1 1, 1 1
1 1

b bb

e
b b e

e e

T Tq T T z z
d d

E
E k P E ke T e Tz z

d d

ρ ρ α

χ
ε χ

χ χ

→

→ ∧ ∧

∆ ∆ = = − = +    
       + = = + −    ∆ ∆   + + + +     

,
                

                                                                                                                           (3.6.8) 
 
where oE  is the root mean square value of the electric field at the lower surface. 

On this basic state we superpose finite amplitude perturbations of the form 

 
( )

( ) ( )1 3 1 3

, , , , ,

, , , ,

b b bb

b b

q q u w T T T p p p

P P P P E E E E

ρ ρ ρ→ →

→ → → →


′′ ′ ′ ′ = + = + = + = + 




′ ′ ′ ′= + = + 

             (3.6.9) 

 
where the prime denotes perturbation. The second of Eq. (3.6.6) now leads to 

 

 
1 o 1 o 1

3 o 3 o o o 3

,

,

e

e

P E e T E

P E e E T e T E

ε χ ε

ε χ ε ε

′ ′ ′ ′= − 


′ ′ ′ ′ ′= − − 
                                             (3.6.10) 

where it has been assumed that ( )1 ee T χ∆ << + . Introducing the perturbed electric 

potential Φ ′  through the relation E Φ
→′ ′= ∇ , eliminating the pressure p in          

Eq. (3.6.2), incorporating the quiescent state solution and non-dimensionalizing the 

resulting equation as well as Eq. (3.6.3) using the definitions given in Chapter II, 

we obtain the dimensionless form of the vorticity and heat transport equations 
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( ) ( )

( )

2
2 4

2

1

1, ,

E E

E

TR R R
Pr t x x z

R J T J
z Pr

Φψ ψ

Φ ψ ψ

∂ ∂ ∂∇ = − + + +∇
∂ ∂ ∂ ∂

 ∂+ + ∇ ∂ 

,                           (3.6.11) 

 

 ( )2 ,T T J T
t x

ψ ψ∂ ∂= − +∇ +
∂ ∂

.                                                            (3.6.12) 

 
      Using Eq. (3.6.10) in Eq. (3.6.5) and non-dimensionalizing the resulting 

equation, we obtain  
 

 2 0T
z

Φ ∂∇ − =
∂

.                                                                               (3.6.13) 

 
Equations (3.6.11) – (3.6.13) are solved subject to the boundary conditions 

 

 
2

2 0T
zz

ψ Φψ ∂ ∂= = = =
∂∂

   at  z = 0, 1.                                               (3.6.14) 

 
      Comparing the set of Eqs. (3.2.13) – (3.2.15) and that of Eqs. (3.6.11) – 

(3.6.13), the analogy between ‘Rayleigh-Bénard ferroconvection’ and ‘Rayleigh-

Bénard electroconvection’ can easily be recognized. Indeed, we can recover the 

equations of the latter from those of the former when we replace 1RM  by ER  and 

3M  by 1. This reiterates the fact that the problem of nonlinear electroconvection of 

the type reported here can be construed from that of nonlinear ferroconvection. In 

view of the above analogy, there is no need to study the nonlinear 

electroconvection problem in isolation. This analogy can, in fact, be proved for the 

more general boundary conditions discussed in Chapter IV. 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1:  Configuration of the problem. 
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        Figure 3.2:  Streamlines for different values of 1M  and for M3 = 1. 
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         Figure 3.3:  Streamlines for different values of 3M  and for M1 = 10. 
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Figure 3.4:  Plot of the Nusselt number Nu versus the thermal Rayleigh number R 

for different values of the buoyancy-magnetization parameter 1M .  

 
 
 
 
 
 
 
 

Nu 

R 

M3 = 1 M1 = 10

100 

1000 



 
 
 
 
 
 
 
 
 
 

                   

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000
 

 
          

 
 
Figure 3.5: Plot of Nu versus R for different values of the non-buoyancy      

magnetization parameter 3M .  
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  Figure 3.6:   Variations in the Nusselt number, Nu, with time for different values 

of 1M  and  for 3M  = 1, R = 658 and Pr = 10. 
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  Figure 3.7:   Variations in the Nusselt number, Nu, with time for different values 

of 3M  and  for 1M  = 100, R = 658 and Pr = 10. 
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     Figure 3.8:  Variations in amplitude, B(t) versus time for different values of    

1M  and  for 3M  = 1, R = 658 and Pr = 10.  
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      Figure 3.9:   Variations in amplitude, B(t) versus time for different values of 

3M  and for 1M  = 100, R = 658 and Pr = 10.  
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     Figure 3.10:  Variations in amplitude, B(t) versus time for different values of Pr 

and for 1M  = 100, R = 658 and 3M  = 1.  
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  Figure 3.11:   Variations in the Nusselt number, Nu, with time for different initial 

conditions  and for 1M  = 100, 3M  = 1, R = 658 and Pr = 10. 

              (a)  (A, B, C) = (0, 1, 0)  and  (b)  (A, B, C) = (0, 1.0001, 0). 
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  Figure 3.12:  Variations in amplitude, B(t) versus time for different initial    

conditions and for 1M  = 100, R = 658, 3M  = 1 and Pr = 10.         

(a)  (A, B, C) = (0, 1, 0)  and  (b)  (A, B, C) = (0, 1.0001, 0). 
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Table 3.1:    Critical thermal Rayleigh number ( s

cR ), critical wavenumber ( cα ) and 

critical wavelength ( cλ ) pertaining to the stationary instability for a 

constant viscosity ferromagnetic fluid.    

 

 

 
 

1M  
 

3M  
 
s
cR  

 

cα  
2

c
c

πλ
πα

=  

 
10 

  1 
  5 
10 
25 

129.390 
   77.821 
   69.475   
   63.894 

0.956 
0.818 
0.776 
0.739 

2.092 
2.445 
2.577 
2.706 

 
100 

   1 
   5 
10 
25 

  15.279 
   8.677 
   7.667 
   6.999 

0.995 
0.829 
0.782 
0.743 

2.010 
2.413 
2.558 
2.692 

 
500 

   1 
   5 
10 
25 

   3.105 
   1.753 
   1.548 
   1.412 

0.999 
0.830 
0.783 
0.743 

2.002 
2.410 
2.554 
2.692 

 
1000 

   1 
   5 
10 
25 

   1.555 
   0.878 
   0.775 
   0.707 

0.999 
0.830 
0.783 
0.743 

2.002 
2.410 
2.554 
2.692 
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CHAPTER  IV 
 

THERMORHEOLOGICAL  AND 
MAGNETORHEOLOGICAL  EFFECTS  ON  
FERROCONVECTION  WITH  INTERNAL    

HEAT  SOURCE  
 

4.1  INTRODUCTION 
 
      The investigation of convective instability due to the buoyancy force or surface-

tension force or both in the presence of a vertical temperature gradient has been the 

subject of interest since the carrying out of an experiment by Bénard (1901). In the 

case of usual gravity situation RBC predominates over MC in not-so-thin layers and 

the opposite is true for microgravity ( 6(10 )g o −= ) situation when the liquid layer 

with a free upper surface is thin (Pearson, 1958). The main disparity between RBC 

and MC is that the surface is elevated in regions of rising hot fluid in the former 

case, whereas in the latter the surface is depressed. The idea of tuning the properties 

of magnetic liquids with a magnetic field has led to numerous innovative and 

fascinating applications (Popplewell, 1984; Rosensweig, 1986; Berkovskii et al., 

1993; Horng et al., 2001). RBC in constant viscosity ferromagnetic liquids, 

Newtonian as well as non-Newtonian, is fairly well studied (Finlayson, 1970; 

Sekhar and Rudraiah, 1991; Siddheshwar, 1993, 1995, 1998, 1999; 2002a; 

Siddheshwar and Abraham, 1998; 2003; Abraham, 2002a; 2002b; Yamaguchi et 

al., 2002).  

 
      It has been corroborated by Finlayson (1970) that in very thin layers of 

magnetic liquids only magnetic forces contribute to convection and that the effect 

of buoyancy forces could be ignored in such layers. Motivated by the microgravity 

research in magnetic fluids, Odenbach (1993, 1995b, 1999) investigated the 

thermomagnetic convection in magnetic liquids using sounding rocket and drop 

tower experiments. Schwab (1990), Qin and Kaloni (1994), Weilepp and Brand 

(1996) and Shivakumara et al. (2002) have studied the effect of surface tension on 
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thermomagnetic convection in a constant viscosity ferromagnetic liquid. The study 

of both RBC and MC in a constant viscosity nonmagnetic liquid has been refined by 

several investigators taking into account the effects of gravity, rotation, magnetic 

field, internal heat generation and micro rotation of suspended particles (Nield, 

1964; Sparrow et al., 1964; Watson, 1968; Riahi, 1986; Lam and Bayazitoglu, 

1987; Benguria and Depassier, 1989; Char and Chiang, 1994; Wilson, 1997; 

Rudraiah and Siddheshwar, 2000; Siddheshwar and Pranesh, 2001, 2002; Kim et 

al., 2002).    

 
      Technological and biomedical applications of magnetic liquids indicate that 

these liquids depend greatly on their rheological properties. Several studies such as 

those of McTague (1969), Hall and Busenberg (1969), Shliomis (1972), Kamiyama 

et al. (1987), Kobori and Yamaguchi (1994) and Chen et al. (2002) specify that the 

effective viscosity of a ferromagnetic liquid is enhanced by the application of a 

magnetic field. The contemporary applications of this effect, known as 

magnetorheological effect, include dampers, brakes, pumps, clutches, valves, 

robotic control systems and the like (Carlson et al., 1996). Recently, Balau et al. 

(2002) have pointed out through their experiments that magnetorheological effect is 

of significant importance in water-based and kerosene-based solutions, and in 

physiological-solution-based magnetic liquids even for moderate strengths of 

applied magnetic field. This is more so in the extraterrestrial context.  

 
      Another fact about the viscosity of any carrier liquid decreasing with 

temperature is also well known (Stengel et al., 1982; Platten and Legros, 1984; 

Gebhart et al., 1988; Severin and Herwig, 1999; Siddheshwar, 2004; Siddheshwar 

and Chan, 2005) and is referred to as thermorheological effect. It is imperative 

therefore to envisage the importance of the both RBC and MC problems in 

ferromagnetic liquids involving both temperature and magnetic field strength 

dependent effective viscosity. Apart from the aforementioned rheological effects, 

the effect of volumetric internal heat source is also important in ferromagnetic 

liquids from the viewpoint of magnetocaloric pumping. In this chapter we aim at 

studying the effect of uniform internal heat generation on the threshold of both 
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RBC and MC in a variable viscosity ferromagnetic liquid subjected to a vertical 

temperature gradient and a vertical dc magnetic field. The assumed strength of the 

magnetic field is such that the liquid does not exhibit any non-Newtonian 

characteristics. We study both stationary and oscillatory modes of instability and 

show that the former one is the preferred mode. Two important explorations are 

made in this chapter:  
 

 (i)   the effect of heat source and heat sink on the onset of both RBC and MC  

in ferromagnetic liquids and  

        (ii)   an analogy between ferroconvection and electroconvection.   
 
      We also introduce new set of boundary conditions on the potential for both 

ferroconvection and electroconvection.   

 

4.2  MATHEMATICAL  FORMULATION 
 
     Consider an infinite horizontal layer of a ferromagnetic liquid that supports a 

temperature gradient and a dc magnetic field oH
→

 in the vertical direction (Figure 

4.1). The gradient in temperature is due to a prescribed temperature difference ∆T 

(> 0 for fluid heated from below) across the layer and a uniform distribution of heat 

source/sink of intensity S in the liquid. The liquid is assumed to have an effective 

variable viscosity µ  that depends on the temperature as well as on the magnitude 

of the magnetic field.  

 
      The system of equations describing the Rayleigh-Bénard instability situation in 

a variable viscosity ferromagnetic liquid with uniform heat source in the notation of 

Chapter II  is    

 

0. q
→

∇ = ,                                                                                                (4.2.1) 
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( ) ( )
o o ( )

, ,

. .

. Tr

qρ q q p g k µ M H
t

µ H T q q

ρ
→ → →∧→ →

→ →

 ∂   + ∇ = −∇ − + ∇  ∂  
 

 
+∇ + ∇∇  

                    (4.2.2)   

 
2

o 1.V H
Tρ C q T k T S
t

→ ∂  + ∇ = ∇ +  ∂   
,                                             (4.2.3) 

 
( )o 1 aT Tρ ρ α = − −  ,                   (4.2.4) 

 

0, 0. B H
→ → →

∇ = ∇× = ,                                               (4.2.5) 
 

oB M H
→ → → = + 

 
µ ,                                                                                   (4.2.6) 

 
( ) ( )o o 1m aM M H H K T Tχ= + − − − ,                    (4.2.7) 

 
where the superscript Tr in Eq. (4.2.2) denotes the transpose. The effects of 

viscous dissipation and radiation are neglected in writing the energy equation 

(4.2.3).  

 
      The magnetic boundary conditions specify that the normal component of the 

magnetic induction and tangential components of the magnetic field are continuous 

across the boundary. The velocity boundary condition is 0q
→→

=  on a rigid wall and 

different temperatures are maintained on each boundary. We assume the effective 

viscosity ( , )µ H T , based on the information given in Chapter II, to be a quadratic 

function of H and T  in the form    
 

( ) ( )2 2
1 1 o 2( , ) 1 aµ H T µ δ H H δ T T = + − − −  

,                                  (4.2.8) 

 
where 1 2andδ δ  are small positive quantities. Taking the components of 

magnetization and magnetic field in the basic state to be [0, 0, ( )]bM z  and 

[0, 0, ( )]bH z , we obtain the quiescent state solution in the form   
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{ } [ ]2
1 o

1 1
o o

, ,0 ( ) ( ) ( ) ,

( ) 1 ( ) , ( ) 1 ( ) ,

( ) , ( ) ,
1 1

b a bb

b b

b b
m m

p pq T z T f z z

z f z z f z

K KH H f z k M M f z k

µ µ δ ρ ρ α

χ χ

→→

→ →∧ ∧

=
= = − 


  = − = +   

   

= − = +    + +    

          (4.2.9) 

 
where  

2
1

2 1 1 m

Kδ δ δ
χ

 
= −  + 

                                                                         (4.2.10)  

 
and 2 2

1 1( )  ( 2 ) ( ) ( 8 )f z S z k T z d S d k= + ∆ − . In arriving at the above basic state 

solution we have assumed   
 

 o

1 o

at / 2

( ∆ ) at / 2,

T T z d

T T T T z d

= = 


= = + = − 
                                                  (4.2.11) 

 
where d is the thickness of the layer. The dominance of magnetic dependency over 

temperature dependency of viscosity is implied by 0δ<  while 0δ>  signifies 

dominance of temperature dependency. It should be noted that the quiescent state 

temperature profile is quadratic over the cross section, and in the absence of 

internal heat generation, i.e., when S = 0, it is characterized by a liquid temperature 

that decreases linearly with height. We also note that, unlike the Rayleigh-Bénard 

ferroconvection problem of a constant viscosity liquid with no internal heating, the 

expression for ( )bH z  and ( )bM z  in the present problem become nonlinear due to 

the presence of the heat source term in the energy equation (4.2.3). In the 

succeeding section we study the stability of the quiescent state within the 

framework of the linear theory.     

 

4.2.1  Linear Stability Analysis 
 
      Let the components of the perturbed magnetization and the magnetic field be 

( )1 2 3, , ( )bM M M z M' ' '+  and ( )1 2 3, , ( )bH H H z H' ' '+  respectively. The 
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temperature T is taken to be ( )bT z T '+  with 'T  being the perturbation from the 

quiescent state. The effective viscosity µ , likewise, is taken to be ( )bµ z µ'+ . 

Using these in Eq. (4.2.7) and linearizing the resulting equation, we obtain 
 

o

o

3 3 3 1

, ( 1, 2)1

(1 ) ,

i i i

m

M
iH M H

H
H M χ H K T

' ' '

' ' ' '

=
 

+ = +  
 
+ = + − 

                                               (4.2.12)  

 
where it has been assumed that 1 o∆ (1 )mK T χ H+!  and 2

1 o(1 )mK S d χ H+! . 

The second of Eq. (4.2.5) implies one can write H ' 'Φ
→

= ∇ , where 'Φ  is the 

perturbed magnetic scalar potential.   

  

      Introducing the magnetic potential 'Φ , eliminating the pressure p in Eq. (4.2.2) 

and incorporating the quiescent state solution, we obtain the perturbed state 

vorticity transport equation in the form      

 

( ) { } ( )
( ) { }

o
o

22 2 2 2
o 1 1

22 4
1 1

2
2 2 21

o 1 1 1 1

2 ( ) ( ) ( )

4 ( ) ( ) 1 ( )

( ) ( ) ( ) 0,
1 m

ρ w δ µ f z D f z Df z wD
t

δµ f z Df z Dw µ δ f z w

µ Kαρ g T Df z T µ K Df z DΦ
χ

' '

' '

' ' '

∂  ∇ − + ∇ −  ∂

 + ∇ − − ∇  

− ∇ − ∇ + ∇ =
+

 

                     (4.2.13) 
 
where 2 2 2 2 2 2 2 2

1 1, ( ) ( )D x y∇ = ∇ + ∇ = ∂ ∂ + ∂ ∂  and D z= ∂ ∂ . We note that 

the expression for bµ  in Eq. (4.2.9) is quadratic in z when the internal heat source 

is absent, i.e., when S = 0, because of the quadratic viscosity variation as assumed 

in Eq. (4.2.8). It should be mentioned that the second term on the left side of Eq. 

(4.2.13) results from the term ( )( )2 2 2 2
1bD µ D z D w'∇ −  and it is obvious that it 

would vanish, in the absence of internal heat source, if bµ  is a linear function of  z, 

i.e., if the effective viscosity ( , )µ H T  is a linear function of temperature or the 
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strength of the magnetic field or both. Thus it is evident that the contribution of this 

term is quite important in problems involving variable-viscosity liquids. 

 
      The linear form of equation (4.2.3) in the perturbed state, on incorporation of 

the quiescent state solution, becomes 
 

2( )T Df z w κ T
t
' ' '∂ − = ∇

∂
.                                                                (4.2.14) 

 
Using Eq. (4.2.12) in the first of Eq. (4.2.5), we obtain 

2 2o
1 1

o
(1 ) 1 0m

Mχ D Φ Φ K DT
H

' ' ' 
+ + + ∇ − = 

 
.                                  (4.2.15) 

 

      The infinitesimal perturbations w' , T '  and 'Φ  are supposed to be periodic 

waves that lead to a separable solution to Eqs. (4.2.13) � (4.2.15) in the form 

 

( )
( , )
( , ) exp
( , )

x y

w w z t
T T z t i k x k y
Φ Φ z t

'
'
'

   
     = +     
      

.                                                (4.2.16)                  

 

Substituting Eq. (4.2.16) into Eqs. (4.2.13) � (4.2.15), we obtain  
 

( ) { } ( )
( ) { } ( )

[ ]o

22 2 2 2 2
o 1

222 2 2 2
1 1

12 2
o 1

2 ( ) ( ) ( )

4 ( ) ( ) 1 ( )

( ) (1 ) 0 ,
1 m

m

wρ D k δµ f z D f z Df z D k w
t

δµ f z Df z D k Dw µ δ f z D k w

µ K
α ρ g k T k Df z χ DΦ K T

χ

∂  − + + +  ∂

 + − − − −  

+ − + − =
+

       

                                 (4.2.17) 
 

( )2 2( ) 0T Df z w κ D k T
t

∂ − − − =
∂

,                                                   (4.2.18) 

 
2 2

1(1 ) 1 0m
Mχ D Φ k Φ K DT
H

 
+ − + − = 

 
o

o
,                                (4.2.19) 
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where 2 2
x yk k k= +  is the wave number in the horizontal direction. Non-

dimensionalizing Eqs. (4.2.17) � (4.2.19), using the scaling given in Chapter II, we 

obtain      
 

( ) { } ( )
( ) { } ( )

[ ]

22 2 2 2 2

222 2 2 2

2 2
1

1 2 ( ) ( ) ( )

4 ( ) ( ) 1 ( )

( ) 0 ,

wD a Γ g z D g z Dg z D a w
Pr t

Γ g z Dg z D a Dw Γ g z D a w

R a T R M a Dg z DΦ T

∂  − + + +  ∂

 + − − − −  

+ − − =

   (4.2.20)     

( )2 2 ( )T D a T Dg z w
t

∂ = − +
∂

,                                                             (4.2.21) 

 
2 2

3( ) 0D M a Φ DT− − = ,                                                                 (4.2.22) 
 

where 2( ) ( 2) ( 8)S Sg z N z z N= + −  and the asterisks have been dropped for 

simplicity. We note that, as to the variable viscosity parameter Γ , the condition   

Γ < 0 characterizes the dominance of magnetic field strength dependence of 

effective viscosity over temperature dependence while Γ > 0 signifies the 

dominance of temperature-dependent effective viscosity. The above becomes 

apparent on examining the expression for δ  given in Eq. (4.2.10) and noting that 

1 2andδ δ  appearing in Eq. (4.2.10) are small positive quantities. 

 
      Equations (4.2.20) � (4.2.22) are solved subject to the following boundary 

combinations   

 
(a) Free � free, isothermal 

2 0 at 1 2w D w T z= = = = ±  

(b) Free � rigid, isothermal 
2 0 at 1 2

0 at 1 2

w D w T z

w Dw T z

= = = = +

= = = = −
 

(c) Rigid � rigid, isothermal 
        0 at 1 2w Dw T z= = = = ±  
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      In each of the boundary combinations mentioned above, the boundary 

conditions for the magnetic potential given in Eq. (2.2.19) become   
 

0 at 1 2,
1

0 at 1 2 .
1

m

m

aΦDΦ z
χ

aΦDΦ z
χ

+ = = + + 

− = = −
+ 

                                   

 

      Since the system of equations (4.2.20) � (4.2.22) consists of space varying 

coefficients, it is no longer possible to obtain a closed form solution to the problem. 

We therefore use the Rayleigh-Ritz method to solve the eigenvalue problem 

described by Eqs. (4.2.20) � (4.2.22) using simple polynomial trial functions. We 

choose suitable trial functions for the z-component of velocity, temperature 

perturbation and magnetic potential that satisfy some of the given boundary 

conditions, but may not exactly satisfy the differential equations. This results in 

residuals when the trial functions are substituted into the differential equations. The 

Rayleigh-Ritz method warrants the residuals be orthogonal to each trial function. It 

should be made explicit that the Rayleigh-Ritz method is equivalent to the Galerkin 

method (Finlayson, 1972) for the problem at hand.           

 
      We now move on to discuss the validity or otherwise of the principle of 

exchange of stabilities (PES). The PES has already been shown to be valid for the 

Rayleigh-Bénard problem of constant viscosity fluids (Pellew and Southwell, 1940; 

Chandrasekhar, 1961; Finlayson, 1970; Sekhar and Rudraiah, 1991). On the other 

hand, as to variable viscosity fluids, the PES has been either assumed to be valid or 

verified to be valid by means of a numerical search (Torrance and Turcotte, 1971; 

Stengel et al., 1982; Kozhoukharova and Roze, 1999). Nevertheless, it is by no 

means an arduous task to show analytically that the PES holds good for fluid layers 

with variable-viscosity. This task is expounded in what follows.           
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4.2.2  Oscillatory Instability 
 
      We examine the possibility of the oscillatory instability by means of the single-

term Rayleigh-Ritz technique. Multiplying Eqs. (4.2.20) � (4.2.22) by w, T and Φ  

respectively, integrating with respect to z between the limits 1 2z = −  and 1 2z = , 

taking 1 1( , ) ( ) ( )w z t A t w z= , 1 1( , ) ( ) ( )T z t B t T z= ,  1 1( , ) ( ) ( )Φ z t C t Φ z=  (in 

which w1(z), T1(z) and 1( )Φ z  are trial functions), and using the boundary conditions 

mentioned in Section 4.2.1 give rise to the following system of ordinary differential 

equations                     

 

 [ ]11
3 1 4 1 1 5 12 1

d
d
A Q A R Q M Q B RM Q C

Pr t
Q

= − + + − ,                      (4.2.23)     

 

 1
6 7 11 8

d
d
BQ Q A Q B
t

= − ,                                                                   (4.2.24) 

 
 10 19 10 Q B Q C= + ,                                                                              (4.2.25) 
 
where              
 
 2 2 2

1 11 ( )Q Dw a w= + , 

 

{ }( ) { }( )
{ }( ) { }

{ }

2 24 2 2
11 112

2 24 2 2
11 11

22 32 1 1 1 1

2
1 1

1 ( ) 2 1 ( )

1 ( ) ( ) ( ) ( )2

( ) ( ) ( ) ( ) ( )2 4

( ) ( )4 ,

Γ g z ww D w a Γ g z D wQ

Γ g z wa w w g z D g z Dg z D wΓ

w g z D g z Dg z w w g z Dg z D wΓa Γ

w g z Dg z DwΓa

− −= −

 −+ +−   

 +− −  

+
 
 2

1 13Q a w T= ,     2
4 1 1( )Q a w Dg z T= ,  

 
 2

1 15 ( )Q a w Dg z DΦ= ,     2
16Q T= ,     1 17 ( )Q T Dg z w= , 

 
 2 2 2

1 18 ( )Q DT a T= + ,       1 19Q Φ DT= , 
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2 2

2 2 2
1 3 1 1 110

1 1( )
1 2 2m

aQ DΦ M a Φ Φ Φ
χ

    −    = + + +      +         
 

 

and 
1 2

1 2
u v uv dz

−
= ∫ . Eliminating 1C  between Eqs. (4.2.23) and (4.2.25), the 

resulting system of equations can be rearranged into the matrix form  

 

 d
d
A F A
t

= ,                                                                                          (4.2.26) 

where 
 

 
1

1

A
A

B

 
=  
 
 

    and   

5 92
3 1 4

1 1 10

87

66

Q QPr Q R Pr Q M Q
Q Q Q

F
Q Q
Q Q

   
− + +   

    =  
 − 
 

. 

 

      Following classical works, we study the linear stability of the system (both 

stationary and oscillatory) by letting oexp[ ]A i t Aω=  in Eq. (4.2.26), where ω  is 

the frequency of oscillations, 1o
o

1o

A
A

B

 
=   
 

, and 1oA  and 1oB  are constants. This 

yields  

 
 ( ) o 0F i I Aω− = ,                                                                                 (4.2.27) 
 

where 
1 0
0 1

I  =  
 

. For a non-trivial solution of the above homogeneous system, 

we require 

 
 0F i Iω− = .                  (4.2.28) 
 

      After minor simplification, this equation can be rearranged to yield an 

expression  for R    
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1 6 2
2 8 2

7 1

1 Q Q
R Q Q i N

Q N Pr
ω ω

 
= − + 

 
,                                             (4.2.29) 

 
where   

 5 9
1 3 4 1

10

Q Q
N Q Q M

Q
  = + + 
  

   and   2 6 1 8
2

7 1

Pr Q Q Q Q
N

Pr Q N
+

= .                                      

 
      Since R  is a real quantity, the imaginary part of Eq. (4.2.29) has to vanish. This 

gives us two possibilities:  

 
 (i)  20, 0Nω ≠ =   (oscillatory instability),    

(ii)  20, 0Nω = ≠   (stationary instability).  
 

      Taking 2 0N = , we get 2 6 1 8 0Pr Q Q Q Q+ = , which is independent of ω . 

We therefore conclude, based on the reasoning given in Chapter III, that oscillatory 

convection is not possible in the present problem. So we take 0ω =  in the 

subsequent analysis. In view of the above observation, we now proceed to discuss 

the preferred mode of instability, viz., stationary convection.  

 

4.2.3  Stationary Instability 
 
The system of equations associated with the stationary instability reads as   

{ } { }

[ ]

2 22 2 2 2 2 2

2 2 2
1

2
1

1 ( ) ( ) 2 ( ) ( ) ( ) ( )

4 ( ) ( )( ) ( )

( ) 0 , (4.2.30)

Γ g z D a w Γ g z D g z Dg z D a w

Γ g z Dg z D a Dw a R RM Dg z T

R M a Dg z DΦ

   − − − + +      

− − − +

+ =

                

 
2 2( ) ( ) 0D a T Dg z w− + = ,                                                                 (4.2.31) 

 

( )2 2
3 0D M a Φ DT− − = .                                                               (4.2.32)                 

 
      The system of Eqs. (4.2.30) � (4.2.32) together with the boundary conditions 

specified Section 4.2.2 poses an eigenvalue problem for R  with Γ , SN , 1M , 3M  
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and mχ  as parameters. Despite the fact that stationary instability could be studied 

with the help of the single-term Rayleigh-Ritz technique, it is however, 

advantageous to use the more accurate �Higher Order Rayleigh-Ritz Technique 

(HORT)� (Finlayson, 1972) to obtain the eigenvalue and the associated 

wavenumber. To this end, we expand ( )w z , ( )T z  and ( )zΦ  in a series of trial 

functions    
 

         
 1

( ) ( )
n

i i
i

w z α w z
=

= ∑ ,   
 1

( ) ( )
n

i i
i

T z β T z
=

= ∑   and   
 1

( ) ( )
n

i i
i

Φ z γ Φ z
=

= ∑ ,     (4.2.33) 

 
where , andi i iα β γ  are constants, and ( ) , ( )i iw z T z  and i ( )Φ z  are trial functions.       

Applying HORT to Eqs. (2.28) � (2.30), one obtains the following system of 

homogeneous equations:              
 

            

0,

0,

0,

ji i ji i ji i

ji i j i i

ji i j i i

A B C

D E

F G

α β γ
α β

β γ

+ + =
+ = 
+ = 

                                                              (4.2.34) 

 
where 

 

{ }( ) { }( )
{ }( ) { }

{ }

2 24 2 2

2 24 2 2

22 32

2

1 ( ) 2 1 ( )

1 ( ) ( ) ( ) ( )2

( ) ( ) ( ) ( ) ( )2 4

( ) ( )4 ,

j ji iji

jj i i

j i j i

j i

w wΓ g z D w a Γ g z D wA

Γ g z wa w w g z D g z Dg z D wΓ

w g z D g z Dg z w w g z Dg z D wΓ a Γ

w g z Dg z DwΓ a

− −= −

 −+ +−  

 +− − 

+

 

 
            { }2 2

1 ( )ji j i j iB R a w T R M a w Dg z T= − − ,    

 
            { }2

1 ( )ji j iC R M a w Dg z DΦ= ,    { }( )ji j iD T Dg z w= ,   

 
            { }2

ji j i j iE DT DT a T T= − + ,     ji j iF Φ DT= ,  
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2
3

1 1 1 1 .
1 2 2 2 2

ji j i j i

j i j i
m

G DΦ DΦ M a Φ Φ

a Φ Φ Φ Φ
χ

= +

 − −       + +        +         

  

 

      In the above use has been made of the inner product 
1 2

1 2
uv u v d z

−
= ∫ . We 

now choose the following trial functions guided by the boundary conditions given 

in Section 4.2.1 and variational considerations.  

 
(a) Free � free, isothermal 

2
2 2 1 2 1 2 11 1 1, ,

4 4 4
i i i

i i iw z z z T z z zΦ− − −      = − − − = − =      
       

 

(b) Free � rigid, isothermal 

 ( )2 2 1 2 1 2 11 12 1 , ,
4 4

i i i
i i iw z z z z T z z zΦ− − −   = − − − = − =   

   
 

(c) Rigid � rigid, isothermal 

     
2

2 1 2 1 2 11 1, ,
4 4

i i i
i i iw z z T z z zΦ− − −   = − = − =   

   
 

    
 
      From the experience gathered in the context of RBC, we understand that heat 

sink and heat source have identical effect on convection. This was, in fact, proved 

by Watson (1968) for free-free and rigid-rigid boundaries in the case of Newtonian, 

nonmagnetic liquids. In what follows, we investigate the applicability or otherwise 

of this observation to the RBC problem in ferromagnetic liquids.         

 

4.3  HEAT  SINK  WITHIN  THE  FERROMAGNETIC  LIQUID 
 
      In this section, we analyze in detail the influence of heat sink on the Rayleigh-

Bénard instability of a variable-viscosity ferromagnetic liquid. It is worthwhile 

making a mention of the finding of Watson (1968), who studied the effects of both 

uniform internal heat source and sink on the onset of RBC in a constant viscosity 

nonmagnetic fluid. Considering two sets of boundary conditions corresponding to 
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two free and two rigid boundaries, he demonstrated that the two problems relating 

to heat source and sink are identical and that they lead to the same eigenvalue.  

 
      In order to perceive the influence of uniform heat sink associated with the 

problem at hand, we apply the transformations S SN N→ −  and z z→ − , as 

discussed by Watson (1968), to Eqs. (4.2.30) � (4.2.32) and to the boundary 

conditions given in Section 4.2.1. It can be seen that Eqs. (4.2.30) � (4.2.32) and 

the boundary conditions on velocity, temperature and magnetic potential are 

invariant under the aforementioned transformation except for the boundary 

conditions on velocity pertaining to the free-rigid case. Thus the effects of heat 

source and heat sink on the onset of Rayleigh-Bénard ferroconvection with variable 

viscosity are no different for the free-free and rigid-rigid boundaries as reported by 

Watson (1968). One might expect that, for free-rigid boundaries, the effect of heat 

sink would not be identical with the effect of heat source. However, as will be 

demonstrated later (see Chapter VII), the dissimilarity between the effect of heat 

source and heat sink vanishes for large values of SN . The results on the effect of 

heat source (sink) are also true for the case of RBC in constant viscosity magnetic 

liquids, as can be seen from Eqs. (4.2.30) � (4.2.32) by taking Γ  = 0. It is in place 

to note here that Sekhar (1990) incorrectly reported in the context of RBC for a 

constant viscosity ferromagnetic liquid that the effects of heat source and heat sink 

were not identical for all the three boundary combinations. We have verified that it 

was due to a computational error. 

 
      In the succeeding section we explore an interesting possibility of the existence 

of an analogy for the RBC problems between ferro liquids and dielectric liquids in 

the presence of volumetric heating.         
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4.4 ANALOGY FOR RAYLEIGH-BÉNARD CONVECTION 
BETWEEN  FERROMAGNETIC AND DIELECTRIC LIQUIDS 
WITH  INTERNAL  HEAT  SOURCE  

 

      The system of equations of electrohydrodynamics describing the RBC situation 

in a variable-viscosity dielectric liquid with volumetric heat source using the 

notation of Chapter II  is  
 

 0. q
→

∇ = ,                                          (4.4.1) 
 

 

( ) ( )
o

, ,

. .

. Tr

q q q p g k P E
t

E T q q

ρ ρ

µ

→ →∧ →→ →

→ →

 ∂     + ∇ = −∇ − + ∇    ∂    
 

 
+ ∇ + ∇∇  

                     (4.4.2) 

 

 2
o 1.V E

Tρ C q T k T S
t

→ ∂  + ∇ = ∇ +  ∂   
,                                               (4.4.3) 

 
( )o 1 aT Tρ ρ α = − −  ,                   (4.4.4) 

 

 0. D
→

∇ = ,  0E
→ →

∇× = ,                                                                     (4.4.5) 
 

 oD E P
→ → →

= +ε ,   ( )o 1rP Eε ε
→ →

= − ,                                                       (4.4.6) 
 
 ( )(1 )r e ae T Tε χ= + − − ,                                                                              (4.4.7) 
 
where the effective viscosity ( , )E Tµ  has been assumed to be a function of the 

temperature and magnitude of the ac electric field. We note that the assumed 

strength of the electric field is such that the dielectric liquid does not exhibit any 

non-Newtonian characteristics.       

 
      By analogy with Eq. (4.2.8), the equation for the variable-viscosity of a 

dielectric liquid is assumed to be  
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( ) ( )2 2
1 1 2( , ) 1 aµ E T µ δ E E δ T T = + − − −  o .                                (4.4.8) 

 

      The electric boundary conditions specify that the normal component of 

dielectric field D
→

 and tangential components of electric field E
→

 are continuous 

across the boundaries. Taking the components of the electric field in the basic state 

to be [ ]0, 0, ( )bE z , one obtains the quiescent state solution in the form:  

 

{ } [ ]2
1 o

o o

, ,0 ( ) ( ) ( ) ,

( ) 1 ( ) , ( ) 1 ( ) ,

(1 ) 1, (1 ) 1 ,
(1 ) ( ) (1 ) ( )

b a bb

b b

eb b e
e e

p pq T z T f z z

z f z z f z

EE k P E k
e f z e f z

µ µ δ ρ ρ α

χ ε χ
χ χ

→→

→ →∧ ∧

=
= = − 


  = − = +   

   += = + −    + + + +    

o

           

                                                                                                                (4.4.9) 
 
where 2

2 1 o (1 )eδ δ δ e E χ = − +  . In obtaining Eq. (4.2.9), it has been assumed 

that ( )1 ee T∆ << +χ  and 2 (1 )eeSd χ< + .  

 
The second of Eq. (4.4.6), upon application of linear analysis, yields 
 

 
o

3 o 3 o o

, ( 1, 2)

.

i e i

e

P E i

P E e E T

' '

'' '

ε χ

ε χ ε

= = 


= − 
                                                              (4.4.10) 

 

      Following exactly the same procedure as in the development for a 

ferromagnetic liquid, introducing the perturbed electric potential Φ ′  through the 

relation E Φ
→′ ′= ∇  and non-dimensionalizing the resulting equations using the 

scaling given in Chapter II, we arrive at the following system of dimensionless 

equations  
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( ) { } ( )
( ) { } ( )

[ ]

22 2 2 2 2

222 2 2 2

2 2

1 2 ( ) ( ) ( )

4 ( ) ( ) 1 ( )

( ) 0 ,E

wD a Γ g z D g z Dg z D a w
Pr t

Γ g z Dg z D a Dw Γ g z D a w

R a T R a Dg z DΦ T

∂  − + + +  ∂

 + − − − −  

+ − − =

   (4.4.11) 

 

( )2 2 ( )T D a T Dg z w
t

∂ = − +
∂

,                                                             (4.4.12) 

 
2 2( ) 0D a Φ DT− − = .                                                                      (4.4.13) 

 
      Equations (4.4.11) � (4.4.13) are solved subject to the boundary conditions on 

velocity and temperature given in Section 4.2.1. The boundary conditions on the 

electric potential given in Eq. (2.2.20) relating to the isothermal boundaries become  
 

10 at ,
1 2

10 at .
1 2

e

e

aΦDΦ z
χ

aΦDΦ z
χ

+ = = + 

− = = −
+ 

 

 

      Comparing the set of Eqs. (4.2.20) � (4.2.22) and the set of Eqs. (4.4.11) � 

(4.4.13) together with their boundary conditions, the analogy between �Rayleigh-

Bénard ferroconvection� and �Rayleigh-Bénard electroconvection� in the presence 

of volumetric heat source/sink can easily be recognized. It is clear that one can 

recover the equations of the latter from those of the former when one replaces 1R M  

by ER , 3M  by 1 and mχ  by eχ . Thus it is quite explicit that the study of the 

problem of electroconvection of the type reported here can be construed from that 

of ferroconvection. In what follows, we study the effect of internal heat source 

(sink) on the onset of Marangoni-ferroconvection with variable viscosity.   
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4.5  MARANGONI-FERROCONVECTION WITH  INTERNAL  HEAT 
GENERATION 

 

      The system of equations describing the Marangoni instability situation in a thin, 

variable viscosity ferromagnetic liquid layer (with a free upper surface) with 

uniform heat source is 
 

0. q
→

∇ = ,                                                                                                (4.5.1) 
 

( ) ( )o o ( ) ,. . . Trqρ q q p µ M H µ H T q q
t

→ → →→ → → →
   ∂   + ∇ = −∇ + ∇ + ∇ + ∇∇     ∂  
 

, 

                                                                                                                (4.5.2)   

 
2

o 1.V H
Tρ C q T k T S
t

→ ∂  + ∇ = ∇ +  ∂   
,                                             (4.5.3) 

 

0, 0. B H
→ → →

∇ = ∇× = ,                                               (4.5.4) 
 

oB M H
→ → → = + 

 
µ ,                                                                                   (4.5.5) 

 
( ) ( )o o 1m aM M H H K T Tχ= + − − − ,                    (4.5.6) 

 

( ) ( )2 2
1 1 o 2( , ) 1 aµ H T µ δ H H δ T T = + − − −  

.                                  (4.5.7) 

 
      The interface at the upper boundary has a temperature and magnetic field 

strength dependent surface-tension  

 
o o( ) ( ) ( )H T aσ H ,T σ σ H H σ T T= + − − − .                                           (4.5.8) 

 
      Application of the linear stability analysis discussed in Section 4.2.1 yields the 

following dimensionless equations    
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[ ]

22 2 2 2 2

222 2 2 2

2

1 2 ( ) ( ) ( )

4 ( ) ( ) 1 ( )

( ) 0 ,M

wD a Γ g z D g z Dg z D a w
Pr t

Γ g z Dg z D a Dw Γ g z D a w

R a Dg z DΦ T

∂  − + + +  ∂

 + − − − −  

− − =

     (4.5.9)     

 

( )2 2 ( )T D a T Dg z w
t

∂ = − +
∂

,                                                             (4.5.10) 

 
2 2

3( ) 0D M a Φ DT− − = .                                                                 (4.5.11) 
 

      Absence of overstability has already been shown numerically for both the MC 

and combined RBC and MC problems of a nonmagnetic fluid with constant 

viscosity (Vidal and Acrivos, 1966; Takashima, 1970). Weilepp and Brand (1996) 

substantiated, under experimentally relevant conditions, that Marangoni instability 

is impossible in constant viscosity ferromagnetic liquids. Selak and Lebon (1993, 

1997) excluded, considering a given range of parameters, the possibility of 

overstability for the combined RBC and MC problem of a nonmagnetic fluid with 

temperature-dependent viscosity. However, one can prove, using the procedure 

adopted in Section 4.2.2, that the PES holds good for a thin layer of fluid layer with 

variable viscosity without resorting to experimentally relevant conditions or to a 

numerical search. This is explained in what follows.                 

 

4.5.1  Oscillatory Instability 
 

      We analyze the possibility of the existence of the oscillatory instability by 

resorting to the Rayleigh � Ritz technique. We investigate the possibility of 

oscillatory instability by considering Eqs. (4.5.9) � (4.5.11) subject to the following 

boundary conditions  
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{ } 2 2 2 21 ( ) 0

1        and 0 at ,
1 2

10 at .
1 2

H

m

m

w Γ g z D w a MaT a Ma DΦ DT

aΦDΦ T z
χ

aΦw Dw T DΦ z
χ


  = − + − = =   


+ − = = + 


= = = − = = − 

+ 

       (4.5.12) 

 

      The quantities Γ , Ma  and HMa  appearing in the above equation have been 

defined in Chapter II. Eq. (4.5.12) signifies the use of rigid, thermally-conducting 

lower boundary and free, thermally-insulating non-deformable upper surface. The 

boundary conditions on the magnetic potential Φ  are similar to those chosen by 

Finlayson (1970) except for the term T appearing in the boundary condition 

pertaining to the adiabatic upper surface that would not have been there had the 

upper surface been isothermal. In arriving at the boundary condition for w on the 

upper boundary, use has been made of the fact that the surface tension depends 

linearly on the temperature and strength of the magnetic field. In the numerical 

calculations pursued we assume 1HMa ! .  

 
      Multiplying Eqs. (4.5.9) � (4.5.11) by w, T and Φ  respectively, integrating with 

respect to z between the limits 1 2z = −  and 1 2z = , taking 1 1( , ) ( ) ( )w z t A t w z= , 

1 1( , ) ( ) ( )T z t B t T z= ,  1 1( , ) ( ) ( )Φ z t C t Φ z=  (in which w1(z), T1(z) and 1( )Φ z  are 

trial functions), and using the boundary conditions in Eq. (4.5.12) give rise to the 

following system of ordinary differential equations                     

 

 [ ]11
3 4 1 5 12 1

d ( ) ( )
Pr d M M
Q A Q A R Q MaQ B R Q C

t
= − + − + − ,             (4.5.13)     

 1
6 7 11 8

d ( )
d
BQ Q A Q B
t

= + − ,                                                              (4.5.14) 

 
 10 19 10 Q B Q C= + ,                                                                              (4.5.15) 
 
where              

 2 2 2
1 11 ( )Q Dw a w= + , 
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{ }

222 2 2 2 4
111 1 12

2 24 2 2
11 11

22 32 1 1 1 1

2
1 1

( )( ) 2 1 ( )

1 ( ) ( ) ( ) ( )2

( ) ( ) ( ) ( ) ( )2 4

( ) ( )4 ,

w w g zD w a Γ g z D w D wQ Γ

Γ g z wa w w g z D g z Dg z D wΓ

w g z D g z Dg z w w g z Dg z D wΓa Γ

w g z Dg z DwΓa

−= − −

 −+ +−   

 +− −  

+

 

 

 2
1 13 ( )Q a w Dg z T= ,      ( )

2

114
4 1 1( ) ( )

4 2 2
aQ Dw T
Γ

=
−

, 

 

 2
1 15 ( )Q a w Dg z DΦ= ,     2

16Q T= ,     1 17 ( )Q T Dg z w= , 

 

 2 2 2
1 18 ( )Q DT a T= + ,       1 1 1 19

1 1( ) ( )
2 2

Q Φ DT Φ T= − , 

 

 
2 2

2 2 2
1 3 1 1 110

1 1( )
1 2 2m

aQ DΦ M a Φ Φ Φ
χ

    −    = + + +      +         
. 

 
      Eliminating C1 between Eqs. (4.5.13) and (4.5.15), the resulting system of 

equations can be rearranged into the matrix form  
 

 d
d
A F A
t

= ,                                                                                          (4.5.16) 

 
where 
 

 
1

1

A
A

B

 
=  
 
 

   and   

5 92
3 4

1 1 10

87

66

M
Q QPr Q Pr R Q MaQ

Q Q Q
F

Q Q
Q Q

   
− + −    

    =  
 − 
 

. 

 

      Following the procedure illustrated in Section 4.2.2, we arrive at the following 

expression for the thermal Marangoni number Ma   

 

 5 9 1 6 2
3 2 8

4 10 4 7

1
Pr

M Q Q Q QRMa Q Q Q i N
Q Q Q Q

ω ω
    = + − + −   
    

,     (4.5.17)       
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where   
 

 1 8
2 6

4 7

1 Q Q
N Q Q

Q Q Pr
 

= + 
 

.                                                          

 

     Since Ma  is a real quantity and since N is independent of ω , we infer that 

oscillatory convection is not possible in the present problem. So we take 0ω =  in 

the subsequent analysis. We now proceed to discuss the preferred mode of 

instability, viz., stationary convection.               

 
4.5.2  Stationary Instability 
 
The system of equations associated with the stationary instability reads as   
 

{ } { }

[ ]

2 22 2 2 2 2 2

2 2 2

1 ( ) ( ) 2 ( ) ( ) ( ) ( )

4 ( ) ( ) ( ) ( ) 0 , (4.5.18)M

Γ g z D a w Γ g z D g z Dg z D a w

Γ g z Dg z D a Dw R a Dg z DΦ T

   − − − + +
   

− − + − =
  

                     
2 2( ) ( ) 0D a T Dg z w− + = ,                                                                 (4.5.19) 

 

( )2 2
3 0D M a Φ DT− − = .                                                               (4.5.20)                 

 
      The system of Eqs. (4.5.18) � (4.5.20) together with the boundary conditions in 

Eq. (4.5.12) poses an eigenvalue problem for Ma  with Γ , SN , MR , 3M  and mχ  

as parameters. We employ the Higher Order Rayleigh-Ritz Technique (HORT) 

(Finlayson, 1972) to obtain the eigenvalue and the associated wave number. To this 

end, we expand w(z), T(z) and )(zΦ  in a series of trial functions    
 

           
 1

( ) ( )
n

i i
i

w z α w z
=

= ∑ , 
 1

( ) ( )
n

i i
i

T z β T z
=

= ∑   and  
 1

( ) ( )
n

i i
i

Φ z γ Φ z
=

= ∑ ,      (4.5.21) 

 
where , andi i iα β γ  are constants, and ( ) , ( )i iw z T z  and i ( )Φ z  are trial functions. 

We choose the following trial functions  
 

            
i 11 1

2 2iw z z
+

  = − +  
  

,     
i +13( 1)

4iT z z = − − 
 

,     i
iΦ z=                                
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guided by the boundary conditions in Eq. (4.5.12) and variational considerations. 

Applying HORT to Eqs. (4.5.18) � (4.5.20) leads to a system of homogeneous 

equations using which we may get the critical eigenvalue cMa  and the 

corresponding critical wavenumber ca .              

 
      In Section 4.3 we have clarified that the effects of both uniform internal heat 

source and heat sink on the threshold of RBC in ferromagnetic liquids are identical. 

In what follows, we investigate the applicability or otherwise of this observation to 

the MC problem in ferromagnetic liquids.         

 

4.5.3  Heat Sink within the Ferromagnetic Liquid 

 
      It is interesting to note that, unlike the RBC problem where the eigenvalue 

(thermal Rayleigh number) appears in the differential equations, the eigenvalue 

(thermal Marangoni number) of the MC problem emanates from the boundary 

condition pertaining to the free upper surface.        

 
     In order to perceive the influence of uniform heat sink associated with the 

problem at hand, we apply the transformations S SN N→ −  and z z→ − , as 

discussed by Watson (1968), to Eqs. (4.5.18) � (4.5.20) and to the boundary 

conditions in Eq. (4.5.12). It can be seen that, the boundary conditions do not turn 

out to be identical even though Eqs. (4.5.18) � (4.5.20) are tacitly invariant under 

the aforementioned transformation. In deed, the above analysis elucidates the fact 

that buoyancy and surface-tension driven instability problems of a variable 

viscosity ferromagnetic liquid should not be affected the same way by the 

introduction of heat sink and that the effect of heat sink is to stabilize (in contrast to 

the destabilizing effect of heat source) the variable viscosity ferro liquid for the 

case of MC. The above result on the effect of heat source (sink) is also true for the 

case of MC in constant viscosity magnetic and nonmagnetic liquids, as can be seen 

from Eqs. (4.5.12) and (4.5.18) � (4.5.20) by taking 0Γ =  and 0MR Γ= =  

respectively. A more enlightening discussion on the dissimilarity between the heat 
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source and heat sink problems for MC will be deferred until Chapter VII. It is 

interesting and intriguing to note that several investigators (Lam and Bayazitoglu, 

1987; Char and Chiang, 1994; Wilson, 1997) paid attention only to the effect of 

uniform heat source on the onset of MC in nonmagnetic liquids. Implicitly, they 

perhaps meant that the heat source and heat sink problems are similar!    

 
      In what follows we discuss an analogy between the Marangoni problems in 

variable-viscosity ferro liquids and dielectric liquids in the presence of internal heat 

source.  

 

4.6 ANALOGY FOR MARANGONI CONVECTION BETWEEN    
FERROMAGNETIC  AND  DIELECTRIC  LIQUIDS WITH 
INTERNAL  HEAT  SOURCE 

 
      The system of equations of electrohydrodynamics describing the Marangoni 

instability situation in a variable-viscosity dielectric liquid with volumetric heat 

source (sink) reads as 
 

 0. q
→

∇ = ,                                          (4.6.1) 
 

 ( ) ( )o , ,. . . Trq q q p P E E T q q
t

ρ µ
→ →→→ →→ →

   ∂     + ∇ = −∇ + ∇ + ∇ + ∇∇       ∂    
 

                    

                      (4.6.2) 
 

 2
o 1.V E

Tρ C q T k T S
t

→ ∂  + ∇ = ∇ +  ∂   
,                                               (4.6.3) 

 

 0. D
→

∇ = ,  0E
→ →

∇× = ,                                                                     (4.6.4) 
 

 oD E P
→ → →

= +ε ,   ( )o 1rP Eε ε
→ →

= − ,                                                       (4.6.5) 
 
 ( )(1 )r e ae T Tε χ= + − − ,                                                                              (4.6.6) 
 

( ) ( )2 2
1 1 2( , ) 1 aµ E T µ δ E E δ T T = + − − −  o .                                (4.6.7) 



 126

      The interface at the upper boundary has a temperature and electric field strength 

dependent surface-tension given by 
 

o o( ) ( ) ( )E T aσ E,T σ σ E E σ T T= + − − − .                                             (4.6.8) 
 
      Application of linear stability analysis discussed in a previous section yields the 

following dimensionless equations     
 

( ) { } ( )
( ) { } ( )

[ ]

22 2 2 2 2

222 2 2 2

2

1 2 ( ) ( ) ( )

4 ( ) ( ) 1 ( )

( ) 0 ,E

wD a Γ g z D g z Dg z D a w
Pr t

Γ g z Dg z D a Dw Γ g z D a w

R a Dg z DΦ T

∂  − + + +  ∂

 + − − − −  

− − =

     (4.6.9)     

 

( )2 2 ( )T D a T Dg z w
t

∂ = − +
∂

,                                                             (4.6.10) 

 
2 2( ) 0D a Φ DT− − = .                                                                      (4.6.11) 

 
Equations (4.6.9) � (4.6.11) are solved subject to the boundary conditions 
 

{ } 2 2 2 21 ( ) 0

1        and 0 at ,
1 2

10 at .
1 2

E

e

e

w Γ g z D w a MaT a Ma DΦ DT

aΦDΦ T z
χ

aΦw Dw T DΦ z
χ


  = − + − = =   


+ − = = + + 


= = = − = = − 

+ 

        (4.6.12) 

 
      The analogy between �Marangoni-ferroconvection� and �Marangoni- 

electroconvection� in the presence of volumetric heat source/sink can easily be 

recognized if we compare the set of Eqs. (4.5.9) � (4.5.12) and the set of Eqs. 

(4.6.9) � (4.6.12). It is apparent that one can recover the equations of the latter from 

those of the former when one replaces MR  by ER , HMa  by EMa , 3M  by 1 and 

mχ  by eχ . In view of the above analogy, there is no need to study the 

electroconvection problem in isolation. 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1:  Configuration of the problem. 
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Figure 4.2:  Plot of dimensionless, basic state temperature profile θ (z) for different         

values of heat source/sink parameter NS . 
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Figure 4.3:  Plot of critical thermal Rayleigh number Rc versus NS for M3 =1,                 

mχ = 1, and for different values of buoyancy-magnetization parameter    
                       M1 and effective viscosity parameter Γ. 
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Figure 4.4:  Plot of  Rc versus NS for M3  = 1, mχ = 1, and for different values of M1 

and Γ. 
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Figure 4.5:  Plot of  Rc versus NS for M3  = 1, mχ = 1, and for different values of M1 

and Γ . 
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Figure 4.6: Plot of critical wavenumber ac versus NS for M3 = 1,                 

mχ = 1, and for different values of  M1  and  Γ. 
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Figure 4.7: Plot of critical wavenumber ac versus NS for M3 = 1,                 

mχ = 1, and for different values of  M1  and  Γ. 
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Figure 4.8: Plot of critical wavenumber ac versus NS for M3 = 1,                 

mχ = 1, and for different values of  M1  and  Γ. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

NS

ac 

M1 = 100 

M1 = 50 

M1 = 10 

Rigid-rigid isothermal boundaries 

 − − − −  Γ    = �1  ;                   Γ    = 0  ;         !!!!        Γ   = 1. 



 
 
 
 
 
 
 
 
 
 
 

     

0

50

100

150

200

250

-3 -2 -1 0 1 2 3
 

 
 
Figure 4.9: Plot of critical Marangoni number Mac versus NS  for M3  = 1, mχ = 1, 

and for  different values of magnetic Rayleigh number RM  and effective 
viscosity parameter Γ. 
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Figure 4.10:  Plot of critical wavenumber ac versus NS  for M3  = 1, mχ  = 1 and for      

different values of RM  and Γ . 
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Table 4.1 :  Critical thermal Rayleigh number ( cR ) and critical wavenumber ( ca ) for a variable viscosity ferromagnetic   
                    liquid with internal heat source/sink when the layer is bounded by free-free boundaries and 1M  = 10. 
 

Γ  = – 2  Γ  =  – 1 Γ  =  0 Γ  = 1 Γ  = 2               
    NS 

 

mχ  
 

M3     cR                ca      cR                ca     cR                  ca      cR                 ca       cR              ca  

 
1 

1 
5 

25 

98.048 
76.774 
67.256

2.764 
2.566 
2.381 

87.838 
68.495 
60.014 

2.807 
2.601 
2.413 

75.916 
58.853 
51.476

2.828 
2.614 
2.422 

62.429 
48.029 
41.852 

2.827 
2.605 
2.406 

47.688 
36.355 
31.491 

2.806 
2.574 
2.362 

 
 

– 4 
 

5 
1 
5 

25 

107.399 
78.000 
67.355

2.892 
2.596 
2.384 

95.901 
69.503 
60.091 

2.933 
2.629 
2.416 

82.699 
59.664 
51.535

2.954 
2.641 
2.425 

67.928 
48.664 
41.896 

2.955 
2.632 
2.408 

51.889 
36.827 
31.521 

2.938 
2.601 
2.364 

 
1 

1 
5 

25 

123.478 
91.358 
77.908

2.750 
2.527 
2.317 

109.721 
80.778 
68.826 

2.759 
2.537 
2.331 

96.173 
70.524 
60.085

2.771 
2.552 
2.351 

82.979 
60.694 
51.773 

2.790 
2.576 
2.382 

70.286 
51.382 
43.962 

2.823 
2.616 
2.431 

 
 

– 2 
  

5 
1 
5 

25 

137.311 
92.942 
78.025

2.905 
2.559 
2.320 

121.796 
82.107 
68.919 

2.908 
2.568 
2.334 

106.556 
71.622 
60.158

2.913 
2.581 
2.353 

91.734 
61.583 
51.828 

2.925 
2.603 
2.385 

77.483 
52.081 
44.003 

2.949 
2.640 
2.433 

 
1 

1 
5 

25 

138.192 
98.855 
83.080

2.732 
2.504 
2.286 

121.504 
86.645 
72.781 

2.727 
2.506 
2.294 

106.465 
75.821 
63.783

2.737 
2.523 
2.320 

92.907 
66.209 
55.893 

2.765 
2.558 
2.367 

80.651 
57.629 
48.916 

2.809 
2.612 
2.433 

 
 

0 
 

5 
1 
5 

25 

155.157 
100.636 

83.206

2.897 
2.539 
2.289 

136.236 
88.148 
72.882 

2.884 
2.538 
2.297 

119.111 
77.069 
63.863

2.886 
2.553 
2.323 

103.622 
67.227 
55.954 

2.902 
2.586 
2.369 

89.595 
58.443 
48.961 

2.936 
2.636 
2.435 

 
1 

1 
5 

25 

123.478 
91.358 
77.908

2.750 
2.527 
2.317 

109.721 
80.778 
68.826 

2.759 
2.537 
2.331 

96.173 
70.524 
60.085

2.771 
2.552 
2.351 

82.979 
60.694 
51.773 

2.790 
2.576 
2.382 

70.286 
51.382 
43.962 

2.823 
2.616 
2.431 

 
 
 

2  
5 

1 
5 

25 

137.311 
92.942 
78.025

2.905 
2.559 
2.320 

121.796 
82.107 
68.919 

2.908 
2.568 
2.334 

106.556 
71.622 
60.158

2.913 
2.581 
2.353 

91.734 
61.583 
51.828 

2.925 
2.603 
2.385 

77.483 
52.081 
44.003 

2.949 
2.640 
2.433 

 
1 

1 
5 

25 

98.048 
76.774 
67.256

2.764 
2.566 
2.381 

87.838 
68.495 
60.014 

2.807 
2.601 
2.413 

75.916 
58.853 
51.476

2.828 
2.614 
2.422 

62.429 
48.029 
41.852 

2.827 
2.605 
2.406 

47.688 
36.355 
31.491 

2.806 
2.574 
2.362 

 
 

4 
 

 
 

5 
1 
5 

25 

107.399 
78.000 
67.355

2.892 
2.596 
2.384 

95.901 
69.503 
60.091 

2.933 
2.629 
2.416 

82.699 
59.664 
51.535

2.954 
2.641 
2.425 

67.928 
48.664 
41.896 

2.955 
2.632 
2.408 

51.889 
36.827 
31.521 

2.938 
2.601 
2.364 



Table 4.2 :  Critical thermal Rayleigh number ( cR ) and critical wavenumber ( ca ) for a variable viscosity ferromagnetic   
                    liquid with internal heat source/sink when the layer is bounded by free-rigid boundaries and 1M  = 10. 
 

Γ  = – 2  Γ  =  – 1 Γ  =  0 Γ  = 1 Γ  = 2               
    NS 

 

mχ  
 

M3     cR                ca      cR                ca     cR                  ca      cR                 ca       cR              ca  

 
1 

1 
5 

25 

204.111 
162.048 
146.474

3.516 
3.231 
3.043 

178.379 
141.312 
127.566 

3.512 
3.221 
3.029 

152.359 
120.354 
108.456

3.506 
3.208 
3.009 

135.122 
99.104 
89.089 

4.339 
3.189 
2.981 

99.003 
77.529 
69.461 

3.489 
3.165 
2.942 

 
 

– 4 
 

5 
1 
5 

25 

215.269 
162.968 
146.506

3.632 
3.248 
3.044 

240.114 
142.111 
127.594 

5.369 
3.238 
3.029 

160.693 
121.032 
108.479

3.624 
3.224 
3.010 

169.690 
99.662 
89.108 

5.368 
3.206 
2.982 

104.434 
77.966 
69.476 

3.616 
3.183 
2.943 

 
1 

1 
5 

25 

225.087 
169.534 
149.659

3.374 
3.085 
2.881 

199.280 
149.598 
131.807 

3.346 
3.061 
2.859 

174.058 
130.258 
114.576

3.319 
3.041 
2.842 

149.578 
111.650 

98.092 

3.298 
3.027 
2.832 

126.011 
93.910 
82.479 

3.285 
3.024 
2.833 

 
 

– 2 
  

5 
1 
5 

25 

241.109 
170.833 
149.716

3.515 
3.106 
2.882 

213.652 
150.754 
131.856 

3.484 
3.082 
2.860 

186.756 
131.270 
114.618

3.455 
3.062 
2.843 

160.582 
112.515 

98.127 

3.429 
3.047 
2.833 

135.314 
94.629 
82.508 

3.411 
3.043 
2.835 

 
1 

1 
5 

25 

205.394 
153.424 
134.556

3.228 
2.971 
2.772 

182.748 
136.085 
119.187 

3.210 
2.959 
2.764 

161.242 
119.757 
104.804

3.199 
2.954 
2.764 

140.778 
104.338 

91.290 

3.194 
2.956 
2.773 

121.191 
89.668 
78.479 

3.193 
2.965 
2.790 

 
 

0 
 

5 
1 
5 

25 

222.858 
154.991 
134.644

3.374 
2.996 
2.774 

198.319 
137.456 
119.263 

3.351 
2.983 
2.766 

174.969 
120.939 
104.866

3.333 
2.977 
2.767 

152.722 
105.342 

91.341 

3.322 
2.978 
2.775 

131.421 
90.505 
78.519 

3.315 
2.985 
2.792 

 
1 

1 
5 

25 

158.988 
123.885 
110.127

3.182 
2.943 
2.756 

141.637 
109.916 
97.624 

3.187 
2.951 
2.767 

124.482 
96.213 
85.387

3.193 
2.959 
2.779 

107.434 
82.681 
73.318 

3.195 
2.966 
2.791 

90.331 
69.161 
61.256 

3.192 
2.970 
2.801 

 
 
 

2  
5 

1 
5 

25 

172.456 
125.369 
110.233

3.320 
2.970 
2.759 

153.444 
111.172 
97.709 

3.320 
2.976 
2.769 

134.710 
97.261 
85.456

3.320 
2.982 
2.781 

116.159 
83.541 
73.371 

3.317 
2.988 
2.793 

97.623 
69.851 
61.297 

3.308 
2.991 
2.803 

 
1 

1 
5 

25 

121.359 
98.676 
89.108

3.167 
2.952 
2.783 

106.839 
86.564 
78.183 

3.203 
2.984 
2.815 

90.884 
73.308 
66.169

3.224 
3.002 
2.834 

73.534 
58.968 
53.135 

3.227 
3.003 
2.835 

54.799 
43.572 
39.115 

3.200 
2.976 
2.805 

 
 

4 
 

 
 

5 
1 
5 

25 

131.077 
99.941 
89.213

3.293 
2.979 
2.786 

115.099 
87.592 
78.264 

3.325 
3.009 
2.818 

97.714 
74.121 
66.230

3.343 
3.026 
2.836 

78.952 
59.585 
53.179 

3.343 
3.026 
2.837 

58.825 
44.010 
39.144 

3.313 
2.997 
2.807 



Table 4.3 :  Critical thermal Rayleigh number ( cR ) and critical wavenumber ( ca ) for a variable viscosity ferromagnetic   
                    liquid with internal heat source/sink when the layer is bounded by rigid-rigid boundaries and 1M  = 10. 
 

Γ  = – 2  Γ  =  – 1 Γ  =  0 Γ  = 1 Γ  = 2               
    NS 

 

mχ  
 

M3     cR                ca      cR                ca     cR                  ca      cR                 ca       cR              ca  

 
1 

1 
5 

25 

233.754 
191.106 
175.923

3.853 
3.558 
3.381 

202.884 
165.606 
152.347 

3.845 
3.550 
3.373 

171.803 
139.925 
128.596

3.833 
3.539 
3.360 

140.359 
113.929 
104.542 

3.814 
3.519 
3.339 

108.169 
87.281 
79.852 

3.779 
3.482 
3.297 

 
 

– 4 
 

5 
1 
5 

25 

245.007 
192.069 
175.965

3.966 
3.574 
3.382 

212.672 
166.437 
152.383 

3.957 
3.566 
3.374 

180.118 
140.624 
128.626

3.945 
3.554 
3.361 

147.186 
114.496 
104.566 

3.926 
3.535 
3.340 

113.484 
87.713 
79.869 

3.891 
3.498 
3.298 

 
1 

1 
5 

25 

273.905 
214.066 
193.629

3.765 
3.459 
3.268 

244.523 
190.874 
172.545 

3.745 
3.445 
3.256 

214.678 
167.302 
151.108

3.719 
3.426 
3.241 

184.062 
143.096 
129.079 

3.683 
3.399 
3.218 

151.993 
117.696 
105.937 

3.628 
3.357 
3.180 

 
 

– 2 
  

5 
1 
5 

25 

288.759 
215.163 
193.670

3.889 
3.476 
3.269 

257.992 
191.871 
172.583 

3.867 
3.461 
3.257 

226.746 
168.199 
151.142

3.839 
3.442 
3.242 

194.702 
143.890 
129.110 

3.801 
3.415 
3.219 

161.156 
118.386 
105.964 

3.744 
3.373 
3.181 

 
1 

1 
5 

25 

294.625 
224.474 
201.147

3.707 
3.408 
3.215 

266.055 
202.577 
181.454 

3.686 
3.394 
3.204 

236.401 
179.838 
160.994

3.659 
3.375 
3.189 

205.183 
155.881 
139.422 

3.621 
3.348 
3.168 

171.579 
130.060 
116.148 

3.567 
3.308 
3.134 

 
 

0 
 

5 
1 
5 

25 

311.739 
225.636 
201.187

3.835 
3.425 
3.215 

281.840 
203.658 
181.492 

3.812 
3.410 
3.205 

250.803 
180.836 
161.029

3.782 
3.391 
3.190 

218.125 
156.792 
139.456 

3.742 
3.365 
3.169 

182.937 
130.876 
116.179 

3.684 
3.325 
3.135 

 
1 

1 
5 

25 

273.905 
214.066 
193.629

3.765 
3.459 
3.268 

244.523 
190.874 
172.545 

3.745 
3.445 
3.256 

214.678 
167.302 
151.108

3.719 
3.426 
3.241 

184.062 
143.096 
129.079 

3.683 
3.399 
3.218 

151.993 
117.696 
105.937 

3.628 
3.357 
3.180 

 
 
 

2  
5 

1 
5 

25 

288.759 
215.163 
193.670

3.889 
3.476 
3.269 

257.992 
191.871 
172.583 

3.867 
3.461 
3.257 

226.746 
168.199 
151.142

3.839 
3.442 
3.242 

194.702 
143.890 
129.110 

3.801 
3.415 
3.219 

161.156 
118.386 
105.964 

3.744 
3.373 
3.181 

 
1 

1 
5 

25 

233.754 
191.106 
175.923

3.853 
3.558 
3.381 

202.884 
165.606 
152.347 

3.845 
3.550 
3.373 

171.803 
139.925 
128.596

3.833 
3.539 
3.360 

140.359 
113.929 
104.542 

3.814 
3.519 
3.339 

108.169 
87.281 
79.852 

3.779 
3.482 
3.297 

 
 

4 
 

 
 

5 
1 
5 

25 

245.007 
192.069 
175.965

3.966 
3.574 
3.382 

212.672 
166.437 
152.383 

3.957 
3.566 
3.374 

180.118 
140.624 
128.626

3.945 
3.554 
3.361 

147.186 
114.496 
104.566 

3.926 
3.535 
3.340 

113.484 
87.713 
79.869 

3.891 
3.498 
3.298 

 



Table 4.4:  Critical Marangoni number ( cMa ) and critical wavenumber ( ca ) for a variable-viscosity ferromagnetic   
                    liquid with internal heat source/sink and MR  = 10. 
 

Γ  = – 2  Γ  =  – 1 Γ  =  0 Γ  = 1 Γ  = 2               
    NS 

 

mχ  
 

M3   cMa              ca    cMa               ca    cMa              ca    cMa               ca    cMa               ca  

 
1 

1 
5 

25 

469.928 
469.161 
468.376 

1.548 
1.549 
1.549 

407.082 
406.331 
405.552

1.532 
1.533 
1.533 

340.560 
339.833 
339.062 

1.503 
1.504 
1.504 

267.896 
267.213 
266.455   

1.447 
1.448 
1.448   

175.693 
175.137   
174.441

1.309 
1.311   
1.311 

 
 

– 4 
 

5 
1 
5 

25 

470.187 
469.245 
468.381 

1.548 
1.549 
1.549 

407.338 
406.416 
405.558

1.532 
1.533 
1.533 

340.811 
339.919 
339.068 

1.503 
1.504 
1.504 

268.136 
267.299 
266.462 

1.447 
1.448 
1.448 

 175.896 
175.219 
174.448 

 1.309 
1.311 
 1.311   

 
1 

1 
5 

25 

171.437 
171.094 
170.810 

1.833 
1.834 
1.834 

150.945 
150.613 
150.340

1.846 
1.846 
1.845 

129.410 
129.089 
128.827 

1.857 
1.857 
1.856 

106.909 
106.599 
106.347 

1.867 
1.867 
1.866 

83.433 
83.134  
82.892  

1.878 
1.878   
1.877 

 
 

– 2 
  

5 
1 
5 

25 

171.561 
171.129 
170.813 

1.833 
1.834 
1.834 

151.065 
150.647 
150.343

1.846 
1.846 
1.845 

129.527 
129.122 
128.829 

1.857 
1.857 
1.856 

107.024 
106.632 
106.349 

1.867 
1.867 
1.866 

   83.544 
83.166 
82.895   

 1.878 
1.878 
 1.877  

 
1 

1 
5 

25 

98.033 
97.760 
97.540 

1.958 
1.958 
1.956 

87.892 
87.622 
87.407

1.984 
1.984 
1.981 

77.664 
77.397 
77.188 

2.019 
2.019 
2.016 

66.726 
66.463 
66.264 

2.067 
2.067 
2.063 

53.828   
53.579   
53.398 

2.132 
2.132  
2.128   

 
 

0 
 

5 
1 
5 

25 

98.152 
97.798 
97.546 

1.958 
1.958 
1.956 

88.010 
87.659 
87.412

1.984 
1.984 
1.981 

77.780 
77.433 
77.193 

2.019 
2.019 
2.016 

66.839 
66.497 
66.268   

2.067 
2.067 
2.063 

   53.934 
53.610   
53.402  

 2.132 
2.132   
2.128 

 
1 

1 
5 

25 

68.257 
67.999 
67.787 

2.041 
2.040 
2.037 

61.733 
61.467 
61.250

2.066 
2.065 
2.061 

55.022 
54.751 
54.536 

2.110 
2.110 
2.105 

47.373 
47.104 
46.899 

2.174 
2.174 
2.168 

37.531 
37.281  
37.099   

2.257 
2.255   
2.248   

 
 

2 
 

5 
1 
5 

25 

68.388 
68.045 
67.795 

2.041 
2.040 
2.037 

61.868 
61.512 
61.258

2.066 
2.066 
2.061 

55.158 
54.795 
54.543 

2.110 
2.110 
2.105 

47.505 
47.146 
46.906 

2.174 
2.174 
2.168 

   37.650 
37.317   

  37.104 

 2.259 
2.256   
2.248 

 
1 

1 
5 

25 

53.122 
52.866 
52.646 

2.104 
2.103 
2.097 

48.313 
48.034 
47.801

2.128 
2.127 
2.121 

42.402 
42.107 
41.869 

2.168 
2.166 
2.160 

35.042 
34.744 
34.512   

2.225 
2.222 
2.213   

25.709 
25.429   
25.219   

2.288 
2.283   
 2.272   

 
 

4 
 

 
 

5 
1 
5 

25 

53.268 
52.919 
52.656 

2.104 
2.103 
2.097 

48.468 
48.089 
47.811

2.128 
2.127 
2.121 

42.561 
42.162 
41.879 

2.168 
2.166 
2.160 

35.199 
34.796 
34.522 

2.225 
2.222 
2.213 

   25.852 
25.474   

 25.227 

 2.291 
2.286 
2.272   

 



 

 
 
Table 4.5:  Comparison of  critical  values obtained  from  the  present  study  with  

those  obtained  by Chandrasekhar (1961) for the limiting case of a 
constant-viscosity, nonmagnetic liquid with no internal heat             
source / sink.  

 
 

 
Free - free 
boundaries 

 
Free - rigid 
boundaries 

 
Rigid - rigid 
boundaries 

 
 

Order of 
Rayleigh-Ritz 

technique 
Rc    ac Rc    ac Rc    ac 

1 664.52 2.227 1138.70 2.669 1749.97 3.117 
2 664.52 2.227 1116.87 2.686 1749.97 3.117 
3 657.64 2.221 1101.37 2.683 1708.55 3.116 
4 657.64 2.221 1100.84 2.682 1708.55 3.116 
5 657.51 2.221 1100.66 2.682 1707.76 3.116 
6 657.51 2.221 1100.66 2.682 1707.76 3.116 
 

Chandrasekhar 
(1961) 

 
657.51 

 
2.221 

 

 
1100.66

 
2.682 

 
1707.76 

 
3.117 

 
 
 
 
Table 4.6: Comparison of the present results with those of earlier works for the   

limiting case of a constant-viscosity, nonmagnetic liquid with no 
internal heat source/sink.        

 

 
 

Present study 
 

 
Pearson 
(1958)       
[Exact 

solution] 

 
Nield (1964) 

[Fourier 
Series] 

Siddheshwar 
and Pranesh 

(2002) 
[Single term 

Rayleigh – Ritz 
technique] 

 
 

Order of 
Rayleigh - 

Ritz 
technique 

cMa     ca  cMa   ca  cMa   ca  cMa  ca  

1 64.59 2.34 
2 79.06 2.09 
3 79.70 2.00 
4 79.99 2.00 
5 79.99 2.00 

 
 

80.00 

 
 

2.00
 

 
 

79.61 
 

 
 

1.99

 
 

78.44 

 
 

2.43 

 
 
 



 

 
 
 
 
 
 
 
Table 4.7: Critical values corresponding to a constant-viscosity, nonmagnetic 

liquid with uniform internal heat source.     
 

Lam and Bayazitoglu 
(1987) 

(Sequential gradient  
restoration algorithm)   

 

Char and Chiang 
(1994) 

(Shooting technique) 

 
Present study 

(HORT) 

 
 

NS
 

cMa  ca  cMa  ca  cMa  ca  
0 79.61 1.99 79.61 1.99 79.99 2.00 
1 56.91 2.08 56.91 2.08 56.71 2.09 
2 44.21 2.13 -- -- 43.85 2.14 
3 36.12 2.16 -- -- 35.69 2.18 
4 30.52 2.19 -- -- 30.12 2.21 
5 26.42 2.21 26.43 2.21 26.02 2.23 

 
   Note:  The NS in the above table for the present study is taken to be 2NS to match  
              with the definition of NS  of the other two.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table 4.8:  Critical values corresponding to a nonmagnetic liquid with linear    

viscosity (temperature-dependent) variation in the absence of internal 
heat source.      

 
Free - free  
boundaries 

Free - rigid 
boundaries 

Rigid - rigid 
boundaries 

 

 
ΓL 

Rc    ac Rc    ac Rc    ac 
0.5 661.79 

(616.34) 
2.232 

(2.246) 
1081.86 

(1029.38)
2.654 

(2.688) 
1686.25 

(1595.68) 
3.113 

(3.108) 
1 673.83 

(577.71) 
2.261 

(2.275) 
1028.39 
(959.54) 

2.614 
(2.695) 

1614.85 
(1479.21) 

3.099 
(3.097) 

1.5 692.64 
(541.45) 

2.309 
(2.309) 

  919.14 
(891.61) 

2.539 
(2.705) 

1478.23 
(1358.27) 

3.068 
(3.083) 

2 716.60 
(507.29) 

2.370 
(2.350) 

  720.56 
(825.25) 

2.358 
(2.716) 

1238.43 
(1231.64) 

2.986 
(3.066) 

 
     Note: The values in parenthesis are those obtained by using the quadratic 

viscosity law.   
 
 
 
Table 4.9: Critical values corresponding to a nonmagnetic liquid with linear    

viscosity (temperature-dependent) variation for a non-deformable 
upper surface in the absence of internal heat source.       

 
Lam and Bayazitoglu 

(1987) 
[ΓL = 0 in their upper 
boundary condition: 

see Eq. (7.2)] 

Present study 
 

[with ΓL = 0 in       
Eq. (7.2)]  

Present study 
 

[with ΓL ≠ 0 in       
Eq. (7.2)] 

 
 

ΓL 

cMa  ca  cMa  ca  cMa  ca  
 

0.1 
77.06 

(77.06) 
1.98 

(1.99) 
 

77.34 
 

2.01 
 

81.21 
 

2.03 
 

0.3 
72.98 

(72.97) 
1.97 

(1.95) 
 

72.54 
 

1.99 
 

83.42 
 

1.99 
 

0.5 
69.85 

(69.85) 
1.95 

(1.95) 
 

68.24 
 

1.97 
 

85.30 
 

1.97 
 
     Note:  The values in parenthesis are those obtained by Cloot and Lebon (1985) 

by means of a series solution. 
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CHAPTER  V 
 

THERMAL  RADIATION  EFFECTS  ON  
FERROCONVECTION   

 
5.1  INTRODUCTION 
 

      The convective instability problems for radiating fluids received great attention 

in the past due to their implications in astrophysical and geophysical applications, 

and in other applications such as solar collectors (Bdeoui and Soufiani, 1997). The 

Rayleigh-Bénard and Marangoni instability problems involve only two modes of 

heat transfer, viz., conduction and convection. Radiative heat transfer is important 

in physical systems that have less convective motions because of its stabilizing 

effect (Siegel and Howell, 1992; Modest, 1993; Howell and Menguc, 1998). Heat 

transfer problems involving conduction, convection and radiation are difficult to 

solve since the momentum and heat transport equations are coupled and the latter 

equation is an integro-differential equation.   

 
      Goody (1956) estimated the radiative transfer effects in the natural convection 

problem with free boundaries using a variational method. He solved the problem 

for optically thin and optically thick cases and showed that there could be very 

large variations near the boundaries. Goody�s radiative transfer model has been 

extended and modified by many researchers by taking into account the effects of 

magnetic field, rotation and fluid non-grayness (Spiegel, 1960; Murgai and Khosla, 

1962; Khosla and Murgai, 1963; Christophorides and Davis, 1970; Arpaci and 

Gozum, 1973; Yang, 1990; Bdeoui and Soufiani, 1997; Yan and Li, 2001 and 

references therein). Motivated by the meteorological applications, Larson (2001) 

studied the linear and nonlinear stability of an idealized radiative-convective model 

due to Goody (1956). More recently, Lan et al. (2003) analyzed, assuming the 

boundaries to be black and the fluid medium to be gray, the stability of a 

Newtonian fluid subject to combined natural convection and radiation using a 

spectral method.  
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      Thermal process control of ferromagnetic and dielectric fluids through radiative 

heat transfer is also important in quite a few engineering applications (Luminosu et 

al., 1987; Lloyd and Radcliffe, 1994; Hargrove et al., 1998; Pode and Minea, 

2000). In this chapter we have sought to investigate the effect of thermal radiation 

on the onset of both RBC and MC problems of a ferromagnetic fluid. Further, 

thermorheological and magnetorheological effects are given attention by treating 

the effective viscosity of the ferromagnetic fluid as a variable. An analogy for both 

RBC and MC problems between ferromagnetic and dielectric fluids is also 

presented.           

 

5.2  MATHEMATICAL  FORMULATION 
 

      Consider a Boussinesq ferromagnetic fluid confined between two parallel, 

infinite, isothermal plane boundaries heated from below. A uniform magnetic field 

oH
→

 acts parallel to the vertical z-axis (Figure 5.1). The lower boundary is in the xy-

plane. The ferromagnetic fluid is assumed to have a variable effective viscosity µ  

that depends on the temperature as well as on the magnitude of the magnetic field. 

The fluid between the isothermal boundaries absorbs and emits thermal radiation. 

We treat the two isothermal boundaries as either rigid or stress-free and also as 

black bodies. The absorption coefficient of the fluid is assumed to be the same at all 

wavelengths and to be independent of the physical state. 

 
      The system of equations describing the radiation-affected Rayleigh-Bénard 

instability in a variable-viscosity ferromagnetic fluid in the notation of Chapter II is 
 

0. q
→

∇ = ,                                                                                                (5.2.1) 
 

( ) ( )
o o ( )

, ,

. .

. Tr

qρ q q p g k µ M H
t

µ H T q q

ρ
→ → →∧→ →

→ →

 ∂   + ∇ = −∇ − + ∇  ∂  
 

 
+∇ + ∇∇  

                    (5.2.2)   
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2
o 1 o.V H V H

r

T Gρ C q T k T ρ C
t s

→ ∂  + ∇ = ∇ +  ∂   
,                              (5.2.3) 

 
( )o 1 aT Tρ ρ α = − −  ,                   (5.2.4) 

 

0, 0. B H
→ → →

∇ = ∇× = ,                                               (5.2.5) 
 

oB M H
→ → → = + 

 
µ ,                                                                                   (5.2.6) 

 
( ) ( )o o 1m aM M H H K T Tχ= + − − − ,                    (5.2.7) 

 

( ) ( )2 2
1 1 o 2( , ) 1 aµ H T µ δ H H δ T T = + − − −  

.                                  (5.2.8) 

 
      In writing the energy equation (5.2.3), the viscous dissipation term and the 

volumetric heat source term have been neglected.  

 
The equation of radiative heat transfer (Kourganoff, 1952) is  
 

 ( ) ( )a B
dI r K P I r

d s

→
→ = −  

,                                                          (5.2.9) 

 

where ( )I r→  is the intensity of radiation along the direction of the vector r→  and   

ds is an infinitesimal displacement in the r→  direction. The radiative heating rate is  
 

 ( )
s

dI rG d
ds

ω
→

= − ∫ ,                                               (5.2.10) 

 

where the integral is taken over the solid angle 4π  and sω  is the element of solid 

angle. In the quiescent basic state, the equation of radiative transfer (5.2.9) takes 

the form 
 

 [ ]3 a B
dI K P I
dz

µ = − ,                                                                      (5.2.11) 
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where 3µ  is the directional cosine of r→  in the z-direction. Equation (5.2.11) is 

indicative of the fact that the intensity of radiation is increased by emission and 

decreased by absorption. 

 
      Iterative solutions of one-dimensional radiative equilibrium problems all show 

that remarkably accurate results can be obtained by assuming a simple from for the 

angular distribution of radiative intensity. One of the simplest assumptions is the 

Milne-Eddington approximation : 
 

 3 3

3 3

( , ) ( ) , for 0 < 1 ,

( , ) ( ) , for 1 0 .

I z I z

I z I z

µ µ

µ µ

+

−

= ≤ 


= − ≤ ≤ 
                                                  (5.2.12) 

 
The energy equation (5.2.3) in the basic state becomes 
 

 
2

2 0b b

r

G d T
s dz

κ+ = .                                                                              (5.2.13) 

 
      Equation (5.2.13) is suggestive of the fact that the heat transfer in the basic state 

is essentially by conduction and radiation. 

 
If zF  is the z-component of the radiative heat flux, then we have 
 

 b
zdFG

dz
= −                                                                                (5.2.14) 

 
and we may write Eq. (5.2.13) in the integrated form 
 
 z rF s Cκ β+ = ,                                                                    (5.2.15) 
 

where bdT
dz

β = −  and C is the constant of integration. Taking the components of 

magnetization and magnetic field in the basic state to be [0, 0, ( )]bM z  and 

[0, 0, ( )]bH z , we obtain the quiescent state solution in the form   
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[ ]2 2
1 o

1 1
o o

, ,0 ( ) ( ) ,

( ) 1 , ( ) 1 ,

, ,
1 1

b a bb

b b

b b
m m

p pq T z T z z

z z z z

K z K zH H k M M k

β

µ µ δ β ρ ρ α β

β β
χ χ

→→

→ →∧ ∧

=
= = − 


  = − = +  


    
= − = +    + +    

                      (5.2.16) 

 
where [ ] 2

2 1 1 (1 )mδ δ δ K χ= − + . In arriving at the above basic state solution we 

have assumed that   
 

 o

1 o

at / 2

( ∆ ) at / 2.

T T z d

T T T T z d

= = 


= = + = − 
                                                   

 
      The dominance of magnetic dependency over temperature dependency of 

viscosity is implied by 0δ<  while 0δ>  signifies dominance of temperature 

dependency.  

 
      Assuming the Milne-Eddington approximation, given by Eq. (5.2.12), and using 

the radiative heat transfer equation (5.2.11), the differential equation associated 

with the heat flux zF  can be obtained in the form (Goody, 1956) 
 

 
2

2 2
2 1*
z

z
d F F C
dz

χτ τ
χ

− = −
+

,                                              (5.2.17) 

 

where ( )2 2 2 14* , 3 1 ,
3a

a r

z Qz K d
d K s

πτ χ χ
κ

= = + =  and 3
1

4
a

cSQ T
π

= . Solving 

Eq. (5.2.17) using the following dimensionless radiative boundary conditions 
 

2 at * 1 2 ,
*

2 at * 1 2 ,
*

a z

a z

z

z

dF K F d z
d z
dF K F d z
d z

= − = + 

=+ = −


                                               (5.2.18) 

 
we obtain   
 

( ) ( )1 2* cosh *f z L z Lβ τ
β

= = +                                                         (5.2.19) 
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where  
 

( ) ( )
1

1
2 1 3 3 sinh cosh2 22

L χ τ τχ χ
τ

−
 = + + +  

, 

 

 ( ) ( )1
2

1 3 3 sinh cosh2 22
LL τ τχ
χ
 = + +  

 

 

and β  is the mean value of β  throughout the medium. The radiative boundary 

conditions in Eq. (5.2.18) are obtained using the fact that the molecular conduction 

ensures continuity of temperature at the two surfaces. It is advantageous 

mentioning that ( *)f z  tends to unity if either τ  or χ  tends to zero independently. 

Moreover, if τ  and χ  are both greater than unity, the variation of the basic state 

temperature is exponential. In other words, the basic state temperature is no longer 

linear if the radiation effect is accounted for. In what follows we study the stability 

of the quiescent state within the framework of the linear theory. 

 

5.2.1  Linear Stability Analysis 
 

      Let the components of the perturbed magnetization and the magnetic field be 

( )1 2 3, , ( )bM M M z M' ' '+  and ( )1 2 3, , ( )bH H H z H' ' '+  respectively. The 

temperature T is taken to be ( )bT z T '+  with 'T  being the perturbation from the 

quiescent state. The effective viscosity µ , likewise, is taken to be ( )bµ z µ'+ . 

Using these in Eq. (5.2.7) and linearizing the resulting equation, we obtain 
 

o

o

3 3 3 1

, ( 1, 2)1

(1 ) ,

i i i

m

M
iH M H

H
H M χ H K T

' ' '

' ' ' '

=
 

+ = +  
 
+ = + − 

                                               (5.2.20)  

 
where it has been assumed that 1 o(1 )mK β d χ H+! . The second of Eq. (5.2.5) 

suggests that one can write H ' 'Φ
→

= ∇ , where 'Φ  is the perturbed magnetic scalar 

potential.   
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      Introducing the magnetic potential 'Φ , eliminating the pressure p in Eq. (5.2.2) 

and incorporating the quiescent state solution, we obtain the vorticity transport 

equation in the form      

 

( ) ( ) ( )

o
o

2 2 2 22 2
o 1 11

2 2 4 2
1 o 1

2
2 21

1 1 1

2 4

1

( ) 0 , (5.2.21)
1 m

ρ w δ µ β w δµ β z DwD
t

µ δ β z w αρ g T

µ K β T µ K β DΦ
χ

' ' '

' '

' '

∂ ∇ − + ∇∇ −
∂

 − − ∇ − ∇ 

− ∇ + ∇ =
+

                     
where 2 2 2 2 2 2 2 2

1 1, ( ) ( )D x y∇ = ∇ + ∇ = ∂ ∂ + ∂ ∂  and D z= ∂ ∂ . The linear 

form of equation (5.2.3) in the perturbed state, on incorporation of the quiescent 

state solution, becomes 

 
2

r

T Gβw κ T
t s
' '' '∂ − = ∇ +

∂
.                                                                 (5.2.22) 

 
Using Eq. (5.2.20) in the first of Eq. (5.2.5), we obtain 
 

2 2o
1 1

o
(1 ) 1 0m

Mχ D Φ Φ K DT
H

' ' ' 
+ + + ∇ − = 

 
.                                  (5.2.23) 

 
      As is customary in the linear stability analysis we make use of the normal mode 

technique. The infinitesimal perturbations w' , T '  and 'Φ  are supposed to be 

periodic waves that lead to a separable solution to Eqs. (5.2.21) � (5.2.23) in the 

form 

 

( )
( , )
( , ) exp
( , )

x y

w w z t
T T z t i k x k y
Φ Φ z t

'
'
'

   
     = +     
      

.                                                (5.2.24)                  

 

Substituting Eq. (5.2.24) into Eq. (5.2.21), we obtain  
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( ) ( ) ( )
( )
[ ]o

2 2 2 2 2 2 2 2
o 1 1

22 2 2 2 2
1 o

1 2
1

2 4

1

(1 ) 0 , (5.2.25)
1 m

m

wρ D k δµ β D k w δµ β z D k Dw
t

µ δ β z D k w α ρ g k T

µ K β
k χ DΦ K T

χ

∂− + + + −
∂

 − − − + 

− + − =
+

 

where 2 2
x yk k k= +  is the wavenumber in the horizontal direction. Since Eq. 

(5.2.22) is an integro-differential equation, we adopt two approximations, one is 

valid when the fluid medium is optically thin (known as transparent 

approximation) and the other is applicable when the fluid medium is optically thick 

(known as opaque approximation). For the transparent approximation (Goody, 

1956), we have the relation 

 
 2 2

1 14 aG Q K T' 'π∇ = − ∇                                                                    (5.2.26) 
 
and for the optically thick one (Goody, 1956), we have 
 

 ( )2 2 2
1 1

4
3 a

QG T
K

' 'π∇ = ∇ ∇ .                                                                   (5.2.27) 

 
      Equation (5.2.22) corresponding to the transparent approximation, after making 

use of Eqs. (5.2.24) and (5.2.26), becomes 

 

( )2 2 4 a

r

πQ KT βw κ D k T T
t s

∂ − = − −
∂

.                                          (5.2.28) 

 
Similarly, Eq. (5.2.22) relating to the opaque approximation, turns out to be 

 

 ( )2 24
3 a r

T πQβw κ D k T
t K s

 ∂ − = + − ∂  
.                                             (5.2.29) 

 

      It is apparent from the above equation that the effect of radiation in the case of 

optically thick fluid medium is to enhance the thermal diffusivity.   
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Using Eq. (5.2.24) in Eq. (5.2.23), we obtain  
 

2 2
1(1 ) 1 0m

Mχ D Φ k Φ K DT
H

 
+ − + − = 

 
o

o
.                                (5.2.30) 

 
      We next make Eqs. (5.2.25) and (5.2.28) � (5.2.30) dimensionless by 

considering the following definition  

 
( )* * * * * *

2 2
1

1
, , , , ,mz d Tz t t w w T a kd

d d d K d

χκ Φ Φ
κ β β

+
= = = = = = ,                 

                              (5.2.31) 
 
where the quantities with asterisks are dimensionless. Equations (5.2.25), (5.2.28) 

and (5.2.29), using (5.2.31), can be written (after dropping the asterisks) as      

 

( ) ( ) ( )
( ) [ ]

2 2 2 2 2 2

22 2 2 2 2
1

1 2 4

1 0 , (5.2.32)

wD a Γ D a w Γ z D a Dw
Pr t

Γ z D a w R a T R M a DΦ T

∂− + + + −
∂

 − − − + − − = 

 

 
2

2 2 ( )
1

T τ χD a T f z w
t χ

 ∂ = − − +  ∂ + 
,                                                  (5.2.33) 

 

( )2 2(1 ) ( )T χ D a T f z w
t

∂ = + − +
∂

,                                                    (5.2.34) 

 

where 
4

o

1

g dR α ρ β
µ κ

=  is the thermal Rayleigh number and the expression for 

( )f z  is given by Eq. (5.2.19) with *z  replaced by z. It is of interest to note that for 

0Γ =  and as χ  or 0τ → , the above equations reduce to those obtained by 

Finlayson (1970). Equations (5.2.33) and (5.2.34) may be combined into a single 

equation of the form  
 

2
2 2 2 2

1 2( ) ( ) ( )
1k k

T τD a χ δ δ D a T f z w
t χ

  ∂  = − − − − +   ∂ +   
,          (5.2.35) 
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where the Kronecker delta, k mδ , is defined as  
 

 
1, if ,

0, if .
k m k m

k m

δ = = 


≠ 
 

 
      In Eq. (5.2.35), values of 1k =  and 2 respectively yields the expression for 

transparent and opaque medium. 

 
The dimensionless form of Eq. (5.2.30) is 
  

2 2
3( ) 0D M a Φ DT− − = .                                                                 (5.2.36) 

 
      Equations (5.2.32), (5.2.35) and (5.2.36) are solved subject to the following 

boundary combinations   

 
(a) Free � free, isothermal 

2 0 at 1 2w D w T z= = = = ±  , 

(b) Free � rigid, isothermal 
2 0 at 1 2

0 at 1 2 ,

w D w T z

w Dw T z

= = = = +

= = = = −
 

(c) Rigid � rigid, isothermal 
        0 at 1 2w Dw T z= = = = ± . 

 

      The above boundary conditions on w and T are not affected by radiation 

(Khosla and Murgai, 1963). For isothermal boundaries as taken above, the 

boundary conditions on the magnetic potential Φ  are given by (see Eq. 2.2.19)  

 

0 at 1 2,
1

0 at 1 2 .
1

m

m

aΦDΦ z
χ

aΦDΦ z
χ

+ = = + + 

− = = −
+ 

                                   

 

      In the succeeding section, we focus on the validity or otherwise of the principle 

of exchange of stabilities (PES) for the problem under consideration.    
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5.2.2  Oscillatory Instability 
 
      We analyze the possibility of the existence of overstable motions by means of 

the Rayleigh-Ritz technique as discussed in Chapter IV. Multiplying Eqs. (5.2.32), 

(5.2.35) and (5.2.36) by w, T and Φ  respectively, integrating with respect to z 

between the limits 1 2z = −  and 1 2z = , taking 1 1( , ) ( ) ( )w z t A t w z= , 

1 1( , ) ( ) ( )T z t B t T z= , 1 1( , ) ( ) ( )Φ z t C t Φ z=  (in which w1(z), T1(z) and 1( )Φ z  are 

trial functions), and using the boundary conditions mentioned in Section 5.2.1 give 

rise to the following system of ordinary differential equations                     

 

 11
1 3 1 1 4 12 1

d (1 )
d
A Q A R M Q B RM Q C

Pr t
Q

= − + + − ,                          (5.2.37)     

 

 1
5 6 7 11

d
d
BQ Q A Q B
t

= − ,                                                                   (5.2.38) 

 
 8 9 110 Q B Q C= + ,                                                                               (5.2.39) 
 
where              
 
 2 2 2

1 11 ( )Q Dw a w= + , 

 

( ) ( )
( ) ( )

2 4 2 2 2
11 112

2 24 2211 11

3 2
1 1 1 1

1 2 1

1 2 2

4 4 ,

Γ z ww D w a Γ z D wQ

DwΓ z wa w w Γ Γa

w z D w w z DwΓ Γa

− −= −

−+ + −

− +

 

 
 2

1 13Q a w T= ,     2
4 1 1Q a w DΦ= ,    2

5 1Q T=  , 

 
6 1 1( )Q T f z w= ,   

 

 ( )
2

2 2 2 2
7 2 1 1 2 11 ( )

1k k k
τQ δ χ DT a χ δ δ a T
χ

   = + + + +  +    
,        

 
 8 1 1Q Φ DT= , 
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2 2

2 2 2
9 1 3 1 1 1

1 1( )
1 2 2m

aQ DΦ M a Φ Φ Φ
χ

    −    = + + +      +         
 

 

and 
1 2

1 2
u v uv dz

−
= ∫ . Eliminating 1C  between Eqs. (5.2.37) and (5.2.39), the 

resulting system of equations can be rearranged into the matrix form  

 

 d
d
A F A
t

= ,                                                                                          (5.2.40) 

where 
 

 
1

1

A
A

B

 
=  
 
 

    and   

4 82
1 3 1

1 1 9

6 7

5 5

(1 ) Q QPr Q R Pr M Q M
Q Q Q

F
Q Q
Q Q

  
− + +  

  =  
 − 
 

. 

 

      Following the procedure illustrated in Chapter IV, we arrive at the following 

expression for the thermal Rayleigh number R   

 
1 5 2

2 7 2
6 1

1 Q Q
R Q Q i N

Q N Pr
ω ω

 
= − + 

 
,                                             (5.2.41) 

 
where   

 4 8
1 1 3 1

9
(1 )

Q Q
N M Q M

Q
= + +    and   2 5 1 7

2
6 1

Pr Q Q Q Q
N

Pr Q N
+

= .                     

 
      We note that R  is a real quantity and 2N  is independent of ω . This means, 

following the analysis given in Chapter IV, that the possibility of the existence of 

overstable motions can be ruled out and that the PES holds good. So we take 0ω =  

in the subsequent analysis. We now proceed to discuss the preferred mode of 

instability, viz., stationary convection.               
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5.2.3  Stationary Instability 
 
The system of equations associated with the stationary instability reads as   
 

( ) ( ) ( )22 2 2 2 2 2 2

2 2
1 1

1 2 4

(1 ) 0 , (5.2.42)

Γ z D a w Γ D a w Γ z D a Dw

R M a T R M a DΦ

 − − − + − − 

− + + =
 

 
2

2 2 2 2
1 2( ) ( ) ( ) 0

1k k
τD a χ δ δ D a T f z w
χ

   − − − − + =   +   
,              (5.2.43) 

 
2 2

3( ) 0D M a Φ DT− − = .                                                                 (5.2.44) 
 

      The system of Eqs. (5.2.42) � (5.2.44) together with the boundary conditions 

specified in Section 5.2.1 poses an eigenvalue problem for R  with Γ , 1M , 3M , τ , 

χ  and mχ  as parameters. We employ the Higher Order Rayleigh-Ritz Technique 

(HORT) to obtain the eigenvalue and the associated wavenumber. To this end, we 

expand w(z), T(z) and )(zΦ  in a series of trial functions    
 

           
 1

( ) ( )
n

i i
i

w z α w z
=

= ∑ , 
 1

( ) ( )
n

i i
i

T z β T z
=

= ∑   and  
 1

( ) ( )
n

i i
i

Φ z γ Φ z
=

= ∑ ,      (5.2.45) 

 
where , andi i iα β γ  are constants, and ( ) , ( )i iw z T z  and i ( )Φ z  are trial functions. 

We now choose the following trial functions guided by the boundary conditions 

given in Section 5.2.1 and variational considerations  
 
 

(a) Free � free, isothermal 
2

2 2 1 2 1 2 11 1 1, ,
4 4 4

i i i
i i iw z z z T z z zΦ− − −      = − − − = − =      

       
 

(b) Free � rigid, isothermal 

 ( )2 2 1 2 1 2 11 12 1 , ,
4 4

i i i
i i iw z z z z T z z zΦ− − −   = − − − = − =   

   
 

(c) Rigid � rigid, isothermal 

     
2

2 1 2 1 2 11 1, ,
4 4

i i i
i i iw z z T z z zΦ− − −   = − = − =   
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      Applying HORT to Eqs. (5.2.42) � (5.2.44) leads to a system of homogeneous 

equations using which we get the critical eigenvalue cR  and the corresponding 

critical wavenumber ca . In the following section, we explore an analogy for the 

Rayleigh-Bénard instability problems between ferromagnetic and dielectric liquids 

in the presence of thermal radiation.    

 

5.3  ANALOGY  FOR  RADIATION-AFFECTED  RAYLEIGH-
BÉNARD  CONVECTION  BETWEEN  FERROMAGNETIC 
AND  DIELECTRIC  LIQUIDS 

 
      The system of equations of electrohydrodynamics describing the radiation-

affected Rayleigh-Bénard instability in a variable-viscosity dielectric liquid in the 

notation of Chapter II  is  
 

 0. q
→

∇ = ,                                          (5.3.1) 
 

 

( ) ( )
o

, ,

. .

. Tr

q q q p g k P E
t

E T q q

ρ ρ

µ

→ →∧ →→ →

→ →

 ∂     + ∇ = −∇ − + ∇    ∂    
 

 
+ ∇ + ∇∇  

                     (5.3.2) 

 

 2
o 1 o.V E V E

r

T Gρ C q T k T ρ C
t s

→ ∂  + ∇ = ∇ +  ∂   
,                         (5.3.3) 

 
( )o 1 aT Tρ ρ α = − −  ,                   (5.3.4) 

 

 0. D
→

∇ = ,  0E
→ →

∇× = ,                                                                     (5.3.5) 
 

 oD E P
→ → →

= +ε ,   ( )o 1rP Eε ε
→ →

= − ,                                                       (5.3.6) 
 
 ( )(1 )r e ae T Tε χ= + − − ,                                                                              (5.3.7) 
 

( ) ( )2 2
1 1 2( , ) 1 aµ E T µ δ E E δ T T = + − − −  o .                                (5.3.8) 
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 ( ) ( )a B
dI r K P I r

d s

→
→ = −  

,                                                          (5.3.9) 

 

 ( )
s

dI rG d
ds

ω
→

= − ∫ ,                                               (5.3.10) 

 
where the effective viscosity ( , )E Tµ  has been assumed to be a function of the 

temperature and magnitude of the ac electric field. 

 
      The electric boundary conditions specify that the normal component of 

dielectric field D
→

 and tangential components of electric field E
→

 are continuous 

across the boundaries. Taking the components of the electric field in the basic state 

to be [ ]0, 0, ( )bE z , one obtains the quiescent state solution in the form  
 

[ ]2 2
1 o

o o

, ,0 ( ) ( ) ,

( ) 1 , ( ) 1 ,

(1 ) 1, (1 ) 1 ,
(1 ) (1 )

b a bb

b b

eb b e
e e

p pq T z T z z

z z z z

EE k P E k
e z e z

β

µ µ δ β ρ ρ α β

χ ε χ
χ β χ β

→→

→ →∧ ∧

=
= = − 


  = − = +  


    += = + −    + + + +    
o

           

                                                                                                              (5.3.11) 
 
where 2

2 1 o (1 )eδ δ δ e E χ = − +  . In obtaining Eq. (5.3.11), it has been assumed 

that ( )1 ee dβ χ<< + . It should be noted that the expression for ( *)f z  in Eq. 

(5.2.19) remains the same for dielectric liquid convection in the presence of 

radiation.  

 
The second of Eq. (5.3.6), upon application of linear analysis, yields 
 

 
o

3 o 3 o o

, ( 1, 2)

.

i e i

e

P E i

P E e E T

' '

'' '

ε χ

ε χ ε

= = 


= − 
                                                              (5.3.12) 
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      Following exactly the same procedure as in the development for a 

ferromagnetic liquid, introducing the perturbed electric potential Φ ′  through the 

relation E Φ
→′ ′= ∇  and taking ( )2

o 1 meE d χβ +  as the unit electric potential, we 

arrive at the following system of dimensionless equations  

 

( ) ( ) ( )
( ) [ ]

2 2 2 2 2 2

22 2 2 2 2

1 2 4

1 0 , (5.3.13)E

wD a Γ D a w Γ z D a Dw
Pr t

Γ z D a w Ra T R a DΦ T

∂− + + + −
∂

 − − − + − − = 

 

 
2

2 2 2 2
1 2( ) ( ) ( )

1k k
T τD a χ δ δ D a T f z w
t χ

  ∂  = − − − − +   ∂ +   
,          (5.3.14) 

 
2 2( ) 0D a Φ DT− − = .                                                                      (5.3.15) 

 
      Equations (5.3.13) � (5.3.15) are solved subject to the boundary conditions on 

velocity and temperature given in Section 5.2.1. The boundary conditions on the 

electric potential given in Eq. (2.2.20) relating to the isothermal boundaries become  
 

10 at ,
1 2

10 at .
1 2

e

e

aΦDΦ z
χ

aΦDΦ z
χ

+ = = + 

− = = −
+ 

 

 
      It is clear, comparing the set of Eqs. (5.2.32), (5.2.35) and (5.2.36) and the set 

of Eqs. (5.3.13) � (5.3.15) together with the boundary conditions, that one can 

recover the equations of the latter from those of the former when one replaces 1R M  

by ER , 3M  by 1 and mχ  by eχ . In view of this analogy, there is no need to study 

the radiation-affected RBC problem of dielectric liquids in isolation. In what 

follows, we study the effect of thermal radiation on the onset of Marangoni-

ferroconvection with variable viscosity.   
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5.4 MARANGONI FERROCONVECTION WITH THERMAL    
RADIATION 

 
      The system of equations describing the Marangoni instability situation in a thin, 

variable-viscosity ferromagnetic liquid layer (with a free upper surface) with 

thermal radiation is 
 

0. q
→

∇ = ,                                                                                                (5.4.1) 
 

( ) ( )o o ( ) ,. . . Trqρ q q p µ M H µ H T q q
t

→ → →→ → → →
   ∂   + ∇ = −∇ + ∇ + ∇ + ∇∇     ∂  
 

, 

                                                                                                                (5.4.2)   
 

2
o 1 o.V H V H

r

T Gρ C q T k T ρ C
t s

→ ∂  + ∇ = ∇ +  ∂   
,                              (5.4.3) 

 

0, 0. B H
→ → →

∇ = ∇× = ,                                               (5.4.4) 
 

oB M H
→ → → = + 

 
µ ,                                                                                   (5.4.5) 

 
( ) ( )o o 1m aM M H H K T Tχ= + − − − ,                    (5.4.6) 

 

( ) ( )2 2
1 1 o 2( , ) 1 aµ H T µ δ H H δ T T = + − − −  

,                                  (5.4.7) 

 
o o( ) ( ) ( )H T aσ H ,T σ σ H H σ T T= + − − − ,                                           (5.4.8) 

 

 ( ) ( )a B
dI r K P I r

d s

→
→ = −  

,                                                          (5.4.9) 

 

 ( )
s

dI rG d
ds

ω
→

= − ∫ .                                               (5.4.10) 

 

      Application of the linear stability analysis discussed in Section 5.2.1 yields the 

following dimensionless equations    
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( ) ( ) ( )
( ) [ ]

2 2 2 2 2 2

22 2 2 2

1 2 4

1 0 , (5.4.11)M

wD a Γ D a w Γ z D a Dw
Pr t

Γ z D a w R a DΦ T

∂− + + + −
∂

 − − − − − = 

 

 
2

2 2 2 2
1 2( ) ( ) ( )

1k k
T τD a χ δ δ D a T f z w
t χ

  ∂  = − − − − +   ∂ +   
,          (5.4.12) 

 
2 2

3( ) 0D M a Φ DT− − = ,                                                                 (5.4.13) 
 

where  
2 4

o 1

1 (1 )M
m

K dR µ β β
µ κ χ

=
+

 is the magnetic Rayleigh number and the remaining 

parameters are as defined in Section 5.2.1. We have shown, in Section 5.2.2, that 

stationary instability is preferred to oscillatory one in the case of Rayleigh-Bénard 

ferroconvection with thermal radiation. We now move over to examine the 

preferred mode of convection relating to the Marangoni ferroconvection.     

 

5.4.1  Oscillatory Instability 
 
      We make use of the single-term Rayleigh-Ritz technique discussed in Chapter 

IV to analyze the possibility of the existence of overstable motions. To this end, we 

consider Eqs. (5.4.11) � (5.4.13) subject to the following boundary conditions      
  

2 2 2 21 0

1     and 0 at ,
1 2

10 at ,
1 2

H

m

m

w Γ z D w a MaT a Ma DΦ

aΦDT Bi T DΦ T z
χ

aΦw Dw T DΦ z
χ


  = − + − =  


= − + − = = + 


= = = − = = − 

+ 

               (5.4.14) 

 

where 
2

1

T dMa σ β
µ κ

=  is the thermal Marangoni number, 
2

1

1 (1 )
H

H
m

K dMa σ β
µ κ χ

=
+

 is 

the magnetic Marangoni number and the rest of the parameters are as defined in 

Chapter II. In the pursued numerical calculations we assume 1HMa ! .   
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      Multiplying Eqs. (5.4.11) � (5.4.13) by w, T and Φ  respectively, integrating 

with respect to z between the limits 1 2z = −  and 1 2z = , taking 

1 1( , ) ( ) ( )w z t A t w z= , 1 1( , ) ( ) ( )T z t B t T z= , 1 1( , ) ( ) ( )Φ z t C t Φ z=  (in which w1(z), 

T1(z) and 1( )Φ z  are trial functions), and using the boundary conditions in Eq. 

(5.4.14) give rise to the following system of ordinary differential equations                     

 

 [ ]11
3 4 1 5 12 1

d ( ) ( )
Pr d M M
Q A Q A R Q MaQ B R Q C

t
= − + − + − ,             (5.4.15)     

 

 1
6 7 11 8

d ( )
d
BQ Q A Q B
t

= + − ,                                                              (5.4.16) 

 
 10 19 10 Q B Q C= + ,                                                                              (5.4.17) 
 
where              

 2 2 2
1 11 ( )Q Dw a w= + , 

 

( )
( ) ( )

22 2 2 2 2 4
111 1 12

2 24 2211 11

3 2
1 1 1 1

( ) 2 1

1 2 2

4 4 ,

w wD w a Γ z D w z D wQ Γ

DwΓ z wa w w Γ Γa

w z D w w z DwΓ Γa

−= − −

−+ + −

− +

 

 

 2
1 13Q a w T= ,      ( )

2

114
4 1 1( ) ( )

4 2 2
aQ Dw T
Γ

=
−

, 

 
 2

1 15Q a w DΦ= ,     2
16Q T= ,     1 17 ( )Q T f z w= , 

 

 

( ) 2
8 2 1

22
2 2 2

1 2 1 1

1 ( )

1
1 2

k

k k

Q δ χ DT

τa χ δ δ a T Bi T
χ

= +

       + + + +     +       

,        

 

1 1 1 19
1 1( ) ( )
2 2

Q Φ DT Φ T= − , 
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2 2

2 2 2
1 3 1 1 110

1 1( )
1 2 2m

aQ DΦ M a Φ Φ Φ
χ

    −    = + + +      +         
. 

 

      Eliminating C1 between Eqs. (5.4.15) and (5.4.17), the resulting system of 

equations can be rearranged into the matrix form  
 

 d
d
A F A
t

= ,                                                                                          (5.4.18) 

 
where 
 

 
1

1

A
A

B

 
=  
 
 

   and   

5 92
3 4

1 1 10

87

66

M
Q QPr Q Pr R Q MaQ

Q Q Q
F

Q Q
Q Q

   
− + −    

    =  
 − 
 

. 

 

      Following the procedure illustrated in Section 5.2.2, we arrive at the following 

expression for the thermal Marangoni number Ma   
 

 5 9 1 6 2
3 2 8

4 10 4 7

1
Pr

M Q Q Q QRMa Q Q Q i N
Q Q Q Q

ω ω
    = + − + −   
    

,     (5.4.19)       

 
where   
 

 1 8
2 6

4 7

1 Q Q
N Q Q

Q Q Pr
 

= + 
 

.                                                          

 

     Since Ma  is a real quantity and since N is independent of ω , we infer that 

oscillatory convection is not possible in the present problem. So we take 0ω =  in 

the subsequent analysis. We now proceed to discuss the preferred mode of 

instability, viz., stationary convection.               
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5.4.2  Stationary Instability 
 

The system of equations associated with the stationary instability reads as   
 

( ) ( ) ( )
[ ]

22 2 2 2 2 2 2

2

1 2 4

0 , (5.4.20)M

Γ z D a w Γ D a w Γ z D a Dw

R a DΦ T

 − − − + − − 

+ − =
 

2
2 2 2 2

1 2( ) ( ) ( ) 0
1k k
τD a χ δ δ D a T f z w
χ

   − − − − + =   +   
,              (5.4.21) 

 
2 2

3( ) 0D M a Φ DT− − = .                                                                 (5.4.22) 
 

      The system of Eqs. (5.4.20) � (5.4.22) together with the boundary conditions in 

Eq. (5.4.14) poses an eigenvalue problem for Ma  with Γ , MR , 3M , τ , χ  and 

mχ  as parameters. We employ the Higher Order Rayleigh-Ritz Technique (HORT) 

discussed in Chapter IV to obtain the eigenvalue and the associated wavenumber. 

To this end, we expand w(z), T(z) and )(zΦ  in a series of trial functions    
 

           
 1

( ) ( )
n

i i
i

w z α w z
=

= ∑ , 
 1

( ) ( )
n

i i
i

T z β T z
=

= ∑   and  
 1

( ) ( )
n

i i
i

Φ z γ Φ z
=

= ∑ ,      (5.4.23) 

 
where , andi i iα β γ  are constants, and ( ) , ( )i iw z T z  and i ( )Φ z  are trial functions. 

We choose the following trial functions  

 

            
i 11 1

2 2iw z z
+

  = − +  
  

,      
i1

2iT z = + 
 

,      i
iΦ z=                                

 

guided by the boundary conditions in Eq. (5.4.14) and variational considerations. In 

the succeeding section, we discuss an analogy for Marangoni instability problems 

between variable-viscosity ferromagnetic and dielectric liquids in the presence of 

thermal radiation.    
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5.5 ANALOGY FOR RADIATION-AFFECTED MARANGONI 
CONVECTION BETWEEN FERROMAGNETIC AND  
DIELECTRIC  LIQUIDS 

 

      The system of equations of electrohydrodynamics delineating the radiation-

affected Marangoni instability situation in a variable-viscosity dielectric liquid 

reads as 

 0. q
→

∇ = ,                                          (5.5.1) 
 

 ( ) ( )o , ,. . . Trq q q p P E E T q q
t

ρ µ
→ →→→ →→ →

   ∂     + ∇ = −∇ + ∇ + ∇ + ∇∇       ∂    
 

                    

                      (5.5.2) 
 

 2
o 1 o.V E V E

r

T Gρ C q T k T ρ C
t s

→ ∂  + ∇ = ∇ +  ∂   
,                         (5.5.3) 

 

 0. D
→

∇ = ,  0E
→ →

∇× = ,                                                                     (5.5.4) 
 

 oD E P
→ → →

= +ε ,   ( )o 1rP Eε ε
→ →

= − ,                                                       (5.5.5) 
 
 ( )(1 )r e ae T Tε χ= + − − ,                                                                              (5.5.6) 
 

( ) ( )2 2
1 1 2( , ) 1 aµ E T µ δ E E δ T T = + − − −  o ,                                (5.5.7) 

 
o o( ) ( ) ( )E T aσ E,T σ σ E E σ T T= + − − − ,                                             (5.5.8) 

 

 ( ) ( )a B
dI r K P I r

d s

→
→ = −  

,                                                          (5.5.9) 

 

 ( )
s

dI rG d
ds

ω
→

= − ∫ .                                               (5.5.10) 

 
      Application of linear stability analysis yields the following dimensionless 

equations     
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( ) ( ) ( )
( ) [ ]

2 2 2 2 2 2

22 2 2 2

1 2 4

1 0 , (5.5.11)E

wD a Γ D a w Γ z D a Dw
Pr t

Γ z D a w R a DΦ T

∂− + + + −
∂

 − − − − − = 

 

 
2

2 2 2 2
1 2( ) ( ) ( )

1k k
T τD a χ δ δ D a T f z w
t χ

  ∂  = − − − − +   ∂ +   
,          (5.5.12) 

 
2 2( ) 0D a Φ DT− − = ,                                                                      (5.5.13) 

 

where 
2 2 4

o o

1 (1 )E
e

e E dR ε β β
µ κ χ

=
+

 is the electric Rayleigh number and the remaining 

parameters are as defined in Chapter II. Equations (5.5.11) � (5.5.13) are solved 

subject to the boundary conditions 
 

2 2 2 21 0

1     and 0 at ,
1 2

10 at ,
1 2

E

e

e

w Γ z D w a MaT a Ma DΦ

aΦDT Bi T DΦ T z
χ

aΦw Dw T DΦ z
χ


  = − + − =  


= − + − = = + 


= = = − = = − 

+ 

                (5.5.14) 

 

where 
2

o

1 (1 )
E

E
m

eE dMa σ β
µ κ χ

=
+

 is the electric Marangoni number which is assumed 

negligible. The analogy between �Marangoni-ferroconvection� and �Marangoni- 

electroconvection� in the presence of thermal radiation can easily be understood if 

we compare the set of Eqs. (5.4.11) � (5.4.14) and the set of Eqs. (5.5.11) � 

(5.5.14). It is perceptible that one can recover the equations of the latter from those 

of the former when one replaces MR  by ER , HMa  by EMa , 3M  by 1 and mχ  by 

eχ . In view of this analogy, there is no need to study the latter problem in isolation. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1:  Configuration of the problem. 
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Figure 5.2:  β β  as a function of the vertical coordinate z for different values of         

the conduction-radiation parameter χ  and for τ  = 10. 
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Figure 5.3:  β β  as a function of the vertical coordinate z for different values of         

the absorptivity parameter τ  and for χ  = 210 . 
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Figure 5.4:  Plot of critical thermal Rayleigh number Rc versus τ  for M1  = 10,    

M3 = 1, mχ  = 1, and for different values of χ  and effective viscosity 
parameter Γ  (transparent case).    
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Figure 5.5:  Plot of critical wavenumber ac versus τ  for M1  = 10,  M3 = 1, mχ  = 1, 
and for different values of χ  and Γ  (transparent case).    

τ 

τ 

τ 

χ  = 101

χ  = 103

χ  = 105

Γ  = �2, �1, 0, 1, 2 

Γ  = �2, �1, 0, 1, 2 

Γ  = �2, �1, 0, 1, 2 

ac 

ac 

ac 



10-1 100 101 102 103

0

1x106

2x106

3x106

4x106

5x106

 
 
 

10-1 100 101 102 103

0

1x106

2x106

3x106

4x106

5x106

 
 
 

10-1 100 101 102 103

0

1x106

2x106

3x106

4x106

5x106

 

 
 

Figure 5.6:   Plot of Rc versus τ  for Γ   = 1, M3 = 1, mχ  = 1, and for different values 
of χ  and buoyancy-magnetization parameter M1 (transparent case).    
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Figure 5.7:  Plot of ac versus τ  for Γ   = 1,  M3 = 1, mχ  = 1, and for different values 
of χ  and M1 (transparent case).    
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Figure 5.8:   Plot of Rc versus τ  for M1 = 10, M3 = 1, mχ  = 1, and for different 

values of χ  and Γ  (opaque case).    
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Figure 5.9:  Plot of ac versus τ  for M1  = 10,  M3 = 1, mχ  = 1, and for different 
values of χ  and Γ  (opaque case).    
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Figure 5.10:  Plot of Rc versus τ  for Γ   = 1, M3 = 1, mχ  = 1, and for different   
values of χ  and M1 (opaque case).    
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Figure 5.11: Plot of ac versus τ  for Γ   = 1, M3 = 1, mχ  = 1, and for different     
values of χ  and M1 (opaque case).    
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Figure 5.12: Plot of critical thermal Marangoni number Mac versus χ  for M1 = 10, 

M3 = 1, mχ  = 1, Bi = 0, τ  = 1 and for different values of Γ  
(transparent case).    
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Figure 5.13: Plot of  ac versus χ  for M1 = 10, M3 = 1, mχ  = 1, Bi = 0, τ  = 1 and 
for different values of Γ  (transparent case).    
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Figure 5.14: Plot of Mac versus χ  for M1 = 10, M3 = 1, mχ  = 1, Γ = 1, τ  = 1 and 
for different values of Bi (transparent case).    
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Figure 5.15:  Plot of ac versus χ  for M1 = 10, M3 = 1, mχ  = 1, Γ  = 1, τ  = 1 and 

for different values of Bi (transparent case).    
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Figure 5.16: Plot of Mac versus τ  for M1 = 10, M3 = 1, mχ  = 1, Bi = 0, χ  = 100 
and for different values of Γ  (transparent case).    
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Figure 5.17: Plot of  ac versus τ  for M1 = 10, M3 = 1, mχ  = 1, Bi = 0, χ  = 100 and 
for different values of Γ  (transparent case).    
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Figure 5.18: Plot of Mac versus τ  for M1 = 10, M3 = 1, mχ  = 1, Γ = 1, χ  = 100 

and for different values of Bi (transparent case).    
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Figure 5.19:  Plot of ac versus τ  for M1 = 10, M3 = 1, mχ  = 1, Γ  = 1, χ  = 100 and 
for different values of Bi (transparent case).    
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Figure 5.20: Plot of Mac versus χ  for M1 = 10, M3 = 1, mχ  = 1, Bi = 0, τ  = 1 and 
for different values of Γ  (opaque case).    
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Figure 5.21: Plot of  ac versus χ  for M1 = 10, M3 = 1, mχ  = 1, Bi = 0, τ  = 1 and 

for different values of Γ  (opaque case).    
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Figure 5.22: Plot of Mac versus χ  for M1 = 10, M3 = 1, mχ  = 1, Γ = 1, τ  = 1 and 
for different values of Bi (opaque case).    
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Figure 5.23: Plot of  ac versus χ  for M1 = 10, M3 = 1, mχ  = 1, Γ = 1, τ  = 1 and for 
different values of Bi (opaque case).    
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Figure 5.24: Plot of Mac versus τ  for M1 = 10, M3 = 1, mχ  = 1, Bi = 0, χ  = 100 
and for different values of Γ  (opaque case).    
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Figure 5.25: Plot of  ac versus τ  for M1 = 10, M3 = 1, mχ  = 1, Bi = 0, χ  = 100 and 
for different values of Γ  (opaque case).    
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Figure 5.26: Plot of Mac versus τ  for M1 = 10, M3 = 1, mχ  = 1, Γ = 1, χ  = 100 
and for different values of Bi (opaque case).    
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Figure 5.27:  Plot of ac versus τ  for M1 = 10, M3 = 1, mχ  = 1, Γ  = 1, χ  = 100 and 
for different values of Bi (opaque case).    

τ 

Mac 

τ 

ac 

Bi = 10 

5 

0 

Bi = 10 
5 

0 



 
 
Table 5.1 :  Critical thermal Rayleigh number ( cR ) and critical wavenumber ( ca ) for a variable viscosity ferromagnetic   
                    liquid with thermal radiation relating to the transparent case when the layer is bounded by free-free boundaries  
                    and 1M  = 10, τ  = 100. 
 
 
 

Γ  =  – 1 Γ  =  0 Γ  = 1  
χ  

 
mχ  

 
M3 cR  ca  cR  ca  cR  ca  

 
1 
 

1 
5 
25 

54126.29
42707.96
38690.65

4.019
3.551
3.273

47733.17 
37425.19 
33817.71 

3.935
3.499
3.239

41705.02
32536.97
29361.27

3.868
3.469
3.231

 
 

101 

 
5 
 

1 
5 
25 

57269.43
43011.09
38709.87

4.234
3.583
3.275

50599.07 
37692.42 
33833.91 

4.136
3.528
3.242

44272.31
32766.93
29374.48

4.052
3.495
3.233

 
1 
 

1 
5 
25 

58882.03
46471.71
42102.39

4.019
3.551
3.273

51927.21 
40724.52 
36801.81 

3.935
3.499
3.239

45369.55
35406.41
31953.92

3.868
3.469
3.231

 
 
 

102  
5 
 

1 
5 
25 

62311.299
46803.507
42123.54

4.235
3.583
3.276

55033.97 
41017.03 
36819.64 

4.136
3.528
3.242

48170.55
35658.14
31968.47

4.053
3.495
3.233

 
1 
 

1 
5 
25 

59235.96
46782.93
42388.65

4.017
3.551
3.273

52238.57 
41000.57 
37058.51 

3.933
3.499
3.239

45641.51
35649.56
32182.57

3.867
3.469
3.231

 
 

103 
 
5 
 

1 
5 
25 

62721.23
47123.55
42410.72

4.234
3.583
3.275

55415.84 
41300.87 
37077.11 

4.135
3.528
3.242

48487.48
35908.05
32197.75

4.052
3.495
3.233

 



 
 
 
Table 5.2 :  Critical thermal Rayleigh number ( cR ) and critical wavenumber ( ca ) for a variable viscosity ferromagnetic   
                    liquid with thermal radiation relating to the opaque case when the layer is bounded by free-free boundaries  
                    and 1M  = 10, τ  = 100. 
 
 
 

Γ  =  – 1 Γ  =  0 Γ  = 1  
χ  

 
mχ  

 
M3 cR  ca  cR  ca  cR  ca  

 
1 
 

1 
5 
25 

1336.25
952.90
800.43

2.727
2.506
2.294

1170.85 
833.86 
701.47 

2.737
2.523
2.320

1021.74
728.15
614.69

2.765
2.558
2.367

 
 

101 

 
5 
 

1 
5 
25 

1498.29
969.43
801.54

2.884
2.538
2.297

1309.94 
847.59 
702.35 

2.886
2.553
2.323

1139.59
739.34
615.36

2.902
2.586
2.369

 
1 
 

1 
5 
25 

12261.04
8743.99
7344.98

2.727
2.506
2.294

10743.26 
7651.61 
6436.88 

2.737
2.523
2.320

9375.03
6681.53
5640.56

2.765
2.558
2.367

 
 
 

102  
5 
 

1 
5 
25 

13748.39
8895.76
7355.18

2.884
2.538
2.297

12020.01 
7777.63 
6444.92 

2.886
2.553
2.323

10456.78
6784.29
5646.73

2.902
2.586
2.369

 
1 
 

1 
5 
25 

121258.18
86489.46
72654.09

2.727
2.506
2.294

106244.08 
75682.46 
63670.68 

2.737
2.523
2.320

92710.09
66085.73
55793.21

2.765
2.558
2.367

 
 

103 
 
5 
 

1 
5 
25 

135984.32
87993.94
72755.45

2.884
2.538
2.297

118884.83 
76931.69 
63750.51 

2.886
2.553
2.323

103420.09
67104.59
55854.54

2.902
2.586
2.369

 



 

 
 
 
 
 
Table 5.3: Critical thermal Marangoni number ( cMa ) and critical wavenumber                  

( )ca  for a variable viscosity ferromagnetic liquid with thermal radiation 
and  χ = 100, mχ  = 1, 3M  = 1, Bi = 0, Γ = 1.    

 
 

Transparent case Opaque case  
1M  

 
τ cMa  ca  cMa  ca  

 
10 

10 –1 

100 

101 
102 

1413.95
147.46
145.56

24785.51

1.909
2.214
7.973

13.769

142593.69 
12962.55 

2793.49 
6685.034 

1.908 
2.056 
2.304 
2.066 

 
50 

10 –1 

100 

101 
102 

1411.85
145.39
145.28

24785.42

1.910
2.224
7.954

13.769

142591.59 
12960.61 

2791.98 
6683.10 

1.908 
2.056 
2.304 
2.066 

 
50 

10 –1 

100 

101 
102 

1409.22
142.79
144.93

24785.30

1.912
2.234
7.931

13.769

142588.97 
12958.169 

2790.09 
6680.69 

1.908 
2.056 
2.305 
2.066 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Table 5.4 :  Critical thermal Marangoni number ( cMa ) and critical wavenumber ( ca ) for a variable viscosity ferromagnetic   
                    liquid with thermal radiation relating to the transparent case and 1M  = 10, τ  = 1, Bi = 0. 
 
 
 

Γ  =  – 1 Γ  =  0 Γ  = 1  
χ  

 
mχ  

 
M3 cMa  ca  cMa  ca  cMa  ca  

 
1 
 

1 
5 
25 

180.12
179.86
179.64

2.103
2.103
2.101

158.69
158.42
158.22

2.142 
2.142 
2.140 

135.05
134.79
134.60

2.202
2.202
2.200

 
 

101 

 
5 
 

1 
5 
25 

180.24
179.89
179.65

2.103
2.103
2.101

158.81
158.46
158.22

2.142 
2.142 
2.140 

135.15
134.82
134.60

2.202
2.202
2.200

 
1 
 

1 
5 
25 

196.80
196.53
196.33

2.115
2.115
2.114

173.34
173.07
172.87

2.154 
2.154 
2.153 

147.46
147.20
147.01

2.215
2.215
2.213

 
 
 

102  
5 
 

1 
5 
25 

196.92
196.57
196.33

2.115
2.115
2.114

173.46
173.11
172.88

2.155 
2.155 
2.153 

147.56
147.23
147.02

2.216
2.215
2.213

 
1 
 

1 
5 
25 

200.67
200.40
200.19

2.116
2.116
2.115

176.74
176.48
176.27

2.156 
2.156 
2.155 

150.34
150.09
149.90

2.217
2.217
2.215

 
 

103 
 
5 
 

1 
5 
25 

200.79
200.44
200.20

2.117
2.116
2.115

176.86
176.51
176.28

2.156 
2.156 
2.155 

150.45
150.12
149.90

2.217
2.217
2.215

 
 



 
 
 
Table 5.5 :  Critical thermal Marangoni number ( cMa ) and critical wavenumber ( ca ) for a variable viscosity ferromagnetic   
                    liquid with thermal radiation relating to the opaque case and 1M  = 10, τ  = 1, Bi = 0. 
 
 
 

Γ  =  – 1 Γ  =  0 Γ  = 1  
χ  

 
mχ  

 
M3 cMa  ca  cMa  ca  cMa  ca  

 
1 
 

1 
5 
25 

1728.27
1727.99
1727.77

1.961
1.961
1.961

1527.69 
1527.43 
1527.21 

1.998
1.998
1.998

1306.38
1306.12
1305.92

2.055
2.055
2.055

 
 

101 

 
5 
 

1 
5 
25 

1728.38
1728.04
1727.78

1.961
1.961
1.961

1527.81 
1527.46 
1527.21 

1.998
1.998
1.998

1306.49
1306.15
1305.92

2.055
2.055
2.055

 
1 
 

1 
5 
25 

17149.64
17149.37
17149.15

1.962
1.962
1.962

15159.14 
15158.84 
15158.62 

1.999
1.999
1.999

12962.55
12962.29
12962.09

2.056
2.056
2.056

 
 
 

102  
5 
 

1 
5 
25 

17149.76
17149.41
17149.15

1.962
1.962
1.962

15159.22 
15158.87 
15158.62 

1.999
1.999
1.999

12962.66
12962.33
12962.09

2.056
2.056
2.056

 
1 
 

1 
5 
25 

173103.92
173103.65
173103.43

1.962
1.962
1.962

153010.53 
153010.26 
153010.05 

1.999
1.999
1.999

130837.33
130837.07
130836.87

2.056
2.056
2.056

 
 

103 
 
5 
 

1 
5 
25 

173104.04
173103.69
173103.43

1.962
1.962
1.962

153010.65 
153010.30 
153010.05 

1.999
1.999
1.999

130837.44
130837.10
130836.87

2.056
2.056
2.056

 



 

 
 
 
 
 
 
Table 5.6: Comparison of the present results with those of earlier works for the   

limiting case of a constant-viscosity, nonmagnetic liquid in the absence 
of thermal radiation.        

 

 
 

Present study 
 

 
Pearson 
(1958)       
[Exact 

solution] 

 
Nield (1964) 

[Fourier 
Series] 

Siddheshwar 
and Pranesh 

(2002) 
[Single term 

Rayleigh – Ritz 
technique] 

 
 

Order of 
Rayleigh - 

Ritz 
technique 

cMa     ca  cMa   ca  cMa   ca  cMa  ca  

1 59.29  2.34 
2 78.13 2.03 
3 79.68 1.99 
4 79.61 1.99 
5 79.61 1.99 

 
 

80.00 

 
 

2.00
 

 
 

79.61 
 

 
 

1.99

 
 

78.44 

 
 

2.43 
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CHAPTER  VI 
 

FERROCONVECTION  IN  VISCOELASTIC  LIQUIDS  
 

6.1  INTRODUCTION 
 

      Ferromagnetic/dielectric liquids, which are both thermally and magnetically/ 

electrically responding, are now well known from the viewpoint of smart liquid 

applications (Popplewell, 1984; Rosensweig, 1986; Berkovsky et al., 1993; Tao 

and Roy, 1994; Zhakin, 1997; Kamath and Wereley, 1998; Kamath et al., 1999; 

Zahn, 2001). Exhaustive literature on Rayleigh-Bénard and Marangoni instabilities 

in Newtonian ferromagnetic/dielectric liquids is presently available and the        

same is discussed in Chapter I. The viscoelastic behaviour in commercial 

ferromagnetic/dielectric fluids is particularly important since they exhibit long-term 

stability thereby allowing reproducibility of the experiments. Some recent works 

(Takashima and Ghosh 1979; Agrait and Castellanos, 1986; Kamiyama and Satoh, 

1989; Bacri et al., 1993; Odenbach et al., 1999; Othman, 2001; Othman and Zaki, 

2003) suggest that magnetic/dielectric liquids demonstrate a non-Newtonian 

behaviour in the presence of a magnetic/electric field. Odenbach (1999) 

substantiated that microgravity conditions can amplify the viscoelastic effects in 

magnetic fluids. The non-Newtonian characteristic can also be there in the 

ferromagnetic/dielectric liquid due to the carrier liquid being intrinsically non-

Newtonian. Motivated by this, Siddheshwar (1998; 1999; 2002a; 2002b, 2005a; 

2005b) studied stationary/oscillatory convection in Boussinesq, Oldroyd/Rivlin-

Ericksen, third-grade and Careau-Bird ferromagnetic/dielectric liquids.  

 
      The most famous influence of magnetic fields on magnetic fluids is the increase 

in effective viscosity: the so-called magnetorheological effect. Kamiyama et al., 

(1987) studied experimentally the rheological characteristics of water-, 

hydrocarbon- and diester-based magnetic fluids in the presence of a magnetic field. 

They observed that, unlike the hydrocarbon-based magnetic fluids that behave as a 
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Newtonian fluid, water- and diester-based magnetic fluids exhibit a pseudo-plastic 

characteristic. Recently, Balau et al. (2002) have corroborated the finding of 

Kamiyama et al. (1987) through their experiments that the magnetorheological 

effect is of significant importance in water-based and kerosene-based solutions, and 

in physiological-solution-based magnetic liquids even for moderate strengths of 

applied magnetic field. The works of Kamiyama et al. (1987) and Balau et al. 

(2002) lay emphasis on the need to resort to the use of general equations that 

encompass both Newtonian and viscoelastic descriptions of magnetic fluids if one 

wishes to account for the rheological aspects. The electric field analog of 

magnetorheological effect is known as electrorheological effect (Sun and Rao, 

1996; Klingenberg, 1998; Otsubo and Edamura, 1998; Hanaoka et al., 2002) which 

essentially signifies an upsurge in effective viscosity due to the applied electric 

field. 

 
      Another fact about the viscosity of any carrier liquid decreasing with 

temperature is also well known (Stengel et al., 1982; Gebhart et al., 1988, Platten 

and Legros 1984, Severin and Herwig 1999) and is referred to as thermorheological 

effect. Recently, Siddheshwar (2004) studied the thermorheological effect on 

magnetoconvection in fluids with weak electrical conductivity under 1g and µg 

conditions. It is imperative therefore to investigate the problems of both RBC and 

MC in Newtonian/viscoelastic ferromagnetic/dielectric liquids involving the 

dependency of effective viscosity on temperature and on the magnitude of 

magnetic/electric fields. 

 
      In this chapter Newtonian as well as three viscoelastic descriptions, viz.,  

Jeffrey, Maxwell and Rivlin-Ericksen, for both ferromagnetic and dielectric liquids 

are chosen for demonstrating an analogy between the two smart liquids with the 

aforementioned rheological effects. The work also emphasizes on the need to seek 

unification of several works, wherever possible, in making a general study so that 

limiting cases need not be done in isolation. The analogy that we seek to 

demonstrate is between dc ferroconvection and ac electroconvection. 
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6.2  MATHEMATICAL  FORMULATION 
 

      We consider ferromagnetic and dielectric liquids of viscoelastic type (Jeffrey, 

Maxwell and Rivlin-Ericksen) and of Newtonian type. Each liquid is discussed 

below using the notation of Chapter II and related standard works. 

 

6.2.1  Jeffrey Ferromagnetic Liquid 
 
      We consider an infinite horizontal layer of a Jeffrey ferromagnetic liquid of 

thickness d. The upper plane at z = d/2 and the lower one at  z = � d/2 are 

maintained at constant temperatures oT  and 1 o( )T T T= + ∆  respectively. In 

addition to a temperature gradient, a vertical uniform dc magnetic field, oH
→

, is also 

imposed across the layer (Figure 6.1). The Jeffrey liquid is assumed to have an 

effective variable viscosity µ  that depends on the temperature as well as on the 

magnetic field strength.  

  
      The governing equations for the viscoelastic ferromagnetic fluid of Jeffrey type 

with variable-viscosity in the notation of Chapter II and Chapter IV are    
 

0. q
→

∇ = ,                                                                                                (6.2.1) 
 

( ) ( )

1 o o

2

1 ( )

1 ,

.

. Tr

D q g k p M H
t Dt

H T q q
t

λ ρ ρ µ

λ µ

→ → →∧

→ →

  ∂  + + + ∇ − ∇   ∂   
  ∂= + ∇ + ∇∇    ∂ 

,                  (6.2.2) 

 
2

o 1.V H
Tρ C q T k T
t

→ ∂  + ∇ = ∇  ∂   
,                                                    (6.2.3) 

 
( )o 1 aT Tρ ρ α = − −  ,                   (6.2.4) 

 

0, 0. B H
→ → →

∇ = ∇× = ,                                               (6.2.5) 
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oB M H
→ → → = + 

 
µ ,                                                                                   (6.2.6) 

 
( ) ( )o o 1m aM M H H K T Tχ= + − − − ,                    (6.2.7) 

 

( ) ( )2 2
1 1 o 2( , ) 1 aµ H T µ δ H H δ T T = + − − −  

.                                  (6.2.8) 

 
      The effect of internal heat source and thermal radiation are neglected in writing 

the energy equation (6.2.3). The fluid layer is initially quiescent. Let this state be 

slightly disturbed. Following the classical lines of linear stability theory discussed 

in the earlier chapters, the non-dimensional equations governing infinitesimal 

perturbations, on application of the normal mode technique discussed in Chapter 

III, may be written as  

 
2 2 2 2 2 2 2 2

2 2 2 21
1 1 1 1

(1 ) ( ) 4 ( ) 2 ( )
σ ( ) (1 ) 0 , (6.2.9)

Γ z D a w Γ z D a Dw Γ D a w
G D a w R M G a T R M G a DΦ
Pr

− − − − − +

− − − + + =

    
2 2( ) 0D a σ T w− − + = ,                                               (6.2.10) 

 

( )2 2
3 0D M a Φ DT− − = ,                                               (6.2.11) 

 

where dD
d z

= , 1
1

1
V

V

Γ σG
Γ η σ

+=
+

 and the remaining quantities are as defined 

earlier. Equations (6.2.9) � (6.2.11) are solved subject to the boundary conditions   

 
2 2 2 21 0

1 and 0 on ,
1 2

10 on .
1 2

H

m

m

w Γ z D w a MaT a Ma DΦ DT

aΦDΦ T z
χ

aΦw Dw T DΦ z
χ

 = − + − = =  

+ − = = +

= = = − = = − + 

                  (6.2.12) 

 
      In the numerical calculations pursued later we assume 1HMa ! . It should be 

noted that in the case of RBC (Ma being zero), the thermal Rayleigh number R and 
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the buoyancy-magnetization parameter 1M  come into play along with other 

parameters arising in the problem. On the other hand, in the case of MC (R being 

zero), the thermal Marangoni number Ma and the magnetic Rayleigh number 

1( )MR RM=  come into picture. Equations (6.2.9) � (6.2.12) constitute an 

eigenvalue system for the present problem and take care of most non-isothermal 

situations of the RBC and MC in different continuums describing ferromagnetic 

liquids.  

 

6.2.2  Analogy Between Ferromagnetic and Dielectric Liquids of Jeffrey Type  
 

      The eigenvalue system for the Jeffrey dielectric liquid (with the effective 

viscosity being thermally and electrically responding), following the analysis of 

Chapter II and Chapter IV, can be written as 
 

2 2 2 2 2 2 2 2

2 2 2 21
1 1

(1 ) ( ) 4 ( ) 2 ( )
σ ( ) ( ) 0 , (6.2.13)E E

Γ z D a w Γ z D a Dw Γ D a w
G D a w R R G a T R G a DΦ
Pr

− − − − − +

− − − + + =
    

 
2 2( ) 0D a σ T w− − + = ,                                               (6.2.14) 

 

( )2 2 0D a Φ DT− − = ,                                                          (6.2.15) 

 
where the physical quantities appearing in the above equations have their usual 

meaning outlined in the context of variable-viscosity dielectric liquids. Equations 

(6.2.13) � (6.2.15) are solved subject to the boundary conditions   
 

2 2 2 21 0

1 and 0 on ,
1 2

10 on .
1 2

E

e

e

w Γ z D w a MaT a Ma DΦ DT

aΦDΦ T z
χ

aΦw Dw T DΦ z
χ


  = − + − = =  


+ − = = + 


= = = − = = − 

+ 

                  (6.2.16) 
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      We now discuss the analogy between RBC and MC in Jeffrey ferromagnetic 

and Jeffrey dielectric liquids. Comparing the set of Eqs. (6.2.9) � (6.2.12) with that 

of Eqs. (6.2.13) � (6.2.16), it is quite evident that the latter set can be obtained from 

the former by setting 3 1M = , and replacing the product 1R M  by ER , HMa  by 

EMa  and mχ  by eχ .   

 
      We now consider Maxwell and Rivlin-Ericksen liquids that are essentially 

limiting cases of the rather general equations considered above for both 

ferromagnetic and dielectric liquids.  

 

6.2.3  Maxwell Ferromagnetic/Dielectric Liquid 
 

      The eigenvalue equations for this liquid are Eqs. (6.2.10) � (6.2.12) together 

with the following equation that can be obtained from Eq. (2.1.20) in the limit of 

2 0λ →  

 
2 2 2 2 2 2 2 2

2 2 2
1

2
1

(1 ) ( ) 4 ( ) 2 ( )

(1 ) σ ( ) (1 ) (1 )

(1 ) 0 .

V
V

V

Γ z D a w Γ z D a Dw Γ D a w

Γ σ D a w R M Γ σ a T
Pr

RM Γ σ a DΦ

− − − − − +

+− − − + +

+ + =

                  (6.2.17)       

 

      It should be noted that the equations for Maxwell ferromagnetic liquids can 

easily be obtained by taking 0η =  in the corresponding equations for the Jeffrey 

liquids. Further, the equations for Maxwell dielectric liquids can be obtained by 

adopting the procedure explained in Section 6.2.2.      

 

6.2.4  Rivlin-Ericksen  Ferromagnetic/Dielectric  Liquid      
  

      The eigenvalue equations for this liquid are Eqs. (6.2.10) � (6.2.12) together 

with the following equation that can be obtained from Eq. (2.1.20) in the limit of 

1 0λ →  and 2 2 1λ µ µ→   
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2 2 2 2 2 2 2 2

2 2 2 2
1 1

1 (1 ) ( ) 4 ( ) 2 ( )

σ ( ) (1 ) 0 , (6.2.18)

Qσ Γ z D a w Γ z D a Dw Γ D a w
Pr

D a w R M a T R M a DΦ
Pr

   + − − − − − +    

− − − + + =
           

 
where 2

2 oQ dµ ρ=  and other quantities are as defined earlier. We note that the 

quantity Q characterizes viscoelasticity of the Rivlin-Ericksen liquid (Siddheshwar 

1999; 2002b; Siddheshwar and Srikrishna 2002). It is seen from Eqs. (6.2.9) and 

(6.2.18) that the equations for the Rivlin-Ericksen ferromagnetic liquid can be 

obtained from those of Jeffrey ferromagnetic liquid by the limiting process 

0, andV V
QΓ η Γ η
Pr

→ → ∞ → . In view of the analogy discussed earlier, we 

may write down the governing equations for the Rivlin-Ericksen dielectric liquid 

from the corresponding equations for the ferromagnetic liquids.  

 

6.2.5  Newtonian Ferromagnetic/Dielectric Liquids        
 

      The eigenvalue equations for the Newtonian ferromagnetic liquid are Eqs. 

(6.2.10) � (6.2.12) together with the following equation that can be obtained from 

Eq. (2.1.20) in the limit of 1 2λ λ→  

 

2 2 2 2 2 2 2 2

2 2 2 2
1 1

(1 ) ( ) 4 ( ) 2 ( )

σ ( ) (1 ) 0 , (6.2.19)

Γ z D a w Γ z D a Dw Γ D a w

D a w R M a T R M a DΦ
Pr

 − − − − − + 

− − − + + =

 

      It is unambiguously clear from Eqs. (6.2.9) and (6.2.19) that, the assumption    

G = 1, i.e., both and are zeroVΓ η  or alternatively 1η = , leads to the latter 

equation and the analogy discussed in Section 6.2.2 makes it possible to extend the 

results of Newtonian ferromagnetic liquid to those of Newtonian dielectric liquid. 

The eigenvalue equations pertaining to the work of Finlayson (1970), who studied 

the onset of RBC in Newtonian ferromagnetic fluids, can be obtained by taking     

0Γ =  in Eq. (6.2.19). From Sections (6.2.1) � (6.2.5), it is obvious that if one 

makes a study of the RBC and MC in Jeffrey ferromagnetic liquids, then one 
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essentially has made the study in Maxwell / Rivlin-Ericksen / Newtonian 

ferromagnetic liquids. Further, in view of the analogy the corresponding studies in 

dielectric liquids are redundant.  

 

6.3  STABILITY  ANALYSIS 
 

      In the light of the foregoing discussions, it would suffice to examine the 

thermo- and magneto-rheological effects on RBC and MC in Jeffrey ferromagnetic 

liquids. In the following Sections 6.3.1 and 6.3.2, we shall discuss the stationary 

and oscillatory instabilities of the problem under consideration with the help of 

Eqs. (6.2.9) � (6.2.12).        

 

6.3.1  Stationary Instability 

 
      In this section, we discuss the method of solution pertaining to the stationary 

instability ( 0σ = ). Since the presence of space varying coefficients in Eq. (6.2.9) 

and the asymmetric boundary conditions given in Eq. (6.2.12) render the problem 

analytically intractable, we employ higher order Rayleigh-Ritz technique (HORT) 

to compute the critical values. To this end, we expand w(z), T(z) and ( )zΦ  in a 

series of trial functions as    

 

        
 1

( ) ( )
n

i i
i

w z α w z
=

= ∑ ,   
 1

( ) ( )
n

i i
i

T z β T z
=

= ∑   and   
 1

( ) ( )
n

i i
i

Φ z γ Φ z
=

= ∑ ,        (6.3.1) 

 
where , andi i iα β γ  are constants, and ( ) , ( )i iw z T z  and i ( )Φ z  are trial functions. 

We choose the following trial functions  
 

            
i 11 1

2 2iw z z
+

  = − +  
  

,     
i + 13( 1)

4iT z z = − − 
 

,     i
iΦ z=                                

 
guided by the boundary conditions in Eq. (6.2.12) and variational considerations. 

Application of HORT to Eqs. (6.2.9) � (6.2.11) leads to a system of homogeneous 

equations using which we get the critical eigenvalues.              
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6.3.2  Oscillatory  Instability 
 
      We now discuss the possibility of the existence of overstable motions. 

Assuming σ iω=  in Eqs. (6.2.9) � (6.2.11) and applying the first order Rayleigh-

Ritz technique ( 1i j= = ) discussed in Chapter IV to the resulting equations, we 

obtain (after some heavy algebra) the following expression for the thermal 

Rayleigh number R   

 

 
[ ]

22
9 1 6 1 1 2 7 3 4 1 3

2
4 1 4 9 1 5 8(1 )

XX X X N X N X MaX X N i N
Pr

R
a X M X X M X X

ω ω
   + − + +   

   =
+ +

,                    

                                                                                                                           (6.3.2) 
 
where 
 

 

( )
( ) ( )

22 2 2 2 2 4
111 1 11

2 24 2211 11

3 2
1 1 1 1

( ) 2 1

1 2 2

4 4 ,

w wD w a Γ z D w z D wX Γ

DwΓ z wa w w Γ Γa

w z D w w z DwΓ Γa

−= − −

−+ + −

− +

 

 

 2 2 2
2 1 1( )X Dw a w= + ,       ( )

2

3 11
4 1 1( ) ( )

4 2 2
aX Dw T
Γ

=
−

, 

 
 4 1 1X w T= ,     5 1 1X w DΦ= ,     2 2 2

6 1 1( )X DT a T= +   , 

 

 2
7 1X T= ,    8 1 1 1 1

1 1( ) ( )
2 2

X Φ DT Φ T= − ,      

 

 
2 2

2 2 2
9 1 3 1 1 1

1 1( )
1 2 2m

aX DΦ M a Φ Φ Φ
χ

    −    = + + +      +         
, 

 

 
2 2

1 2 2
1
1

V

V

Γ ηωN
Γ ω

+=
+

,    2 2 2
(1 )

1
V

V

Γ ηN
Γ ω

−=
+

, 

 

 2 6
3 1 7 1 1 6 2 3 4 2

X XN X X N X X N Ma X X N
Pr

= − + − , 



 159

and 
1 2

1 2
u v uv dz

−
= ∫ . Since R  is a real quantity, the imaginary part of Eq. (6.3.2) 

has to vanish. This gives us two possibilities:  

 
 (i)  30, 0Nω ≠ =   (oscillatory instability),    

(ii)  30, 0Nω = ≠   (stationary instability).  
 
      We note that, unlike the problems discussed in Chapters III � V, the condition  

3 0N =  leads to an expression for the square of the frequency of oscillations  

 

 
{ }

[ ]
1 6 3 4 1 7 2 62
2

2 6 1 7

(1 )V

V

Pr Γ η X X MaX X X X X X
ω

Γ X X Pr ηX X

 − + − − =
+

.              (6.3.3)      

 
      The above expression for 2ω  is in turn substituted in the real part of the 

expression for R given in Eq. (6.3.2) thereby yielding the oscillatory thermal 

Rayleigh number oR . 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1:  Configuration of the problem. 
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Figure 6.2:  Plot of critical thermal Rayleigh number c

sR  versus effective viscosity 
parameter Γ  for M3 =1, mχ = 1 and for different values of buoyancy-
magnetization parameter M1. 
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Figure 6.3: Plot of critical wavenumber ac versus Γ  relating to stationary   
instability for M3 =1, mχ = 1 and for different values of M1. 
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Figure 6.4:  Plot of critical thermal Marangoni number Mac versus Γ  relating to    

stationary instability for M3 =1, mχ = 1 and for different values of M1. 
 
 
 

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
1.92

1.98

2.04

2.10

2.16

2.22

 
 
 
Figure 6.5:   Plot of ac versus Γ  relating to stationary instability for M3 =1, mχ = 1 

and for different values of  M1. 
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Figure 6.6:  Plot of o
cR  versus Γ  for M3 =1, mχ = 1 and for different values of  M1. 
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Figure 6.7:  Plot of  ac versus Γ  relating to oscillatory instability for M3 =1, mχ = 1 
and for different values of M1. 
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Figure 6.8:  Plot of critical frequency of oscillations ωc versus Γ  for M3 =1,     

mχ = 1 and for different values of M1. 
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Table 6.1:  Limiting cases of the present study for a constant-viscosity liquid.  

 
 
      Nature of    
           liquid 
                →→→→ 
Type of  
  liquid   ↓↓↓↓  

 
 

Ferromagnetic 
liquid 

Dielectric liquid 
[Replace RM1 by RE 

and M3 by 1 in    Eqs. 
(6.2.9)-(6.2.11)] 

Ordinary viscous liquid
[Set M1 and M3 equal to 
0 and 1 respectively in 
Eqs. (6.2.9)-(6.2.11)] 

 
 

Newtonian 

G1 = 1 in Eqs. 
(6.2.9)-(6.2.11) 

  (Finlayson, 
1970) 

G1 = 1 in Eqs.   
(6.2.9)-(6.2.11)  

 
(Stiles et al., 1993)  

G1 = 1 in Eqs.   
(6.2.9)-(6.2.11)  

      
(Chandrasekhar, 1961) 

 
 

Maxwell 

η = 0 in Eqs. 
(6.2.9)-(6.2.11)    
(Siddheshwar, 
1998; 2002b) 

η = 0 in Eqs.  
(6.2.9)-(6.2.11)       

 
(Siddheshwar, 2002b) 

η = 0 in Eqs.  
(6.2.9)-(6.2.11)       

 
(Vest and Arpaci, 1969)

 
 

Jeffrey 

Eqs. (6.2.9)-
(6.2.11)  

as they are 
(Siddheshwar, 

2002b) 

Eqs. (6.2.9)-(6.2.11)   
as they are 

 
(Takashima and 
Ghosh, 1979) 

Eqs. (6.2.9)-(6.2.11)  
as they are 

 
(Sokolov and Tanner, 

1972)         
 
 

Rivlin - 
Ericksen 

ΓV → 0, η  → ∞, 
(ΓV η = Q / Pr)  

in Eqs.  
(6.2.9)-(6.2.11)    
(Siddheshwar 
1999; 2002b) 

ΓV → 0, η  → ∞,  
(ΓV η = Q / Pr)  

in Eqs.   
(6.2.9)-(6.2.11) 

      
(Siddheshwar, 2002b) 

ΓV → 0, η  → ∞,  
(ΓV η = Q / Pr)  

  in Eqs.  
(6.2.9)-(6.2.11) 

(Siddheshwar and 
Srikrishna, 2002)       

 



 
 
 
 
Table 6.2 :  Critical values for the oscillatory Rayleigh-Bénard convection in a viscoelastic ferromagnetic liquid  
                     with variable viscosity and 1M  = 10, M3 =1, mχ = 1. 
 
 
 

Γ  =  – 1 Γ  =  0 Γ  = 1  
VΓ  

 
η  

 
Pr o

cR  ca  cω  o
cR  ca  cω  o

cR  ca  cω  

0.3 83.39 3.376 7.842 80.83 3.519 8.219 77.81 3.666 8.589
0.4 73.82 3.251 6.962 71.93 3.395 7.275 69.58 3.544 7.585
0.5 

 
0.3 

 
10 

67.95 3.161 6.295 66.46 3.307 6.568 64.54 3.457 6.840
0.3 83.39 3.376 7.842 80.83 3.519 8.219 77.81 3.666 8.589
0.4 99.48 3.251 5.776 96.95 3.396 6.117 93.82 3.544 6.452

 
0.3 

0.5 

 
10 

114.96 3.163 4.167 112.47 3.308 4.484 109.256 3.457 4.796
10 83.39 3.376 7.842 80.83 3.519 8.219 77.81 3.666 8.589
50 83.73 3.361 8.258 81.21 3.506 8.691 78.21 3.653 9.127

 
0.3 

 
0.3 

100 83.79 3.359 8.313 81.28 3.503 8.753 78.29 3.651 9.199
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CHAPTER  VII 
 

RESULTS, DISCUSSIONS AND GENERAL CONCLUSIONS  
 
       
      In the thesis we have studied Rayleigh-Bénard and Marangoni instability 

problems of Newtonian/viscoelastic ferromagnetic/dielectric liquids. Particular 

attention has been given to study the thermorheological and 

magnetorheological/electrorheological effects, the effect of internal heat source 

(sink), the effect of thermal radiation and viscoelastic effect. Keeping in mind 

various application situations, the following types of boundaries have been 

considered. 

 
   (i)  free-free 

  (ii)  free-rigid   and 

 (iii)  rigid-rigid. 
 
These boundaries may either be isothermal or adiabatic.   

 
      In what follows we discuss the results of Chapter III � VI one after the other 

followed by important conclusions drawn from the study. 

 

 

Chapter III:   Linear  and  nonlinear  ferro-  and  electro-convection 
 

      In the chapter linear and nonlinear Rayleigh-Bénard ferroconvection has been 

investigated using the method of normal modes and a truncated representation of 

double Fourier series respectively. The linear theory predicts the condition for the 

onset of convection, while the nonlinear theory helps in quantifying heat transfer 

and in understanding the transition from periodic oscillations to a behaviour that is 

apparently chaotic, i.e., solutions are aperiodic and exhibit dependence on the 

initial conditions.         
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      Before embarking on the results of this chapter, we first turn our attention to the 

possible values of magnetic parameters arising in the study. Table 2.3 documents 

these quantities for two types of ferro-liquids: (i) hydrocarbon-based ferro-liquid, 

(ii) water-based ferro-liquid. A few general observations on these liquids are in 

order. The values of heat capacity, thermal conductivity, viscosity and 

pyromagnetic coefficient are higher for water-based liquids compared to 

hydrocarbon-based ones. As a result the Prandtl number Pr is comparatively higher 

for hydrocarbon-based liquids. This also reiterates our contention earlier that 

oscillatory convection can be discounted. It should be noted that when the thickness 

of the fluid layer 1d ∝ mm, a temperature gradient of about 10-100 1K mm−  is 

necessary to drive Rayleigh-Bénard convection (Weilepp and Brand, 1996). In 

view of this and the data provided in Table 2.3, we have chosen the range 10-1000 

for the buoyancy-magnetization parameter 1M . The parameter 1M  is the ratio of 

magnetic force to gravitational force. The chosen values of the non-buoyancy-

magnetization parameter 3M  are 1, 5, 10 and 25 (Finlayson, 1970). The parameter 

3M  represents the departure of magnetic equation of state from linearity. The range 

of values of magnetic susceptibility, mχ , is 1 to 5 for most ferromagnetic liquids 

(Finlayson, 1970). In arriving at the value of 1M , as reported in the Table 2.3, we 

have assumed 1mχ = . A higher value of mχ  means a smaller value of 1M .  

  
      We have substantiated in Chapter III, in the case of linear theory, that stationary 

mode of convection is preferred to oscillatory mode. The critical values relating to 

the stationary instability for different values of magnetic parameters 1M  and 3M  

are listed in Table 3.1. We see from Table 3.1 that the critical Rayleigh number c
sR  

decreases with increase in both 1M  and 3M . Hence both the parameters 1M  and 

3M  have a destabilizing effect on the system. We recall at this juncture that this 

particular result has been proved analytically in Chapter III with the help of the 

parametric perturbation method. We further notice from Table 3.1 that, as the 

magnetic equation of state becomes more nonlinear ( 3M  large), the fluid layer is 
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destabilized slightly. We also observe that the cell size decreases with increasing 

1M  and remains unaltered for large values of 1M . The opposite is true for the 

parameter 3M .        

 
      The streamlines are plotted in Figures 3.2 and 3.3 for different values of 1M  

and 3M  respectively using the first of Eq. (3.4.1) with A of the steady state given 

by Eq. (3.4.21). These figures reiterate the remarks on the wavelength λ  in Table 

3.1.     

 
      The realm of nonlinear convection warrants the quantification of heat transfer. 

This is depicted in the Nusselt-Rayleigh numbers plane in Figures 3.4 and 3.5. We 

observe from these figures that the Nusselt number increases with increasing 1M  

and 3M . This behaviour is consistent with the remarks made in respect of Table 

3.1. Further, computations reveal that finite amplitude sub-critical instability is 

ruled out.  

 
      The truncated representation of Fourier series used for a weakly nonlinear 

stability analysis of ferroconvection yielded a nonlinear autonomous system 

(generalized Lorenz model, Sparrow, 1981) of differential equations, viz., Eqs. 

(3.4.6) � (3.4.8). The conditions under which a saddle point, node or spiral may be 

obtained for the linear autonomous system as has been discussed in Chapter III. 

The nature of the critical points obtained from the linear system reveals information 

about the trajectories in the phase-plane. The nature of these trajectories is retained 

by the nonlinear system but with distortions dictated by the nonlinear terms. 

Further, we analyze finite amplitudes for a possible chaotic motion. Malkus and 

Veronis (1958) established that, for values of R up to ten times the critical value 

c
sR , a steady cellular convection exists in the Boussinesq-nonmagnetic fluid. 

Further, they observed that at R > 10 c
sR , a new instability occurs in the fluid 

producing disordered aperiodic motions, quasi-cellular in appearance. This has 

been interpreted as the onset of some type of turbulence or chaotic motion. It is 
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well known that chaotic motion has been observed prominently in fluids subject to 

temperature gradient, differential rotation, vibrations and other forms of energy 

(Baker and Gollub, 1990). Here, we consider the temperature gradient and the 

magnetic energy to study the chaotic motion. To analyze the periodic or aperiodic 

nonlinear convection, we have taken the value of R to be 658 in our calculations 

which is appreciably greater than the critical value c
sR  for any of the combination 

of magnetic parameters (see Table 3.1 for these critical values).        

 
      As the system of equations (3.4.6)�(3.4.8) is dissipative, there exists a global 

attractor and as all the solutions approach the attractor, the solutions exhibit an 

almost random behaviour (Swinney, 1983). To understand the qualitative effects of 

magnetic parameters 1M  and 3M , and the Prandtl number Pr on the onset of 

nonlinear convection, we have solved the nonlinear autonomous system of 

equations representing the convective process numerically using Mathematica 4.0. 

In what follows we discuss the two key issues, namely, aperiodic solutions and 

sensitive dependence on initial data.     

 
      Figure 3.6 is the plot of Nusselt number, Nu, versus time for different values of 

1M . When 1 10M = , there exists no transient behaviour and the solution begins to 

converge almost at once. When 1 100M = , the oscillations bifurcate into periodic 

doublings after a brief transient period. It may be noted that the periodic doubling is 

one route to chaos (Ott, 1993). As 1M  is further increased to the value of 1000, the 

periodic doubling reaches the accumulation point thereby giving way to a chaotic 

solution. This succession of period doubling and the onset of chaos at an 

accumulation value of a driving parameter is known as the Feigenbaum route and 

has been observed in many experiments (Khayat, 1995b).         

 
      Figure 3.7 illustrates the variations in the Nusselt numbet, Nu, versus time for 

different values of 3M . The periodic doubling bifurcation after a brief transient 

behaviour is obvious for 3M = 1, 5 and 25, hence indicating the destabilizing effect 

of 3M . We notice that the periodic doubling behaviour continues to exist even for 
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higher values of 3M  and does not lead to a chaotic solution. This particular aspect 

should be looked at in conjunction with the result of linear stability theory, viz., the 

fluid layer is destabilized slightly for higher values of 3M .  

 
      Figures 3.8 and 3.9 delineate the variations of the amplitude ( )B t  versus time 

for different values of 1M  and 3M respectively. These figures reiterate the remarks 

made in respect of Figures 3.6 and 3.7.     

 
      The effect of Prandtl number Pr on the variations of the amplitude ( )B t  is 

shown in Figure 3.10. It is clear that increase in the value of Pr gives way to simple 

periodic motion of oscillations which are independent of the transient conditions. 

Thus the effect of increasing Pr is to stabilize the system (Lorenz, 1963).    

 
      To study the sensitive dependence on the initial condition, we consider the plots 

of variations in the Nusselt number, Nu, versus time and the amplitude ( )B t  versus 

time for a fixed value of the parameters arising in the study. The chosen initial 

conditions are (0) 0, (0) 1.0001, (0) 0A B C= = = , a slight departure from the earlier 

chosen initial conditions of ( , , ) (0, 1, 0)A B C = . From Figures 3.11 and 3.12, we 

observe that the behaviour of the two solutions is quite different. The attracting set 

in this case, although of zero volume, has a rather complex structure and is called a 

strange attractor. As the system is sensitive to the initial conditions, the time 

evolution eventually leads to a chaotic motion.  

    
      A phase-space analysis can be carried out on the generalized Lorenz system 

(3.4.6) � (3.4.8) and one can consider its projection on the three phase-planes as 

done by many. This requires the scaling of the equation based on the information 

provided by the critical points. Due to the nonlinear term BC in Eq. (3.4.6) this 

turned out to be prohibitive. In view of the above we resorted to the time-series 

plots of Figures 3.6 � 3.12 as discussed above.     

 
      The chapter reports an analogy between linear and nonlinear Rayleigh-Bénard 

ferroconvection with a dc magnetic field and linear and nonlinear Rayleigh-Bénard 
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electroconvection with an ac electric field. This is an important statement on the 

problem of linear and nonlinear electroconvection.   

 
      In what follows we discuss the effect of variable viscosity and uniform internal 

heat source (sink) on the onset of Rayleigh-Bénard/Marangoni convection in 

Newtonian ferromagnetic/dielectric liquids. This leads to differential equations 

with space varying coefficients and complicated boundary conditions. This 

precludes, unlike in Chapter III, the possibility of obtaining a closed form solution.     

 

Chapter IV: Thermorheological and magnetorheological effects on                
ferroconvection  with  internal  heat  source   

 
      External regulation of rheological properties and thereby the control of 

instability arising from buoyancy/surface-tension forces in a variable-viscosity 

ferromagnetic liquid in the presence of a vertical, uniform dc magnetic field with 

internal heat generation is studied. The principle of exchange of stabilities is shown 

to be valid for both RBC and MC. The critical values pertaining to stationary 

convection have been obtained by using the higher order Rayleigh-Ritz technique 

(HORT). 

 
      Before discussing the important results of the problem, we call attention to the 

values of certain needed physical quantities pertaining to ferromagnetic liquids. We 

have discussed about the range of values of the parameters 1M , 3M , mχ  and Pr in 

the results of Chapter IV. As to the Rayleigh-Bénard instability, we have chosen 

the values of buoyancy-magnetization parameter, 1M , to be 10, 50 and 100. Higher 

values of 1M  will not be considered here as their results are quite close to those for 

1M = 100. We now discuss the range of values of other parameters relevant to this 

chapter.  

  
      In classical Marangoni convection problems wherein g = o( 610− ), the thermal 

Rayleigh number R is negligibly small. Table 2.3 clearly illustrates to us that this is 

true in Marangoni-ferroconvection problems also. It is also obvious from the table 
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that, in the case of MC, increase in T∆  and d will also not render the situation 

conducive to Rayleigh-Bénard ferroconvection. At this juncture, another important 

parameter that remains to be discussed is the magnetic Rayleigh number MR . 

Clearly, from Table 2.3, we find that MR  is comparatively greater for water-based 

liquids than hydrocarbon-based ones. Table 2.3 shows that T∆  and d can be 

manipulated upon to diminish or enhance the effect of other factors in MR . For 

1T∆ = K and d = 1mm (Weilepp and Brand, 1996) the range of values of MR  for 

the liquids considered is 0.431 to 1.409. If the temperature difference T∆  or depth 

of the liquid d is increased, then MR  attains higher values. In view of this we have 

chosen the representative values of MR  to be 10, 50 and 100. We note here that R 

varies as T∆  and 3d  whereas MR  varies as 2( )T∆  and 2d . To keep R small in the 

Marangoni instability problem, it is imperative that we need to prefer variation of 

T∆  to variation of  d.  

 
      The parameter SN  is the ratio of strength of the internal heat source to external 

heating. The chosen range of values for the parameter SN  is  �4 to 4. As previously 

mentioned in Chapter II, positive values of SN  signify a heat source and the 

negative values a heat sink. The values of Γ  have to be small on reasons 

explained in Chapter IV. The condition 0Γ <  characterizes the dominance of 

magnetic field-dependent viscosity, while 0Γ <  signifies the dominance of 

temperature-dependent viscosity.  

   
      In order to understand better the results arrived at in the problem we analyze the 

nonlinear basic state temperature distribution, which throws some light on the 

observed effect of heat source (sink) on the stability. We consider a scaled 

dimensionless temperature distribution arrived at from the second of Eq. (4.2.9) in 

the form  

 
2

∆ 8 2
S Sb aT T N Nθ z z

T
−= = − − . 
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As in the earlier sections we have dropped the asterisks in the above equation.     

     Figure 4.2 is a plot of  z versus θ . We note from the computations and the 

figure, in the θ z−  plane, that the curves are asymmetrical about the lines θ  = 0 

and z = 0 for 0SN ≠ . The asymmetry is obviously due to SN . We discuss more on 

this figure by considering the cases of heat source ( 0SN > ) and heat sink ( 0SN < ) 

separately. We note that (1 )Sdθ d z N z= − +  and 2 2
Sd θ d z N= −  and hence the 

point 1 Sz N= −  is a point of extrema. The extremal point 1 Sz N= −  and the 

vertical range [ 1/ 2, 1/ 2]z ∈ −  suggest that ( 2, 2)SN ∉ −  for the analysis of the 

( )θ z  profile. It is important to make a statement at this juncture on the range 

2SN < . In this range, the ( )θ z  profile of  0SN ≠  is similar to that of 0SN = , i.e., 

there is no switch over from monotonically increasing to decreasing, or vice-versa, 

at any point [ 1/ 2, 1/ 2]z ∈ − . Hence a discussion involving point of extrema is 

inappropriate for the range 2SN < .With the above remark let us consider first the 

case in which 2SN ≥ . From Figure 4.2 it is clear that when 2SN = , the highest 

temperature in the liquid layer occurs at the lower bounding surface, i.e., 1/ 2z =− . 

As SN  increases beyond the value of 2, temperatures in excess of that at 1/ 2z =−  

occur within the liquid and further increases in SN  result in corresponding 

increases in liquid temperature and the location of the point of extrema approaches 

closer to 0z = . Thus, when 2SN ≥ , the point of extrema is always in the lower half 

of the layer, i.e., 1/ 2 0z− ≤ < . In view of the fact that temperature decreases with 

height in the upper half of the layer (the most important zone in so far as 

Marangoni instability is concerned) surface-tension effect becomes strong. It is 

therefore clear that the effect of increasing SN  is to hasten instability for both RBC 

and MC. 

 
      We next consider the case in which 2SN ≤ − . In this case the point of extrema 

is always in the upper half of the layer, i.e., 0 1/ 2z< ≤ . Further, when 2SN < − , 

temperatures within the liquid fall below that of the upper surface, with the result 
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that temperature increases with height in the upper half of the layer and surface- 

tension effect is weakened leading to stability. A thought comes to mind here as to 

why both heat source and heat sink have identical effect (destabilizing effect) on 

RBC and not on MC as discussed earlier in Chapter IV. This can be answered by 

realizing that in the case of MC, as discussed above, the upper half temperature 

distribution is important due to surface-tension being the cause for convection. In 

the case of RBC it can be either the lower half temperature distribution or that of 

the upper half, that decides on the stability or otherwise. In the case of RBC, as 

temperature increases with height in the lower half and temperature decreases with 

height in the upper half for 2SN > , liquid near the center of the layer becomes 

lighter than the liquid at the top leading to instability, while for 2SN < − , it is the 

lower half of the layer that facilitates instability. Thus, for both 2SN >  and 

2SN < − , the effect of SN  is to destabilize the system in the case of RBC, unlike 

the case of MC.             

 
      Tables 4.1 � 4.4 reiterate the SN -effect on stability discussed in the context of 

Figure 4.2. In the case of RBC with free-rigid boundaries, the destabilizing 

influence of heat sink for 2SN < −  can be seen from Table 4.2. Thus we conclude 

that, in the case of RBC, the effect of heat source and heat sink does not depend on 

whether or not the boundaries are symmetric. It is clear from Tables 4.1 � 4.4 that 

the qualitative effect of the magnetization parameter 3M  and the magnetic 

susceptibility mχ  on the onset of convection is akin to that in a constant viscosity 

ferromagnetic liquid (Finlayson, 1970). We also find that   

 
 RR F R F F

c c cR R R> > , 

RR F R F F
c c ca a a> > , 

 
where the superscripts represent the three different velocity boundary 

combinations. It can be proved that the above qualitative results are true for both 

isothermal and adiabatic boundaries.    
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      From Table 4.4 we also notice that the dominance of magnetic field dependence 

of viscosity enhances the destabilizing effect of 3M  on cMa , noticed in the 

constant viscosity case. Qualitatively, the effect of SN  on cMa  is more significant 

compared to the almost insignificant effect of mχ  on cMa . This is true for all Γ . 

From physically comprehensible reasons we can convince ourselves that this is due 

to magnetic field strength and temperature being antagonistic in their influence on 

viscosity. In what follows we discuss first about convergence of the solution and 

then discuss about the inadequacy of a linear viscosity-temperature-magnetic field 

relationship. This is followed by a discussion on the effects of 1M , MR  and Γ  on 

the onset of ferroconvection. 

 
      In arriving at the documented values in Table 4.1 � 4.4, we have made use of a 

five-term Rayleigh-Ritz technique. Tables 4.5 and 4.6 respectively present a 

comparison between the results of RBC and MC problems and those of other 

standard works for the limiting case of a constant-viscosity, nonmagnetic fluid 

without internal heating. Table 4.7 compares the critical values pertaining to the 

MC problem with those obtained by others for the limiting case of a constant 

viscosity, nonmagnetic liquid with internal heating. Tables 4.5 � 4.7 highlight the 

need to use HORT in the present problem. It can be seen that the numerical values 

agree quite well with the standard results and a fifth order Rayleigh-Ritz technique 

assures us of the desired accuracy. We have ascertained by actual computation that 

this is true for the results obtained in the present problem also. The results 

documented in Tables 4.5 � 4.6 quite obviously spell out the fact that HORT gives 

accurate values. In fact, the critical values given in Table 4.5 agree well with those 

obtained by Chandrasekhar (1961). Even for 0SN ≠  the results compare very well 

with existing results of limiting cases (see Table 4.7). 

 
      Before we proceed further on the other results of the problem, we first settle the 

issue of the inadequacy of a linear viscosity variation. To this end, we restrict our 

attention to the case of temperature-dependent viscosity and 0SN = . The critical 

values marking the onset of Rayleigh-Bénard convection in a nonmagnetic fluid 
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with linear dependence of viscosity on temperature are listed in Table 4.8. The 

relation     

 
[ ]1( ) 1 ( )L aµ T µ δ T T= − − ,                                                                       (7.1) 

 
with 1(1 ) ( )L Taδ µ µ T= − ∂ ∂  is used in place of the quadratic law given by Eq. 

(4.2.8) to obtain the values in Table 4.8 and ∆L LΓ δ T=  is the dimensionless 

effective viscosity parameter corresponding to the linear variation. We find that the 

effect of temperature-dependent viscosity is stabilizing for free-free boundaries and 

destabilizing for free-rigid and rigid-rigid boundaries. We, however, note that the 

effect of quadratic variation is always destabilizing for the all the boundary 

combinations. On the other hand, the critical values listed in Table 4.9 for 0SN =  

enlighten us as to why a quadratic variation in the effective viscosity must be taken 

and not a linear one in the case of MC. Cloot and Lebon (1985) studied the effect of 

temperature-dependent viscosity on Marangoni instability in a Newtonian 

nonmagnetic liquid with a deformable free surface. Lam and Bayazitoglu (1987) 

extended the above study to include the effect of internal heat generation. Both 

these studies show that linear viscosity-temperature relationship is good enough to 

demonstrate that the system is less stable compared to a constant viscosity one. 

This result was incidentally obtained because of the classical Pearson boundary 

condition used by them, viz., 2 2 0w D w a MaT DT= + = =  relating to the upper 

non-deformable free surface, which is a particular case of the two aforementioned 

studies. This condition needed to be modified to include variable viscosity effect 

(Selak and Lebon, 1997). On incorporation of the linear variation in the 

temperature-dependent viscosity given in Eq. (7.1), the aforementioned classical 

Pearson boundary condition gets modified into  

 
2 2(1 ) 0Lw Γ D w a MaT DT= + + = = .                                                     (7.2) 

 
Evaluations using this modified boundary condition at the upper non-deformable 

free surface reveal that the effect of temperature-dependent viscosity is stabilizing! 
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Table 4.9 documents this observation. The above proceeding points to the fact that 

the viscosity-temperature relationship cannot be linear and must, at least, be 

quadratic for RBC problem with free-free boundaries and for the MC problem. 

Straughan (2004) documents this aspect for the viscosity-temperature relationship. 

The same reasoning applies to the viscosity-magnetic field relationship. We now 

discuss the effect of other parameters of the problem on stability.       

 
      Figures 4.3 � 4.5 depict the variation of cR  with SN  for different values of Γ  

and 1M . The destabilizing effect of magnetic mechanism is obvious from the 

figures for 0Γ ≠  as well as for 0Γ = , i.e., when the thermorheological and 

magnetorheological effects are absent. It is of interest to note that large values of 

1M  reduce the destabilizing effect of SN  and the mutually antagonistic effect of 

Γ . Of particular interest is the effect of SN , 1M  and Γ  on the critical 

wavenumber ca . This is depicted in Figures 4.6 � 4.8. We see that ca  increases 

with increasing SN  and 1M . This result is true for all boundary combinations. 

However, the effect of Γ  on ca  needs special attention. We observe that, for free-

free boundaries, ca  increases with increasing the effect of temperature-dependent 

viscosity and decreases with the effect of magnetic field-dependent viscosity. The 

above result is also true for free-rigid and rigid-rigid boundaries as long as 2SN > . 

When 2SN < , the opposite behaviour is observed for free-free and rigid-rigid 

boundaries. It is worth mentioning that, when 0SN =  and when the viscosity is 

temperature-dependent, the effect of Γ  on ca  for all the three boundary 

combinations is in keeping with what was reported by Stengel et al. (1982).               

 
      Figure 4.9 shows the variation of cMa  with SN  for different values of Γ  and 

MR . The destabilizing effect of magnetic mechanism is obvious from the figures 

for 0Γ ≠  as well as for 0Γ = . A striking result from the figure is that mutually 

antagonistic influence of Γ  is more pronounced for a uniform heat sink than for a 

uniform heat source. Now coming to Figure 4.10, we see the individual variation of 
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the critical wavenumber ca  with all the three parameters, viz., SN , MR  and Γ  is 

in line with that applicable to the RBC problem with free-free boundaries. In what 

follows we discuss an interesting aspect concerning the general boundary 

conditions on the magnetic potential Φ . 

 
      Qin and Kaloni (1994) examined the stability of a constant viscosity 

ferromagnetic liquid layer with surface-tension effect but with no internal heating. 

Shivakumara et al. (2002) investigated the stability of a constant viscosity 

ferromagnetic liquid layer with surface-tension and buoyancy mechanisms 

operating together and with no internal heating. In the present paper we have 

corrected a technical mistake appearing in the above two works. We note that the 

above investigators used a boundary condition on the magnetic potential Φ  

pertaining to the upper free surface that did not involve a temperature term. A 

meticulous derivation of boundary conditions on Φ  reveals that, for adiabatic 

boundaries, a temperature term appears in the boundary condition (see Appendix 

B). So we cannot compare our results with those of the above investigators.  

 
      The chapter further gives an account of an analogy for a variable-viscosity fluid 

with internal heat source between ferroconvection with a dc magnetic field and 

electroconvection with an ac electric field. This essentially means that the study of 

the latter is redundant.        

 
      In what follows we discuss the effect of thermal radiation on the onset of 

Rayleigh-Bénard/Marangoni convection in Newtonian ferromagnetic/dielectric 

liquids. This leads to differential equations with variable coefficients. This 

precludes, as in Chapter IV, the possibility of obtaining an analytical solution.        

 

Chapter V:   Thermal radiation effects on ferroconvection 
 

      The effect of radiation on the onset of Rayleigh-Bénard/Marangoni convection 

in an absorbing and emitting variable-viscosity ferromagnetic fluid layer in the 

presence of a vertical, uniform dc magnetic field is studied. The presumption, viz., 



 173

the boundaries are black bodies, seems to be a fairly good approximation inasmuch 

as most ferromagnetic fluids are black. The optical properties of the ferromagnetic 

fluid are considered to be independent of the wavelength of radiation. This 

assumption pertaining to a gray medium allows us to consider two asymptotic 

cases:   

 
  (i)  Optically thin fluid medium    (transparent medium) and 
 

(ii)  Optically thick fluid medium  (opaque medium). 
 
      The latter approximation is appropriate for shallow layers in the laboratory. The 

principle of exchange of stabilities is shown to be valid for both RBC and MC. The 

critical values pertaining to stationary instability are obtained by using the more 

accurate higher order Rayleigh-Ritz technique. Before discussing the important 

results of the problem, we turn our attention to the range of values of different 

parameters arising in the study.         

 
      The chosen values of the parameters 1M , Γ , MR , 3M  and mχ  are as 

considered in Chapter IV. As to the radiative parameters, we note that large 

radiative effects are more likely if a gas rather than a liquid is used as a fluid 

(Howell and Menguc, 1998). In view of this, we assume the range of values of the 

conduction-radiation parameter χ  to be 110− � 510  and that of absorptivity 

parameter τ  to be 110− � 310 .         

 
      In order to understand better the results arrived at in the problem, we analyze 

the nonlinear basic state temperature distribution which throws some light on the 

effect of radiative heat transfer on the stability of the fluid layer. Figures 5.2 and 

5.3 are plots of z versus β β  for different values of χ  and τ  respectively. It is 

clear that 1β β →  as either χ  or 0τ → . We further notice that as χ  or τ  

increases, the basic state temperature profile is exponential as is evident from Eq. 

(5.2.19). Computations reveal that the basic state temperature profile remains 

unaffected when τ  is large and the opposite is true for the parameter χ . We also 
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note that the effect of radiative heat transfer is prominent in the boundary layer 

regions at the two bounding surfaces. It is also clear from Eq. (5.2.19) that β β  is 

an even function of z. This feature renders the basic state temperature distribution 

symmetric about the lines 0β β =  and z = 0, which is in contrast to the heat 

source (sink) problem where the basic state temperature distribution is asymmetric 

about the lines θ  = 0 and z = 0 (see Figure 4.2). The symmetric property is largely 

responsible for the stabilizing effect of χ  and τ  in the radiative heat transfer 

problem. This feature has not been addressed by the earlier investigators.                           

 
      In what follows we first discuss the results pertaining to Rayleigh-Bénard 

instability followed by those to Marangoni instability. Free-free boundaries are 

considered to study the Rayleigh-Bénard instability as the results corresponding to 

the free-rigid and rigid-rigid boundaries show a similar trend as that for free-free 

case.  

 
      The results relating to the transparent approximation are shown in Figures 5.4 � 

5.7. Figure 5.4 is a plot of cR  versus τ  for different values of χ  and Γ  for fixed 

values of 1M , 3M  and mχ . The parameter τ  is the characteristic of absorption 

coefficient and distance between the horizontal planes. The parameter χ  is 

indicative of the temperature in the equilibrium state. Figure 5.4 reiterates the 

behaviour of Γ  observed in the results of Chapter IV. We see that the mutually 

antagonistic influence (MAI) of thermo- and magneto-rheological effects is not 

affected by the radiative heat transfer for large values of χ  and τ . The stabilizing 

influence of χ  and τ  is obvious from Figure 5.4. This results from the fact that 

radiative transfer tends to damp out any motions which may arise due to the heat 

transfer from hotter to colder parts of the ferromagnetic fluid and that the radiative 

damping increases as the layer depth increases. The effect of τ , χ  and Γ  on ca  is 

depicted in Figure 5.5. The effect of Γ  on ca  is in accordance with what has been 

reported in Chapter IV. The effect of τ  and χ  on ca  is in agreement with the 

existing results relating to a nonmagnetic fluid (Murgai and Khosla, 1962).  
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      Figure 5.6 delineates the effect of τ , χ  and 1M  on cR . The destabilizing 

influence of magnetic mechanism is obvious. It is interesting to note that increasing 

the temperature in the equilibrium state enhances the destabilizing behaviour of 

1M . This is quite reasonable as the fluid magnetization is temperature sensitive. 

Further, we notice that for large values of both χ  and 1M , the stabilizing effect of 

τ  is nullified. The effect of 1M  on ca  is shown in Figure 5.7, which is as expected.                 

 
      The results of opaque medium pertaining to the Rayleigh-Bénard instability are 

shown in Figures 5.8 � 5.11. The effects of Γ , 1M  and χ  are qualitatively similar 

to those corresponding to the transparent medium. It is worthwhile noting from 

Figures 5.4 and 5.6, and 5.8 and 5.10 that the critical thermal Rayleigh number cR  

corresponding to the opaque case is much higher than that of the transparent one if 

χ  is large; meaning maximum stabilization is achieved when the ferromagnetic 

fluid is optically thick. The effect of τ  on both cR  and ca , however, needs special 

attention. As previously mentioned, increasing τ  contributes much to radiative 

damping if the fluid layer is optically thin. On the other hand, increasing τ  leads to 

a more unstable basic temperature gradient in the fluid layer thereby increasing the 

interior temperature gradients if the fluid medium is opaque. This feature can be 

seen in Figures 5.8 and 5.10. These figures also indicate that radiation begins to act 

as conduction process for large values of τ  in the case of opaque medium. The 

earlier works (Goody, 1956; Murgai and Khosla, 1962) substantiated for a 

nonmagnetic fluid that the radiative heat transfer has no effect on the cell size in the 

case of opaque medium if both τ  and χ  are large. This is true for the present study 

also as can be seen from Figures 5.9 and 5.11.                   

 
      The critical values marking the onset of RBC relating to the transparent and 

opaque media for different values of mχ , 3M , Γ  are documented respectively in 

Tables 5.1 and 5.2. These tables reiterate the remarks made earlier in the context of 

RBC in Chapter IV. As mentioned earlier, the above results applicable to free-free 



 176

boundaries are also true for the other boundary combinations, viz., free-rigid and 

rigid-rigid boundaries.      

 
      The values of cR  and ca  for the limiting case relating to a Newtonian, constant 

viscosity nonmagnetic fluid with vanishing radiation effects are given in Table 4.5. 

We find that the critical values in Table 4.5 agree well with those obtained by 

Chandrasekhar (1961).  

 
      In what follows we discuss the influence of radiative effects on the onset of 

Marangoni instability in a variable-viscosity ferromagnetic fluid. Figures 5.12 and 

5.13 show respectively the effect of χ  on cMa  and ca  for different values of Γ . 

We note that these figures show a similar trend as in the transparent case of RBC. 

Of particular interest is the influence of Biot number Bi on cMa  and ca . This is 

depicted in Figures 5.14 and 5.15. Biot number, Bi, is the ratio of conductive 

resistance within the fluid layer to convective resistance at the free surface of the 

fluid layer. When Bi = 0, an insulated surface retains more energy within the fluid 

layer and thus the system is less stable. Once the heat release to the gas is allowed, 

i.e., 0Bi ≠ , the fluid becomes more stable. The stabilizing influence of Bi is quite 

evident from the Figure 5.14. It is of interest to observe that the stabilizing 

influence of Bi gets enhanced when the temperature in the equilibrium state is 

increased. We see from Figure 5.15 that ca  increases with increasing Bi. This 

means that the cell size gets reduced with increasing Bi. This is true for 

nonmagnetic fluid also (Char and Chiang, 1994).           

 
      The results of Figures 5.16 and 5.17 are in accordance with the remarks made in 

the context of RBC. However, it is interesting to note that the stabilizing effect of 

Bi is nullified when the fluid layer depth is increased. This feature is explained in 

Figure 5.18. Figure 5.19 indicates that the cell size at the onset of convection is 

reduced with increasing τ  and Bi.      
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      The results corresponding to the opaque ferromagnetic fluid layer are given in 

Figures 5.20 � 5.27. The effect of χ , Bi and Γ  on cMa  are qualitatively the same 

for both transparent and opaque media. The effect of τ  on cMa  is in conformity 

with the remarks made in the case of opaque medium of RBC. Figures 5.21 and 

5.23 suggest that the cell size is not affected by the radiation if the fluid layer is 

opaque. We recall that this result is true for RBC as well.          

 
      Figures 5.24 and 5.26 show that the mutually antagonistic influence of thermo- 

and magneto-rheological effects and the stabilizing effect of Bi can be diminished 

by increasing the fluid layer depth. The latter result is true for the transparent case 

also (see Figure 5.18), while the former one is true only for opaque case (see Figure 

5.16).       

 
      Figures 5.25 and 5.27 show that ca  increases with increasing τ  for moderate 

values τ  and decreases for large values τ . It seems that the reversing effect of τ  

after a particular value may be owing to the fact that the linear theory applies only 

till that point. This observation is, however, speculative and needs to be examined 

better through experimental ratification.     

 
      The critical values for the transparent and opaque media corresponding to the 

Marangoni instability in a variable-viscosity ferromagnetic fluid are listed in Tables 

5.3 � 5.5. These tables essentially suggest that the radiation and variable-viscosity 

effects are more significant in a thin layer of ferromagnetic fluid (no matter the 

fluid is transparent or opaque) when compared with the almost negligible effect of 

1M , 3M  and mχ  on the stability.    

 
      It is also our prime concern to validate the results obtained. It should be noted 

that, unlike the Rayleigh-Bénard convection wherein the boundary conditions are 

the same as in Chapter IV, the boundary conditions for the radiation-affected 

Marangoni instability are different from those considered in Chapter IV due to the 

introduction of the Biot number Bi (see Eq. 5.5.14). A comparison is therefore 

made between the results of the present study and those of the standard works for 
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the pure Marangoni convection (see Table 5.6). It is quite clear that the critical 

values agree well with the existing results and a fourth order Rayleigh-Ritz 

technique assures us of the desired accuracy.      

 
      The chapter further reports an analogy for a variable-viscosity fluid with 

thermal radiation between ferroconvection with a dc magnetic field and 

electroconvection with an  ac  electric field.   

 
      In what follows we discuss the variable-viscosity effect on the onset of 

Rayleigh-Bénard/Marangoni convection in viscoelastic ferromagnetic/dielectric 

liquids. This leads to differential equations with variable coefficients. This 

precludes, as in Chapters IV and V, the possibility of obtaining a closed form 

solution.    

 

Chapter VI:   Ferroconvection in viscoelastic liquids 
 

      Thermorheological and magnetorheological effects on Rayleigh-Bénard and 

Marangoni instabilities in viscoelastic ferromagnetic liquids are addressed. The 

present study emphasizes on the need to resort to the use of general equations that 

encompass within its realm both Newtonian and viscoelastic descriptions as 

limiting cases. In deed, the study unveils the fact that the results of Rayleigh-

Bénard and Marangoni type of instabilities in Jeffrey ferromagnetic liquids leads to 

those of Maxwell/Rivlin-Ericksen/Newtonian ferromagnetic liquids with recourse 

to suitable limiting process discussed in Sections (6.2.3)-(6.2.5). The study also 

makes plain an analogy between viscoelastic ferromagnetic and viscoelastic 

dielectric liquids. The demonstrated convergence renders the study of rheological 

effects on RBC and MC in Newtonian/viscoelastic dielectric liquids with ac electric 

field redundant as the same can be drawn from the corresponding study in 

ferromagnetic liquids with dc magnetic field. The aforementioned results are 

summarized in Table 6.1.                             
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      In view of the results documented in Table 6.1, we mainly discuss the results of 

stationary and oscillatory convection for both RBC and MC in Jeffrey 

ferromagnetic liquids with the understanding that the results can be extended to 

other models discussed in the study. Higher and first order Rayleigh-Ritz methods 

are used to compute the eigenvalues for the stationary and oscillatory modes of 

convection.  

 
      Computations reveal that oscillatory Rayleigh-Bénard convection is possible 

provided that 1η < . In other words, the principle of exchange of stabilities (PES) is 

valid for viscoelastic ferromagnetic/dielectric liquids only if 1η > . The condition 

on η  for the oscillatory Rayleigh-Bénard convection is also true for the 

corresponding problem in which the rheological effects are absent (Takashima and 

Ghosh, 1979; Siddheshwar, 2002b). Thus to open up the possibility of the 

conditional oscillatory Rayleigh-Bénard convection, we take values of η  to be less 

than 1. Furthermore, from Eq. (6.3.3), we find that the square of the frequency of 

oscillations, 2ω , depends explicitly on the effective viscosity parameter Γ  but 

depends on the magnetic parameters 1 3andM M  implicitly via the wavenumber a. 

Surprisingly, on the other hand, exhaustive computations reveal that the frequency 

of oscillations corresponding to the Marangoni instability becomes imaginary for 

any combination of the parameters arising in the study. This essentially suggests to 

us that oscillatory Marangoni convection in viscoelastic ferromagnetic/dielectric 

liquids does not occur. We also note that stationary convection is devoid of 

viscoelastic effects. We thus conclude that, under microgravity conditions, surface-

tension driven convection in a viscoelastic ferromagnetic/dielectric liquid is well-

nigh impossible. Odenbach (1999) found experimentally that the surface-tension 

effect is unimportant in viscoelastic ferromagnetic liquids under microgravity 

conditions. We find that the results of the present study relating to MC do agree 

with that obtained by Odenbach (1999). This is an important finding of the problem 

under consideration.           
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      The results pertaining to stationary convection are depicted in Figures 6.2 � 6.5 

and those relating to oscillatory convection are in Figures 6.6 � 6.8. The mutually 

antagonistic influence (MAI) of thermo- and magneto-rheological effects on 

Rayleigh-Bénard and Marangoni instabilities can be seen from Figures 6.2 � 6.8. 

These figures reiterate the results obtained in Chapter IV and V. It is worth noting 

that the observed MAI is more pronounced in the case of Marangoni instability 

rather than the Rayleigh-Benard instability in so far as the Newtonian 

ferromagnetic fluid is concerned. This particular result, taking into account the 

magnetic field dependency of effective viscosity, can be seen to be compliant with 

the finding of Odenbach (1999), viz., microgravity conditions can amplify the 

viscoelastic effects in ferromagnetic fluids.   

 
      Figures 6.2 � 6.8 also reveal that the magnetic mechanism has a destabilizing 

influence on RBC and MC as in the earlier chapters. From Figure 6.8 we observe 

that the frequency of oscillations is dependent on the effective viscosity parameter; 

another important result of the study at hand.    

 
      The effect of stress relaxation parameter, VΓ , the viscoelastic parameter, η , 

and the Prandtl number Pr on the onset of oscillatory Rayleigh-Bénard convection 

in a viscoelastic ferromagnetic liquid can be seen from Table 6.2. It is clear that the 

viscoelastic parameters VΓ  and η  have opposing influence on the stability of the 

system. In fact, VΓ  destabilizes, while η  stabilizes. This result is also found to be 

valid for viscoelastic nonmagnetic fluids (Siddheshwar, 1998; 2002b). 

Computations reveal that the following relationships hold good for the three types 

of viscoelastic liquids discussed in the problem: 

 
Maxwell Jeffrey Rivlin-Ericksen
c c cR R R< < , 

Rivlin-Ericksen Jeffrey Maxwell
c c ca a a< < , 

Rivlin-Ericksen Jeffrey Maxwell
c c cω ω ω< < .  
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Conclusions 
 

The important conclusions drawn from the study in the Chapters III � VI are:  
 
 

1.  Principle of exchange of stabilities holds good for a Newtonian 

ferromagnetic liquid. This result holds good whether or not variable-

viscosity, internal heat source (sink) and thermal radiation are present. 

2. Finite amplitude sub-critical instability is ruled out for a Newtonian 

ferromagnetic liquid. 

3. In the case of finite amplitude nonlinear convection, increase in the 

magnetic force results in chaotic motion.  

4. In the presence of non-Boussinesq effects the magnetization parameters 

have a diminished or enhanced influence on the onset of Marangoni 

convection compared to that in a constant viscosity fluid layer with no 

heat source (sink), depending on whether the viscosity-temperature 

dependence is dominating or the viscosity-magnetic field strength 

dependence is dominating.    

5. Viscosity variation plays a more significant role for the heat sink than for 

the heat source in the case of Marangoni convection. 

6. Further, unlike the Rayleigh-Bénard instability wherein the heat source 

and heat sink have identical effect, the Marangoni convection problem 

with heat source must be treated separately from the problem with heat 

sink. This is, perhaps, recorded for the first time in the literature with 

appropriate physical reasoning. 

7. Through our numerical experiments, it is clear that the viscosity-

temperature and viscosity-magnetic field relationships have to be 

nonlinear for the Rayleigh-Bénard instability with free-free boundaries 

and for the Marangoni instability.     
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8. The mutually antagonistic influence (MAI) of thermo- and magneto-

rheological effects is more pronounced in Newtonian ferromagnetic 

fluids if the instability is due to surface-tension rather than buoyancy.  

9. For adiabatic boundaries, a temperature term appears in the boundary 

conditions on the magnetic potential Φ . 

10.  Thermal radiation inhibits the onset of convection in both the transparent 

and opaque media. 

11. The opaque medium is shown to release heat for convection more slowly 

than the transparent medium.   

12.  Radiation affects the cell size at the onset of convection in the case of 

transparent medium and the opposite is true for opaque medium.  

13.  The stabilizing effect of Biot number Bi is more pronounced for large 

values of the conduction-radiation parameter χ . This is true for both 

transparent and opaque media. 

14. The stabilizing effect of Biot number Bi vanishes as the fluid layer depth 

increases. This is true for both transparent and opaque media.   

15. The mutually antagonistic influence of temperature and magnetic field 

strength dependent viscosity vanishes as the fluid layer depth increases if 

the fluid medium is opaque.  

16. The results of the linear stability analysis of RBC and MC in Newtonian 

ferromagnetic liquids are valid provided that the temperature as well as 

the strength of magnetic field is not very large. Very strong strengths of 

magnetic field will induce non-Newtonian characteristics in the liquid 

Large temperatures, in addition to a stronger magnetic field, will render 

the local and convective accelerations important giving scope for 

manifestation of oscillatory or even sub-critical motions. 
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17. Oscillatory mode of instability is preferred to the stationary instability for 

the Rayleigh-Bénard convection in a viscoelastic ferromagnetic liquid 

provided 1η < . 

18. The results pertaining to the Jeffrey ferromagnetic liquids lead to those of 

Maxwell, Rivlin-Ericksen and Newtonian ferromagnetic liquids by a 

suitable limiting process.  

19. Surface-tension effect does not have a say on the onset of convection in a 

viscoelastic ferromagnetic liquid layer. 

20. The viscoelastic parameters VΓ  and η  have opposing influence on the 

onset of convection. 

21. The results pertaining to Newtonian/viscoelastic ferromagnetic liquids 

with a dc magnetic field under a suitable limiting process lead to the 

results of Newtonian/viscoelastic dielectric liquids with an ac electric 

field. The analogy holds good whether or not variable viscosity, heat 

source (sink) and thermal radiation are present. This analogy suggests 

that one can discount an isolated study of the problem involving 

dielectric liquids. 
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APPENDIX – A  
 
 

A1.  PREPARATION  OF  MAGNETIC  FLUIDS  
 
      Bitter (1932) prepared a colloidal solution of magnetite which was stable under 

zero gravity but became unstable in the presence of a magnetic field. This 

phenomenon, known as Bitter’s technique, is used to study domain boundaries of 

the surface of the ferromagnetic materials. Although the dream and challenge of 

producing a liquid that possessed strong magnetic properties was put forward 

simultaneously by several investigators, it was Papell (1963) who realized the 

preparation of a ferrofluid. Papell was interested in synthesizing magnetic fluids 

which could be mixed with rocket fuels so that fuels could be pumped under zero 

gravity condition by means of external magnetic fields. Using a ball milling 

technique, Papell dispersed magnetite in kerosene with the use of an oleic acid as a 

surfactant. It so happened that a suspension of coarse magnetic particles had been 

in use since the 1940’s in magnetic clutches, but Papell’s ferrofluid resembled a 

clutch fluid only superficially, the size of the particles of a ferrofluid being 1000 

times smaller in linear dimensions than that of a clutch fluid. Under the influence of 

a magnetic field a clutch fluid congeals into a solid mass; hence when it is 

magnetically active it is not a fluid and vice versa, whereas a ferrofluid does not 

congeal when it is subjected to a magnetic field. It becomes magnetized, but 

remains a liquid. Papell’s ferrofluid having kerosene as a base with high 

evaporation rate is unsuitable for many industrial applications.           

    
      Around the same time, Rosensweig and his collaborators (Neuringer and 

Rosensweig, 1964), on the other hand, were interested in the formation of magnetic 

fluids that had implications for the energy conversion devices. They prepared 

magnetic fluids which were magnetically about 10 times as strong as Papell’s 

original fluid. The systematic study with various aspects involving these fluids 

resulted in a new branch of hydrodynamics known as Ferrohydrodynamics 

(Rosensweig, 1986).      
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A2.  THREE  COMPONENTS  OF  MAGNETIC  FLUIDS  
 
(i)  Magnetic particles 
 
      The magnetic properties of the magnetic fluid are decided by the magnetic 

moment related to the dispersed magnetic particles. The size of the colloidal 

particles is restricted in such a way that each particle acts as a single domain. 

Ferrofluids based on small particles tend to have a narrow size distribution 

compared to large particles. The number density of these particles is roughly 

1023/m3 (Rosensweig, 1986). The size of the magnetic particles must be sufficiently 

small because the stability of a magnetic fluid as a colloidal suspension is ensured 

by thermal motion of the particles, preventing agglomeration and precipitation. 

This motion increases with decreasing particle size. On the other hand, the 

magnetic particles must not be very small for at sizes less than 1–2 nm, their 

magnetic properties disappear (Yaacob et al., 1995). The commonly used magnetic 

materials in ferrofluid are magnetite (Fe3O4), maghemite (Fe2O3) and other mixed 

ferrites (Rosensweig, 1986). Depending on the application, the magnetic particles 

can be chosen. In character recognition ink-jet inks, for example, where a high 

remanence is required, ferrites such as cobalt ferrite and barium hexaferrite are 

preferred. In situations where enhanced viscosity is to be avoided as in rotating 

shaft seals, the particles with low magneocrystalline anisotropy are used.       

 
(ii)  Carrier liquid 
 
      At present magnetic fluids are available in any carrier liquid, for instance, in 

water, hydrocarbon, fluorocarbon, diester and silicon oils. The choice of this 

dominating component depends on the type of application of the fluid. In particular, 

when a rapid evaporation of liquid is desired such as in domain observation, ink-jet 

printing, catalysis and synthesis of polymer beads, aqueous or organic based 

magnetic fluids are used. In loudspeakers, seals, bearings, stepper motors and 

gauges, magnetic fluids must stay in working gaps for several years (often under 

high temperature conditions). In these applications, high molecular synthetic 

lubricating oils are of great use. Ferrofluids having ester as their carrier liquid can 
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operate over a wide temperature range and have a high viscosity index and are 

more oxidative stable than the hydrocarbon ones. For harsh chemical environments, 

perfluoropoly ethers are the best carrier liquids and under nuclear radiation 

polyphenyl ethers are the most durable. Vegetable oils offer the best choice when 

biodegradibility and toxicity are of concern; however, they suffer from poor 

thermal stability and their pour points are high. Silicones have the highest viscosity 

index of all the carriers; they exhibit low volatility and can be used over a wide 

operating temperature range, but the magnetization values are limited to about    

100 G. Ferrofluids which are aqueous based are environmental friendly with a high 

volatility an a restricted temperature range of 10-80 o C. More information about 

carrier fluids can be seen from Table A2.1.  
    

Inorganic solvent :  aqueous 
Organic solvents  :  heptane, xylene, toluene, MEK 
Oils : esters 
Hydrocarbons :  mineral and synthetic 
Silahydrocarbons 
Perfluoropolyethers  
Polyphenylethers 
Glycols 
Silicones 
Vegetable : sunflower, canola, castor 

 
Table A2.1 :  Liquid carriers used in the synthesis of ferrofluids. 

 

      Most of the commercially available magnetic fluids are electrically non-

conducting but it is desirable to use conducting ferrofluids in several applications 

(Shizawa and Tanahashi, 1986; Qi  et al., 2001).   

 

(iii)  Surfactant 
 
      The role of the surfactant is to maintain a certain minimum distance namely      

1–2 nm between the particles. Since the number density of magnetic particles in the 

magnetic fluid is very high (~ 1023/m3), the particles can be close to each other and 

they are capable of experiencing a short range van der Waal’s force as well as 

magnetic attraction force. If these two forces dominate the thermal energy, then the 
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particles tend to aggregate and sediment out from the dispersion. To prevent this, a 

repulsive interaction is created between the particles. This can be done in two ways. 

  
(a)  Entropic / steric repulsion (Scholten, 1978) 
 
           This can be created by coating fatty acids on the surface of each magnetic 

particle. This type of repulsion is present in surfacted magnetic fluid.  

 
(b)  Electrostatic repulsion  (Scholten, 1978) 
 
           This type of repulsion is present in ionic magnetic fluids. This is done by 

creating Coulombic repulsion between the like charges on each individual 

magnetic particle. A molecule of a typical surfactant consists of a linear chain of 

hydrocarbon atoms at one end and anchor polar group of atom at the other end. 

The chain is called “tail” and the anchor group is called “head”. When a 

molecule of a surfactant is adsorbed on the surface of the particle, the head 

remains attached on the surface while the tail is free to perform thermal 

movements in the carrier liquid. When a second particle approaches closely, the 

chains have to bend aside and their motion is restricted severely. This causes 

steric or entropic repulsion. It should be remarked that an excess of stabilizer in 

a solution leads to an increase in the viscosity.  

 

A3.  PROPERTIES  OF  MAGNETIC  FLUIDS  
 

      Hydrodynamic, magnetic and rheological properties of a magnetic fluid 

determine its applicability in technological devices. The variation of fluid 

properties depends on the fluid composition, ratio of its components and on its 

preparation techniques to some extent. On the other hand, several of its physical 

properties are modified under the influence of an external magnetic field.  

 

(i)  Hydrodynamical properties   
 
      When a magnetic fluid is exposed to a magnetic field, a body force is developed 

within the fluid which can change its response to the magnetic field, while retaining 
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the essential fluid characteristics. The magnetic force ( ).M H
→ →

∇  produces an 

additional term in the Bernoulli’s equation (Neuringer and Rosensweig, 1964) 

given by  

2
o

0

1 constant
2

H
p q g h M dHρ ρ µ′′+ + − =∫ ,                                      (A3.1) 

where p and q are pressure and velocity respectively, ρ  is the fluid density, g is the 

gravitational constant, h′′  is the height relative to some reference, oµ  is the 

permeability constant, M is the magnetization and H is the field intensity. 

 
 
 

 
 

Figure A3.1 :  Spike formation in magnetic fluid. 
                                                    (From Upadhyay, 2000) 
 
 
 
      Several new phenomena arise because of this new body force; the fluid can be 

suspended in space by applied magnetic field, spontaneous formation of stable 

liquid spikes in the presence of a perpendicular magnetic field (Figure A3.1), 

ability to flow and conduct magnetic flux, stable levitation of nonmagnetic as well 

as magnetized materials (Figure A3.2) and generation of fluid motion by thermal 

and magnetic means without any external moving parts (Curtis, 1971).    
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Figure A3.2 :  Levitation of a nonmagnetic object.  
                                                   (From Upadhyay, 2000) 
 
(ii)  Magnetic properties 
 
      The magnetic response of a magnetic fluid is due to the coupling of individual 

magnetic particles with a substantial volume of the surrounding carrier liquid. 

Thus, when a magnetic field is applied, each particle experiences a force in the 

direction of the magnetic gradient and this force is also transmitted to the volume of 

the associated liquid phase. For a magnetic fluid, magnetization (magnetic moment 

per unit volume) is an important property. The way in which this varies with the 

external magnetic field and temperature determines its suitability for a particular 

application.  

 
      Under normal conditions a magnetic fluid consists of millions of tiny magnets 

moving randomly in the carrier liquid. Under the influence of an external magnetic 

field, particles try to align in the direction of the external magnetic field, while 

Brownian motion destroys this alignment. When magnetic fluids move in the 

presence of a magnetic field or are exposed to unsteady magnetic fields, one has to 

consider magnetization relaxation towards its equilibrium value. The main 

mechanisms responsible for the relaxation processes are discussed below.       
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(a)  Neel relaxation mechanism 
 
      This mechanism is characterized by the properties of ferromagnetic particles. 

This mechanism corresponds to reversal of the magnetic moment within the grain 

to align along the direction of the field without mechanical rotation of the particles. 

The concept of “blocking” is associated with this mechanism. 

  
(b)  Brownian relaxation mechanism 
 
      In this mechanism, the magnetic moment of the particles can rotate by 

mechanical rotation of the particle with respect to the carrier liquid. Here, the 

magnetization direction is frozen with the particle and it will change its direction 

only if the particles rotate. At normal temperatures, the Brownian rotation generally 

predominates in magnetic fluids.  

 

A4.  RHEOLOGICAL  PROPERTIES 
 

      The accompanying magnetic and fluid properties of a magnetic fluid make it all 

the more attractive. In deed, the magnetic fluid retains its flowability in the 

presence of a magnetic field. It has been reported that a magnetic fluid may show 

Newtonian or non-Newtonian behaviour depending on the particle number density, 

the property of the carrier fluid and the method of preparation (Rosensweig, 1969). 

In many technological applications, the rheological properties of magnetic fluids 

play a vital role and one must determine how these properties are modified by an 

external magnetic field. The rheology of a magnetic fluid is closely related to its 

viscosity. Many workers have studied the effect of viscosity on the potential 

applications, such as, fluid magnetic levitation, shaft seals, dampers etc. of 

magnetic fluids. A comprehensive discussion on the variable nature of viscosity 

with respect to temperature and magnetic field/electric field has been given in 

Chapter II.  
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A5.  OPTICAL  PROPERTIES 
 

      Magnetic fluids are, by and large, black and practically opaque. However, a 

transparent one can be made out of a thin film of a magnetic fluid and its optical 

properties can be studied. In the absence of a magnetic field the optical properties 

of a ferrofluid are isotropic. If a field is applied then it exhibits properties similar to 

a uniaxial crystal. The direction of the applied field becomes the optical axis. Thus, 

the fluid exhibits optical anisotropy which increases with magnetic field and 

reaches saturation. Magnetic birefringence, dichroism and anisotropy in light 

scattering are some of the consequences of this induced anisotropy. Magneto-

optical effects in ferrofluids are utilized in the development of light shutters, field 

sensors and spatial filters (Trivedi et al., 2004).       

 
      The other physical properties like dielectric constant, ultrasonic propagation, 

thermal conductivity, surface tension etc. are modified by the application of a 

magnetic field. The study of all these properties as a function of magnetic field and 

temperature can lead to the development of many useful applications (Berkovsky  

et al., 1993).  
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APPENDIX – B  
 

B1. SURFACE-TENSION BOUNDARY CONDITIONS FOR A   
VARIABLE-VISCOSITY   FERROMAGNETIC / DIELECTRIC  

          LIQUID  WITH  INTERNAL  HEAT  SOURCE   
 

      We assume that the surface-tension sσ  depends on the temperature as well as 

the magnetic field strength. The free surface is assumed to be non-deformable for 

simplicity. The linearized surface-tension boundary conditions in the perturbed 

state for a variable-viscosity ferromagnetic fluid with internal heat source can be 

obtained by equating the shear stresses at the surface to the variations of surface-

tension, i.e.,  

 

( )xz b
su wz

z x x
'' ' στ µ   ∂∂ ∂= + = ∂ ∂ ∂ 

                                      (B1.1) 

and 

( )y z b
sv wz

z y y
'' ' στ µ   ∂∂ ∂= + = ∂ ∂ ∂ 

,                                       (B1.2) 

 
where { } 2

1( ) 1 ( )b z f zµ µ δ = −  
 (see Eq. 4.2.9). Using Eq. (2.2.3), differentiating 

Eq. (B1.1) with respect to ‘x� and Eq. (B1.2) with respect to ‘y’ and adding the 

resulting equations, we obtain 

 
2
1( )b s

u vz
z x y

' ' 'µ σ ∂ ∂ ∂+ = ∇ ∂ ∂ ∂ 
.                                      (B1.3) 

 
      In arriving at Eq. (B1.3) we have used the fact that w does not vary with x and y 

at the boundaries. 

 
Eq. (B1.3), on using the continuity equation (2.2.6), reduces to  
 

2
2
12( )b s

wz
z

' 'µ σ∂− = ∇
∂

.                     (B1.4) 
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From Eqs. (2.1.6) and (B1.4), we arrive at  
 

2
2 2
1 1 32( )b T H

wz T H
z

' ' 'µ σ σ∂ = ∇ − ∇
∂

.                   (B1.5) 

  
      Substituting the expression for ( )b zµ , introducing the perturbed magnetic 

potential 'Φ  and using the normal mode technique, we obtain     

 

{ } 2 2 2 2
1 1 ( ) 0T Hµ δ f z D w σ k T σ k DΦ − + − =  

.                             (B1.6) 

 
      Non-dimensionalizing the above equation using the scaling given in Chapter II, 

we obtain   

 

{ } 2 2 2 21 ( ) 0HΓ g z D w a MaT a Ma DΦ − + − =  
,                             (B1.7) 

 
where 2( ) ( 2) ( 8)S Sg z N z z N= + −  (see Eq. (4.2.20). Thus the boundary 

conditions for a free surface of a variable-viscosity magnetic fluid in the presence 

of surface-tension, magnetic field and internal heat source are  

  
w = 0  and  { } 2 2 2 21 ( ) 0HΓ g z D w a MaT a Ma DΦ − + − =  

.          (B1.8) 

 
      Similarly, using Eq. (2.1.15), the boundary conditions for a free surface of a 

variable-viscosity dielectric fluid in the presence of surface-tension and electric 

field with internal heat source are  
  

w = 0  and  { } 2 2 2 21 ( ) 0EΓ g z D w a MaT a Ma DΦ − + − =  
.           (B1.9) 

 
      We note that in the absence of internal heat source, i.e., when 0SN = , we 

arrive at the boundary conditions for the free upper surface (that is, at 1 2z = ) of a 

variable-viscosity magnetic and dielectric fluid given in Eqs. (5.4.14) and (5.5.14) 

from Eqs. (B1.8) and (B1.9) respectively. The boundary conditions for a free 

surface of a constant-viscosity magnetic and dielectric liquid can be recovered 

respectively from Eqs. (B1.8) and (B1.9) by taking 0Γ = . It is worth mentioning 
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that the boundary conditions in Eqs. (B1.8) and (B1.9) are influenced by the 

viscosity and magnetic field but unaffected by the internal heat source. This 

observation can be understood if we replace z by 1/2 in the expression for g(z).         

 

B2.  GENERAL BOUNDARY CONDITIONS ON THE MAGNETIC 
POTENTIAL  

 

      The magnetic boundary conditions are that the normal component of the 

magnetic induction and tangential components of the magnetic field are continuous 

across the boundary. Thus the matching conditions at the boundaries are  
 

 [ ] [ ] [ ]1 2 3 0 at
2
dH H B z' ' '= = = = ± ,                                                 (B2.1) 

 
where the square bracket denotes the difference between the values of bracketed 

quantity at both sides of the boundary.   

 
Eq. (2.1.7b), in the perturbed state, becomes   
 

 H ' 'Φ
→

= ∇ ,                                                                                             (B2.2) 
 

where 'Φ  is the perturbed magnetic scalar potential. The boundary conditions on 

'Φ  can be obtained using the fact that the periodic nature of 'Φ  within the fluid 

layer induces a periodic magnetic potential m 'ζ  outside the layer. Thus outside the 

layer   
 

 mH ' 'ζ
→

= ∇ .                               (B2.3) 
 
From Eqs. (2.1.7a), (2.1.8) and (B2.3), we arrive at  
 
 2 0m'ζ∇ =      (outside the layer).                                                            (B2.4) 
 
The third condition in Eq. (B2.1), using Eq. (2.1.8), leads to  
 

 3 3, at
2m m
dD H M z' ' ' ' 'ζ Φ ζ= = + = ± .                                        (B2.5)                  
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      The above equation, on using the second of Eq. (4.2.12) and normal mode 

analysis, leads to  
 

 1, (1 ) at
2m m m
dD D K T zζ Φ ζ χ Φ= = + − = ± .                           (B2.6)                  

 
Equation (B2.4), using the normal mode analysis, becomes   
 
 2 2( ) 0mD k ζ− =    (outside the layer).                                                   (B2.7) 
 
From Eqs. (B2.6) and (B2.7), we obtain 
 

 
1

1

1(1 ) 0 at ,
2
1(1 ) 0 at .
2

m

m

χ DΦ kΦ K T z

χ DΦ kΦ K T z

+ + − = = 

+ − − = = −


                                        (B2.8) 

 
The dimensionless form of Eq. (B2.8) is  
 

 

10 at ,
1 2

10 at .
1 2

m

m

aΦDΦ T z
χ

aΦDΦ T z
χ

+ − = = + 

− − = = −
+ 

                                                 (B2.9) 

 
      The boundary conditions given by Eq. (B2.9) are the general boundary 

conditions on the magnetic potential Φ  and are derived for the first time in the 

literature.  In particular, when both boundaries are isothermal, Eq. (B2.9) reduces to   

 

 

10 at ,
1 2

10 at .
1 2

m

m

aΦDΦ z
χ

aΦDΦ z
χ

+ = = + 

− = = −
+ 

                                               (B2.10) 

 

      The conditions in Eq. (B2.10) have been used by Finlayson (1970) while 

studying the RBC in a ferromagnetic fluid using rigid-rigid, isothermal boundaries. 
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B3.  GENERAL BOUNDARY CONDITIONS ON THE ELECTRIC 
POTENTIAL  

 

      The electric boundary conditions are that the normal component of dielectric 

field D
→

 and tangential components of electric field E
→

 are continuous across the 

boundaries. Thus the matching conditions at the boundaries are  
 

 [ ] [ ] [ ]1 2 3 0 at
2
dE E D z' ' '= = = = ± ,                                                  (B3.1) 

 
where the square bracket denotes the difference between the values of bracketed 

quantity at both sides of the boundary.   

 
Eq. (2.1.16b), in the perturbed state, becomes   
 

 E ' 'Φ
→

= ∇ ,                                                                                             (B3.2) 
 

where 'Φ  is the perturbed electric scalar potential. The boundary conditions on 

'Φ  can be obtained using the fact that the periodic nature of 'Φ  within the fluid 

layer induces a periodic electric potential e'ζ  outside the layer. Thus outside the 

layer   
 

 eE ' 'ζ
→

= ∇ .                                (B3.3) 
 
From Eqs. (2.1.16a), (2.1.17a) and (B3.3), we arrive at  
 
 2 0e'ζ∇ =      (outside the layer).                                                             (B3.4) 
 
The third condition in Eq. (B3.1), using Eqs. (2.1.17a) and (2.1.17b), leads to  
 

 o o 3 3, at
2e e
dD E P z' ' ' ' 'ζ Φ ε ζ ε= = + = ± .                                    (B3.5)                  

 
      The above equation, on using the second of Eq. (4.4.10) and normal mode 

analysis, leads to  
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 o, (1 ) at
2e e e
dD D e E T zζ Φ ζ χ Φ= = + − = ± .                           (B3.6)                  

 
Equation (B3.4), using the normal mode analysis, becomes   
 
 2 2( ) 0eD k ζ− =    (outside the layer).                                                    (B3.7) 
 
From Eqs. (B3.6) and (B3.7), we obtain 
 

 
o

o

1(1 ) 0 at ,
2
1(1 ) 0 at .
2

e

e

χ DΦ kΦ eE T z

χ DΦ kΦ e E T z

+ + − = = 

+ − − = = −


                                       (B3.8) 

 
The dimensionless form of Eq. (B3.8) is  
 

 

10 at ,
1 2

10 at .
1 2

e

e

aΦDΦ T z
χ

aΦDΦ T z
χ

+ − = = + 

− − = = −
+ 

                                                  (B3.9) 

 
      The boundary conditions given by Eq. (B3.9) are the general boundary 

conditions on the electric potential Φ  and are derived for the first time in the 

literature.  In particular, when both boundaries are isothermal, Eq. (B3.9) reduces to   
  

 

10 at ,
1 2

10 at .
1 2

e

e

aΦDΦ z
χ

aΦDΦ z
χ

+ = = + 

− = = −
+ 

                                                (B3.10) 
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