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Abstract

When a porous medium is bounded by an impermeable surface it is well known that the porosity and hence the
permeability increases near that surface. In this paper, we examine how this phenomenon a�ects the ¯ow and heat
transfer from a uniform temperature heated surface. In particular, we assume that the region of varying

permeability has constant thickness, and we present detailed numerical and asymptotic solutions for the resulting
nonsimilar ¯ow. Near the leading edge the ¯ow is enhanced and the rate of heat transfer is much higher than in the
uniform permeability case. Further downstream the region of varying permeability is embedded well within the

boundary layer, and in this case the ¯ow and heat transfer is only slightly di�erent from that of the uniform
case. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The large number of published papers on convective
heat transfer and ¯uid ¯ow through porous media

demonstrates clearly that this area of ¯uid mechanics
has been studied extensively during the last three dec-
ades. This research activity has accelerated because of
a broad range of applications in contemporary tech-

nology, such as geophysics, thermal insulation engin-
eering, packed-sphere beds, grain storage, heat
exchangers, the cooling of electronic components,

groundwater hydrology, nuclear waste repositories and
chemical catalytic reactors. Recent books by Nield and

Bejan [1] and Ingham and Pop [2] present a compre-
hensive account of the available information on these
¯ows, and, in particular, stress the importance of the

many extensions to Darcy's law which are needed in
various applications; these include inertia (form drag),
boundary (Brinkman), thermal dispersion and local

thermal nonequilibrium e�ects. However, most studies
neglect these extensions and concentrate mainly on
¯ows when Darcy's law and the Boussinesq approxi-
mation are valid, and when thermal conduction and

advection are governed by an equation identical in
form to that applying for a viscous clear ¯uid.
In high porosity media boundary and inertia

e�ects become important as the ¯uid velocities are
quite high and the rate of heat transfer from the
heated surface is evaluated in that near-wall region

where boundary e�ects are most signi®cant. The in-
¯uence of boundary and inertia e�ects on forced
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convective heat transfer in constant porosity media

was ®rst examined by Vafai and Tien [3], while a

complete and detailed analysis of these e�ects at the

interface region of a porous medium was performed

by Vafai and Thiyagaraja [4]. It was shown that

both e�ects decrease the velocity of the streaming

¯uid in the boundary layer and thereby reduce the

rate of heat transfer. In some applications, such as

packed-sphere beds and chemical catalytic reactors,

the porosity of the porous medium is no longer a

constant. For packed spheres Benenati and Brasilow

[5] have shown that the porosity near the solid sur-

face is larger than that in the main stream. This

nonuniform porosity distribution causes the so-called

channelling phenomenon ®rst studied by Vortmeyer

and Schuster [6] who found that the velocity attains

a maximum very close to the solid boundary. It

was observed that the ¯ow channelling e�ect has a

signi®cant in¯uence on convective ¯ow, i.e. it pro-

motes momentum transport in the boundary-layer

and this causes an enhanced rate of heat transfer.

Some investigators, notably Chandrasekhara and

Vortmeyer [7], Vafai [8], Chandrasekhara et al. [9,10]

and Cheng et al. [11±13], have incorporated a variable

permeability in the ¯ow past and through a porous

medium and have also shown that the velocity distri-

bution and heat transfer are a�ected greatly. In study-

ing nonuniform permeability e�ects a simple

exponential function of the distance from the wall was

usually employed. For the convective boundary-layer

problems this function usually leads to nonsimilar

boundary-layer equations, but Chandrasekhara et al.

[9,10] enforced self similarity by allowing the region of

increased permeability to grow in size in the same way

as the boundary-layer itself.

The aim of the present paper is to study how an ex-

ponentially decaying permeability a�ects the free con-

vective boundary-layer ¯ow induced by a vertical

heated surface embedded in a porous medium and

held at a constant temperature. The governing non-

similar boundary-layer equations are solved by using

the Keller box method for various values of the per-

meability parameter g which measures the ratio of the

permeability at the wall to that at in®nity. The numeri-

cal results are compared with an asymptotic expansion

valid for relatively large distances from the leading

edge. In this asymptotic regime the uniform per-

meability solution is valid at leading order, but the

¯ow and heat transfer are most strongly a�ected

nearer the leading edge where the growing boundary-

layer is still embedded within the region where the per-

meability varies strongly.

In Section 2, we derive the boundary layer equations

setting them into the context of the constant per-

meability problem ®rst studied by Cheng and Minko-

wycz [14]. The boundary layer ¯ow both near to and

far from the leading edge are studied using asymptotic

methods in Section 3. Finally, the numerical results are

presented and these together with the asymptotic

results are discussed in Section 4.

Nomenclature

a0 constant
A dimensionless permeability variation
d lengthscale associated with the permeability

variation
f, F reduced streamfunction
g, G reduced temperature

K permeability
p pressure
Q rate of heat transfer

Ra Darcy±Rayleigh number
u ¯ux velocity in the x-direction
v ¯ux velocity in the y-direction
x coordinate along the heated surface

y coordinate perpendicular to the heated sur-
face

Greek symbols
g permeability ratio

c streamfunction
x scaled streamwise coordinate
Z pseudo-similarity variable

y temperature
l eigenvalue

Superscripts and subscripts
± boundary layer scalings
� dimensional

1 ambient conditions
w at heated surface
x derivative with respect to x
y derivative with respect to y

' derivative with respect to Z or Ẑ
^ scaled variables near the leading edge
0, 1, 2 terms in the x� 1 analysis

~ logarithmic term
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2. Basic equations

Consider a vertical semi-in®nite ¯at plate with con-

stant surface temperature, Tw, which is embedded in a
¯uid-saturated porous medium of variable permeability
and of otherwise uniform temperature, T1, where

Tw > T1: The coordinate system is such that the ori-
gin is placed at the leading edge and that the x�-axis is
measured along the surface in the upward vertical

direction; the y�-axis is measured perpendicularly from
the surface into the porous medium. It is assumed here
that the permeability, K�y��, of the porous medium
varies as

K
ÿ
y�
� � K1 � �Kw ÿ K1�eÿy�=d, �1�

where Kw is the permeability at the wall, K1 is the
permeability of the ambient medium, and d is the
length scale over which the permeability varies.

After suitable nondimensionalisation the steady two-
dimensional equations which govern the ¯ow may be
written as

ux � vy � 0, �2a�

u � ÿA�y�
�
px ÿ Ray

�
, �2b�

v � ÿA�y�py �2c�

uyx � vyy � yxx � yyy, �2d�

where u and v are the velocity components along the

x- and y-axes, respectively, p is the pressure, y is the
temperature, Ra is the Darcy±Rayleigh number based
on d and K1, and A�y� is the nondimensional per-
meability given by

A�y� � 1� �gÿ 1�eÿy, �3�

with g � Kw=K1 being the permeability parameter.
Given how naturally occurring and arti®cial media are

packed near solid boundaries we restrict attention to
values of g which are greater than 1.
When g � 1, which corresponds to a constant per-

meability, and when Ra is very large, the resulting
boundary-layer ¯ow is self-similar. But the presence of
a nonuniform permeability ®eld renders the boundary-

layer nonsimilar. Thus, if we de®ne a streamfunction,
c, in the usual way according to u � @c=@y and
v � ÿ@c=@x, then the boundary-layer equations may
be obtained by using the scalings,

y � �y, x � Ra �x, c � Ra �c: �4�
Substitution of Eq. (4) into Eqs. (2) and allowing Ra
to become asymptotically large gives the following

equations at leading order

�c �y � A� �y�y, �5a�

yyy � �c �yy �x ÿ �c �xy �y �5b�

which have to be solved subject to the boundary con-
ditions,

�c � 0, y � 1 on �y � 0 and y40 as �y41: �5c�
We note that the scalings used in Eq. (4) correspond
to the situation in which the boundary-layer thickness
is of the same order of magnitude as the lengthscale of
the permeability variation and therefore y � O�1� is set
in this paper, rather than x � O�1� which is most often
used when there is no natural lengthscale in the ¯ow.
A boundary-layer transformation may now be intro-

duced which is very closely related to that of Cheng
and Minkowycz [14] who were the ®rst to consider the
constant-permeability counterpart of the present

problem. Therefore we set

�c � xf�x, Z� �6a�

y � g�x, Z� �6b�
where

x � �x1=2 and Z � �y= �x1=2: �7�
Therefore f and g satisfy the equations

f 0 �
�
�gÿ 1�eÿxZ � 1

�
g,, �8a�

g 00 � 1

2
fg 0 � 1

2
x
ÿ
f 0gx ÿ g 0fx

� �8b�

where primes denote partial derivatives with respect to
Z, and the boundary conditions become

f � 0, g � 1 at Z � 0, and g�Z�40 as Z41: �9�

Finally, the nondimensional rate of heat transfer at the
plate can be determined from the expression

Q � @g

@Z
jZ�0: �10�

3. Asymptotic analyses

3.1. Analysis near the leading edge

In this subsection we will present the leading order
term in a small-x expansion; further terms could be
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presented but are omitted since their purpose would
only be to provide further veri®cation of the accuracy

of the numerical code and they would not add any
physical insight.
When x � 0 Eqs. (8) become

f 0 � gg, �11a�

g 00 � 1

2
fg 0 � 0 �11b�

subject to Eq. (9). If we make the transformation

Z � gÿ1=2Ẑ, f�Z� � g1=2 f̂
ÿ
Ẑ
�
, �12�

then Eq. (11) reduce to the classical form of Cheng
and Minkowycz [14], namely

f̂ 0 � ĝ, �13a�

ĝ 00 � 1

2
f̂ĝ 0 � 0 �13b�

subject to

f̂ � 0, ĝ � 1 at Ẑ � 0, and

ĝ
ÿ
Ẑ
�
40 as Ẑ41,

�13c�

where primes on f̂ and ĝ denote derivatives with

respect to Ẑ: A consequence of this transformation is
that we have

g 0�0� � g1=2ĝ 0�0� � ÿ0:44375g1=2 �14�
where the value of ĝ 0�0� has been taken from Rees and

Bassom [15] and Rees and Pop [16]. Clearly, as g rises
from the value of 1, the uniform permeability case, the
¯uid is able to advect more easily up the heated sur-

face, thereby thinning the boundary layer and increas-
ing the rate of heat transfer.

3.2. Analysis for large values of x

At large distances from the leading edge the region
where the permeability of the medium varies becomes
con®ned to a near-wall region of decreasing thickness
compared with that of the boundary-layer itself which

grows as x 1=2: In terms of y this region is of constant
thickness, and we would expect that the boundary-
layer splits into two asymptotic regions: a main region

where Z � O�1�, wherein the ¯ow looks very much like
the self-similar ¯ow in a medium of uniform per-
meability, and a near-wall region where y � O�1�
within which variable permeability e�ects dominate.
The following analysis is undertaken using the method
of matched asymptotic expansions.

In the main region the solutions may be expanded in
the form:�
f
g

�
�
�
f0�Z�
g0�Z�

�
� xÿ1

�
f1�Z�
g1�Z�

�
� x2 ln x

 
~f2�Z�
~g2�Z�

!

� xÿ2
�
f2�Z�
g2�Z�

�
� � � � ,

�15a�

while in the near-wall region we use�
F
G

�
�
�
F0�y�
G0�y�

�
� xÿ1

�
F1�y�
G1�y�

�
� xÿ2

�
F2�y�
G2�y�

�

� x3ln x

0@ ~F3�y�
~G3�y�

1A� xÿ3
�
F3�y�
G3�y�

�
� � � � ,

�15b�

where the logarithmic terms are the eigensolutions cor-
responding to the leading-edge shift e�ect, see Refs.
[17] and Daniels and Simpkins [18]. The details of the

solution procedure are straightforward since they
closely follow the procedure used in Ref. [18], and
therefore we omit much of the analysis.

The functions f0 and g0 satisfy Eq. (13) and thus,

g 00�0� � ÿ0:44375 � ÿa0: �16�

At O�xÿ1� we easily ®nd that

f1 � 1ÿ g, g1 � 0: �17�

At O�xÿ2ln x� the eigenfunctions ~f2 and ~g2 are given by

~f2 � l
ÿ
Z f 00 ÿ f0

�
, ~g2 � lZg 00 �18�

where l is an eigenvalue whose numerical value is
determined by insisting that the equations at O�xÿ2�
have a solution. At O�xÿ2� the equations are

f 02 � g2, �19a�

g 002 �
1

2

ÿ
f0g
0
2 � 2f 00g2 ÿ f2g

0
0

� � 1

2
lf0f 000 �19b�

subject to the boundary and matching conditions,

f2�0� � ÿa0�gÿ 1�, g2�0� � 0, g2�Z41�40: �19c�

Although Eq. (19) determine the value of l, arbitrary
multiples of the eigensolution given in Eq. (18) are

also involved in the solution for f2 and g2, and there-
fore we cannot be precise about the form these func-
tions take. The value of l may, nevertheless, be

evaluated analytically. If we multiply Eq. (19b), written
in terms of f2 using Eq. (19a), by f0 and integrate
between Z � 0 and Z � 1, then we obtain
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l � 2�gÿ 1�a20: �20�

This formula shows that there is no logarithmic term
when the medium has uniform permeability.

In the near-wall region we ®nd the following sol-
utions,

F0 � 0, G0 � 1 �21a�

F1 � �1ÿ g��1ÿ eÿy � � y, G1 � ÿa0y, �21b�

F2 � a0�gÿ 1�ÿyeÿy � eÿy ÿ 1
�ÿ 1

2
a0y

2,

G2 � 0

�21c�

For the purposes of obtaining the ®rst two terms in
the large-x expansion for the surface rate of heat trans-
fer we need to proceed to O�xÿ3 ln x� in the near-wall
region. We ®nd that

~G3�0� �
�
~g 02�0�

�
y � ÿa0ly: �22�

Given that

Q � @g

@Z
jZ�0 � x

 
@G0

@y
� xÿ1

@G1

@y
� xÿ2

@G2

@y

� xÿ3ln x
@ ~G3

@y
� � � �

!
y�0

, �23�

we obtain

Q � ÿa0
h
1� 2a20�gÿ 1�xÿ2ln x

i
�O

ÿ
xÿ2

�
: �24�

4. Results and discussion

Eqs. (8) subject to Eq. (9) were solved numerically
using the Keller box method. In the x direction 401
equally spaced points were taken to lie in the range

0RxR20, while a nonuniform grid of 78 points was
taken in the Z direction. Gridpoints were concentrated
towards the Z � 0 boundary in order to capture well

the relatively thin boundary layer which occurs there.
A value of Zmax � 30 was taken, as this lies well out-
side the boundary layer in all circumstances.
As g increases the local rate of heat transfer, as

Fig. 1. Variation of the local rate of heat transfer, Q, with x for di�erent values of g: The straight line corresponds to g � 1, the

uniform permeability case. The other curves are for g � 2, 3, . . . , 10:
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shown in Fig. 1, increases in magnitude at any chosen

value of x; this is because the increased near-wall per-
meability allows the ¯uid to advect heat away more

quickly than it would for g � 1, thereby thinning the

boundary layer and increasing the temperature gradi-
ent. For any chosen value of g 6� 1 the rate of heat

transfer varies monotonically from the value given by

Eq. (14) towards that given by the leading order term
in Eq. (22), which corresponds to the uniform per-

meability result of Cheng and Minkowycz [14]. The

decay towards the common asymptotic value, ÿa0, is
approximately proportional to xÿ2, but since there are

unknown contributions of O�xÿ2� compared with the
known O�xÿ2 ln x� values, it is impossible to distinguish

between these terms given such small values of x as

were used here. Therefore, a strong quantitative con®r-
mation of the validity of the large-x asymptotic expan-

sion by a cross-validation using the numerical results is

not feasible in this case.

Typical pro®les of the temperature, g, are shown in
Fig. 2. Here, g � 10 was chosen as this case gives a

very strong channelling e�ect near the heated surface.
As x increases, the approach to the self-similar pro®le

is very evident in Figs. 1 and 2, and the strong chan-

nelling e�ect at small values of x corresponds to large

values of f as Z41, and large gradients in g at the

heated surface.

The qualitative nature of the present results are con-
sistent with the analogous problem of free convection

in a layered porous medium. Although Rees [19] con-

sidered a variety of layered con®gurations, the most
relevant one for the present paper consists of a uni-

form thickness layer of uniform permeability sand-
wiched between a uniform temperature heated vertical

surface and an ambient porous medium with a di�er-

ent permeability; this may be considered as a discrete
version of the present con®guration. Channelling

e�ects were also observed and are again most pro-

nounced at stations close to the leading edge.
Two other recent papers have dealt with certain

extensions of Darcy's law which result in a twin-layer

structure of the boundary-layer at large distances from
the leading edge. These are: (i) boundary e�ects as

modelled by the Brinkman terms [20], (ii) local thermal

nonequilibrium between the solid and ¯uid phases of
the porous medium [21]. In all three cases (the present

paper being the third) the Cheng and Minkowycz sol-
ution is obtained at leading order in the main part of

the boundary-layer, but the ¯ows described in detail in

Refs. [20,21] also have a twin-layer structure near the

Fig. 2. Temperature pro®les for various values of x for the case g � 10: The lowest curve corresponds to x � 0: Successive curves

correspond to x � 1, 2, . . . , 20:
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leading edge. It is clear in all three problems that these
variations upon a theme' serve to modify the ¯ow and

heat transfer characteristics quite substantially in a
very large portion of the porous medium. It would
now be of some substantial interest to investigate how

these several e�ects interact with one another.
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