Transport in Porous Media (2019) 127:711-728
https://doi.org/10.1007/5s11242-018-1222-z

@ CrossMark

Unsteady Free Convection Boundary Layer Flows
of a Bingham Fluid in Cylindrical Porous Cavities

D. Andrew S. Rees'® - Andrew P. Bassom?

Received: 17 October 2018 / Accepted: 11 December 2018 / Published online: 19 December 2018
© The Author(s) 2018

Abstract

We consider two unsteady free convection flows of a Bingham fluid when it saturates a
porous medium contained within a vertical circular cylinder. The cylinder is initially at a
uniform temperature, and such flows are then induced by suddenly applying either a new
constant temperature or a nonzero heat flux to the exterior surface. As time progresses,
heat conducts inwards and this may or may not overcome the yield threshold for flow. For
the constant temperature case, flow begins immediately should the parameter, Rb, which is
a nondimensional yield parameter, be sufficiently large. The ultimate fate, though, is full
immobility as the cylinder eventually tends towards a new constant temperature. For the
constant heat flux case, the fluid remains immobile but will begin to flow eventually should
RD be sufficiently large. The two cases have different critical values for Rb.

Keywords Porous media - Boundary layer - Unsteady flow - Convection - Bingham fluid -
Yield stress - Vertical cylinder
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Latin Letters

Ay, nth coefficient in a Fourier—Bessel series
g Gravity

G Threshold body force

Jo Zeroth order Bessel function of the first kind
Ji First order Bessel function of the first kind
k Thermal conductivity

K Permeability

P Pressure

Dz Pressure gradient in the vertical direction
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q Surface rate of heat transfer
r Radial coordinate

r Inner yield surface

123 Outer yield surface

R Cylinder radius
Ra Darcy—Rayleigh number
Rb Rees—Bingham number

t Time

T Temperature (dimensional)

To Ambient (cold) temperature

T Temperature of heated surface
w Vertical Darcy velocity

Greek Letters

o Thermal diffusivity

B Coefficient of cubical expansion
An nth zero of Jy

0 Temperature (nondimensional)
" Dynamic viscosity

P Reference density

I Heat capacity ratio

o, nth zero of J;

Other Symbols
- Dimensional quantities

1 Introduction

The topic of the flow of a Bingham fluid when it is not saturating a porous matrix is a well-
established field of study, and the literature is now quite mature. Efforts continue to develop
different numerical methods which will allow an accurate computation of such flows, the
chief difficulty being the presence of a yield surface which needs to be computed as part of
the overall problem. In some simplified cases, the analysis can proceed analytically (such
as for plane-Poiseuille and Hagen—Poiseuille flows), but in other one dimensional problems
the analysis has to be completed by using a simple Newton—Raphson iteration equation on
a transcendental equation which then allows the positions of the yield surfaces to be found.
Examples of such works include those by Yang and Yeh (1965) and Bayazitoglu et al. (2007)
who studied steady free convection in a vertical channel which is heated from the side. Steady
convection will only ensue once the Rayleigh number is sufficiently large that the yield stress
is overcome by the buoyancy force. For this free convection problem, there are two moving
zero-shear regions (i.e. ones which act like solids) and three fluid regions undergoing shear.
By contrast, Patel and Ingham (1994) considered mixed convection with the combination
of buoyancy and a driving pressure gradient, while Barletta and Magyari (2008) studied a
free convection version of vertical Couette flow. In both cases the number, the size and the
locations of the plug-flow regions are dependent on further nondimensional parameters. One
paper whose topic is closer to that of the present is that of Kleppe and Marner (1972) who
considered a sudden change in the temperature of one the sidewalls and who then determined
the evolution with time of the resulting velocity profile.
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When a Bingham fluid saturates a porous medium there are some changes to the modelling
of the equations of motion which are caused by the presence of the porous matrix. Just as the
Navier—Stokes equations, which apply for a clear Newtonian fluid, are replaced by Darcy’s
law, which applies in a porous medium, so it is that the usual yield-stress form of the Navier—
Stokes equations, which gives zero shear when stresses are less than the yield stress, needs to
be replaced by a Darcy—Bingham law. The first papers which presented such a law were those
by Pascal (1979, 1981). This law appears later, see Eq. (1), but it provides a piecewise-linear
dependence of the flux velocity on the applied pressure gradient; thus, there is a yield pressure
gradient. When the pressure gradient (or, equivalently, body forces) is less than a threshold
value then there is no flow. Further realism is obtained by considering the porous medium as
an assembly of identical channels or pores, which gives the well-known Buckingham—Reiner
law (1921). In this case the initial rise in the flow is quadratic immediately post-threshold,
as opposed to linear in Pascal’s model. We also note that more sedate transitions to flow
were found by Nash and Rees (2017) who considered distributions of channels/pores. In the
present paper, we will adopt Pascal’s piecewise-linear form.

In this short paper, we will consider the flow of a Bingham fluid in a vertical circular
cylinder which is filled with a porous medium. The flow is induced by means of applying
a sudden heating to the outer surface, and therefore the paper may be categorised in the
same way as the works of Kleppe and Marner (1972) and of Rees and Bassom (2015, 2016).
The present paper extends the analyses of Rees and Bassom (2015, 2016) into a cylindrical
domain, and therefore the work presented has been made as concise as possible. Therefore,
the heating considered here takes two forms: (1) a new temperature and (2) a nonzero heat
flux. Using Pascal’s piecewise-linear Darcy—Bingham law, the analysis proceeds analytically
and again, a Newton—Raphson scheme has to be used in order to locate both the yield surfaces
and, given that the flow domain is finite horizontally, the corresponding change to the initial
hydrostatic pressure gradient.

2 Governing Equations

The present paper is concerned with a vertical cylindrical configuration and the subsequent
evolution of the velocity and temperature fields once its bounding surface has its temperature
raised from the reference temperature. The configuration we use is sketched in Fig. 1. In
Case 1 the initial temperature is Ty and at the time r = O the temperature of the outer
boundary is raised suddenly to 77, while, by way of contrast, Case 2 considers a sudden
change in the boundary heat flux.

For the isothermal and unidirectional flow of a Bingham fluid saturating a homogeneous
and isotropic porous medium, we may follow Pascal (1981) and write the equation,

——11 - 7]*: when |p5| > G,
[ - 7 0

0 otherwise,

where G is used to denote the threshold pressure gradient above which the fluid is able to
flow. Other terms in Eq. (1) are the common ones used for flows in porous media and they are
given in the Nomenclature. In the present paper, we shall considering a free convective flow,
and therefore buoyancy forces may also to be included in such an equation and we obtain,
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Fig. 1 Definition sketch of the
configuration being studied. Also
shown are typical instantaneous ]
temperature and vertical velocity I
profiles which are radially
symmetric

J

- [1 - 4] (P==peBT —T0))  when [Pz = pgp(T = To)| > G.
[Pz — pgB(T —To)| | \°F )

0 otherwise.
(@)
We have taken w to be the vertical velocity here and have also assumed that the Boussinesq
approximation applies. The reference temperature is 7.

The cases which we consider are regarded as being of infinite length in the vertical direc-
tion, although practically a long finite cylinder or annulus is highly likely to be essentially
equivalent. This means that the thermal boundary layer which arises initially and its subse-
quent evolution will be unidirectional with the temperature and the vertical velocity being
functions solely of the radius and time. In such cases, the equation of continuity is satisfied.

The governing equation for the heat transport is,

aT 92T 14T
c— :a(—+ ) 3)

oFr | For

where 7 is the radial coordinate. Here ¢ is the heat capacity ratio between the porous medium
and the saturating fluid, and « is the thermal diffusivity of the porous medium.

The governing equations, namely Eqs. (2) and (3), may be nondimensionalised using the
following scalings,

o o —
.2 = R(.2). W= w, ﬁ=T?p, T =T+ (T) — T, 7=>—t,
o

G = 2o, “
KR
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where T is the temperature of the hot surface and R is a chosen radius, and we obtain,

3 9
Ra6— L _Rb, Rb<Rabh— L,
0z 0z

0
w={0, —Rb<Ra9—a—p<Rb, 5)
z
0 d
Rao — L 4+ Rb, Rab— L < _Rb,
0z 0z
and
90 0%0 1090 ©
9t r2 ror
In the above equations, the Darcy—Rayleigh number is given by
T1 — Ty))KR
Ra — p8B(T1 — To) 7 @
o
and the Rees—Bingham number is,
KR
Rb=—G. 3)
o

This latter parameter is clearly a scaled version of the yield pressure gradient, G, and, given
the presence of K and «, it could also be described as a porous convective Bingham number.

The initial condition in nondimensional form is simply that & = 0 at # = 0. The two cases
which we consider now correspond to the following:

Casel: 0<r<1 6=1 at r=1, ©)
Case2: 0<r<1 0d6/or=—-1 at r=1.

Case 1 is considered in the following section, but when Case 2 is considered in Sect. 4, then
the modified boundary condition at » = 1 requires minor changes in the scaling for 7 and
for the definition of Ra; these will be introduced in the appropriate place in the text.

3 Case 1: Constant Temperature

We consider the development of the temperature field within a vertical porous cylinder the
initial temperature of which is & = 0 and where the temperature of the boundary at r = 1
is raised suddenly to & = 1. The evolution of the temperature field is governed solely by
conduction and is unaffected by the induced flow.

We may solve Eq. (6) using separation of variables; in this way it is a standard textbook
exercise to show that the final solution is

1
00 , / Jo(Ar)rdr
0=1- Z ApdoOpr)e ' where A, =% (10)

1
n=1 / J02 (Ar)rdr
0
and where the 1, values are the positive zeros of the zeroth order Bessel function of the first

kind, Jy. Using standard results involving Bessel functions, this solution may be written in a
simpler form:
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0(r,t)

0.

r

Fig. 2 The evolution of the temperature profiles with time. The continuous curves correspond to t = 1074,
1073 N 10_2, 10~! and 1. The dotted curves are intermediate values; for example, the uppermost two correspond
tot = 0.2 and r = 0.5. The other curves correspond to the analogous values of ¢

oo
2 —A2t
6=1 ’;Anh@")Jo(xnr)e ) (11)

Figures 2 and 3 are concerned with the temperature field. Although such curves are well
known and appear in many textbooks and lecture notes, they nevertheless set the context
for the resulting flow and are included for that reason. Figure 2 shows the temperature
profile at a selected set of times. Clearly a very distinct boundary layer forms at very early
times, and, when ¢ < 1, it may be shown to be given by the equivalent Cartesian solution,
erfc [(1 — r)/2+/t], until curvature effects become significant.

The temperature at the origin will also be important in what follows, and therefore Fig. 3
shows this as a function of time. The origin remains at the original temperature until # >~ 0.03
after which the temperature rises towards 1. By the time ¢ = 1 the temperature at the origin
is 6 = 0.9951. At this point in time, the temperature of the cylinder is almost uniform and
therefore there are no buoyancy forces available to drive a flow. That this should be so is
evident if the present model problem forms the central portion of a very tall closed cylindrical
cavity where the mean flow up the layer be zero. If we consider Eq. (5) in its Newtonian form,
i.e. with w = Ra#@ — p_, then the initial state, 8 = w = 0, means that p, = 0. However,
once the cylinder has heated up completely to & = 1, then the velocity field must again be
zero, and therefore p, has now risen to the value given by Ra. This simply corresponds to
an adjustment in the hydrostatic pressure gradient because the new uniform temperature is
different from the reference value. Therefore, the variation of p, with time will also need
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-0.50 0.00
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Fig.3 The variation in time of the temperature at the centre of the cylinder

to be computed as part of the solution procedure for w; this idea was also used in Rees and
Bassom (2015, 2016).

The velocity field is given by solving Eq. (5). The chief difficulty is the determination of
the location of the two yield surfaces between which the fluid is stationary. If the inner and
outer yield surfaces are defined to be r = r; and r = rp, respectively, then Eq. (5) tells us
that

Ra6(ri,1) — p;, +Rb =0, (12)

and
Raf(rp, 1) — p, —Rb =0, (13)

at all times. The third condition which needs to be satisfied is that the overall vertical flow is
zero. This means that '
r
/ wrdr—i—/ wrdr=0 (14)
0 r

must be satisfied. After some lengthy manipulations, this condition may be written in the

form,
Rb
a(l —r]2 —r22> + [% — 1](1 —I—r]2 —r22>

[ee]

+4Z Ji(Ap) +r1Ji(Apr) — rzfl()»nrz)e,,\,z,, _

3201 Gon) 0. (15)

n=1
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t = 0.001 t=0.01

r T

Fig. 4 Showing temperature and velocity profiles for Rb/Ra = 0.1 and for r = 0.001, 0.01, 0.1 and 0.3.
Dotted curves correspond to temperature profiles and continuous curves to velocity profiles

Equations (12), (13) and (15) form three nonlinear equations for the three unknowns, ry,
ro and p; as functions of 7. As with our previous papers Rees and Bassom (2015, 2016), the
solutions were obtained using a multi-dimensional Newton—Raphson scheme which utilises
numerical differentiation to obtain the iteration matrix.

Figure 4 shows some example velocity profiles for the case,Rb/Ra = 0.1. Whent = 0.001
the temperature field, which is also shown in Fig. 4, has penetrated only a small distance
from r = 1. The resulting velocity profile consists of a narrow region of upward flow near
the other surface, another narrow region of stagnant medium, and a very wide region of low
amplitude negative velocity which includes the origin. The closer one gets to t = 0, the
weaker the downflow is and the narrower are the regions of upflow and stagnation, as shall
be seen in Fig. 5.

Once time has reached ¢+ = 0.01 both the upflow and stagnant regions have widened
substantially, and the magnitude of downflow in the centre of the cylinder has also increased.
As t increases further the magnitude of the downflow and the width of the upflow region both
reach a maximum and then decrease once more. The primary reason for this is the heating
up of the centre of the cylinder which brings about a decrease in the available buoyancy
force. Just before the fluid becomes completely stagnant, the upflow and downflow have both
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Fig. 5 The variation in time of the location of the yield surfaces, r = r{ (lower) and r = r, (upper). The
curves correspond to Rb/Ra = 0.01, 0.1, 0.2, 0.3, 0.4, 0.45, 0.48 and 0.49

become weak and the regions they occupy have become narrow. At a point in time which
depends on the value of Rb/Ra (see below, and Fig. 6) the fluid stops moving.

In Fig. 5, we give a summary of how the yield surfaces vary in time for different values
of Rb/Ra. For each value of Rb/Ra two curves are presented and the fluid is stagnant in the
region between those curves. Our previous comment about the narrowness of the stagnant
region and its proximity to » = 1 at early times is clearly evident in that Figure. In addition,
we also see that the width of the stagnant region increases as Rb/Ra increases; that this
should be so is because of the reduced effective buoyancy when Rb is large. We also see
how, in all cases, the stagnant region eventually expands to fill the cylinder, but stagnation
happens earlier for larger values of Rb.

Figure 6 shows what might be called the stagnation time as a function of Rb/Ra. This is
computed easily by first substituting r; = 0, r, = 1 into Egs. (12) and (13) to obtain,

1—-6(0,t) =2Rb/Ra, (16)

and by solving for ¢ in terms of Rb/Ra using a single-unknown Newton—Raphson scheme.
Figure 6, however, is created easily by finding Rb/Ra as a function ¢. Given the form of
Egs. (12) and (13), it is clear that it is impossible to have any flow at any time should
Rb/Ra > 1/, and therefore flow cannot be initiated. On the other hand, the behaviour of the
curve shown in Fig. 6 as Rb — 0 may be found using Eq. (11). If we assume that Rb/Ra is
small and that ¢ is large, then it is sufficient to retain one term in the summation in (11) and
therefore, when r = 0, Eq. (16) may be manipulated to give,
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logyg ¢t

STAGNANT

FLOWING

0.0 0.1 0.2 0.3 0.4 0.5
Rb/Ra

Fig.6 The variation with Rb/Ra of the time at which convection ceases

t 11 /\J(A)Rb (7
=——1n — ).
A3 MY Ra

For example, if we were to have a very weak yield threshold, one for which Rb/Ra = 1079,
then Eq. (17) gives a stagnation time of + = 2.351. This time increases to 4.739 when
Rb/Ra = 10712,

Finally, Fig. 7 shows that the hydrostatic pressure gradient always increases in time from
a value which is identical to Rb (i.e. p;/Ra increases from Rb/Ra). It is only in the case of
a Newtonian fluid that p,/Ra rises to a unit value.

4 Case 2: Constant Heat Flux

In this section we shall change the boundary condition on the outside of the cylinder from
one with a constant temperature to one with a constant heat flux. Therefore, we consider
the development of the temperature field where the initial temperature is & = 0, where the
boundary condition at r = 1 is changed suddenly to 96/dr = —1. In dimensional terms, this

means that we shall apply

oT
Loy a =R (18)
ar

and that the Darcy—Rayleigh number, previously defined in Eq. (7) for Case 1, is now defined

as,

_ P8Pk R
kpo

Ra 19)
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Fig.7 The variation in time of the hydrostatic pressure gradient adjustment, dp/dz, for Rb/Ra = 0.01, 0.1,
0.2,0.3,0.4,0.45, 0.48 and 0.49

All other quantities and definitions are unchanged.
Once more, we may solve Eq. (6) using separation of variables, and standard techniques
may be used to show that the final solution is

o=2+12-1_ 2§: Jolonr) o3 (20)
2 4 el O’y%JO(Un) '

where the o;, values are the positive zeros of Jj, or, equivalently, the positive zeros of Jj.

Figure 8 shows how the temperature field evolves with time. Once more a thin boundary
layer develops at early times, and it may easily be shown that @ ~ 2¢!/2ierfc[(1 — r)/2+/1];
see Rees and Bassom (2016). Therefore, we expect the outer surface temperature to rise
initially as 2(¢ /) '/? before curvature effects become significant. But without the knowledge
of the solution given in Eq. (20), it is clear that when there is uniform heat flux into the cylinder,
then the overall heat content must rise linearly with time. Like Fig. 2, this Figure shows the
presence of a narrow thermal boundary layer at small times which thickens until the origin
is reached, but unlike in Fig. 2, the maximum temperature continues to rise. The evolution
with time of both the boundary and central temperatures is shown in Fig. 9, together with the
large-¢ asymptotic states, namely

0r=0)~2t—1%, 0(r=1)~2+1. 1)

The exact solution and the large-t asymptotic solutions cannot be resolved visually once ¢ is
as large as 0.4. At this time, the asymptotic solution for the mid-point temperature is in error
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O(r,t)

Fig. 8 The evolution of the temperature profiles with time for the constant heat flux case. The continuous
curves correspond to t = 10*4, 10*3, 10~2 and 10~ 1. The dashed curves correspond to t = 0.2,0.3, 0.4 and
0.5 (uppermost). The dotted curves are the intermediate values, = 0.0002 (lowest), 0.0005, 0.002, 0.005,
0.02 and 0.05

by roughly 0.001, while that for the circumference is in error by roughly 0.0004. At¢ = 0.5,
the respective errors are smaller by a factor of 5.

Figure 10 shows a selection of velocity profiles for Rb/Ra = 0.05 and 0.2. As for the
constant temperature case, the yield locations and the hydrostatic pressure adjustment were
computed first by solving Eqgs. (12)—(14) using Eq. (20) as the temperature profile. Equa-
tion (14), the zero mean velocity condition, is found to be equivalent to

Rb 2 2 P 2 2 2 4 2
A F (R R CRRERE)

o0

riJi(onry) —raJi(our2) _, 2

+4 e ot =0.
X_; Uy?JO(Gn)

(22)

The value, Rb/Ra = 0.05, represents a weak yield threshold, and therefore the induced
velocities are strong relative to when Rb/Ra is larger, and the region over which there is
no flow is quite small. We also see that the flow strengthens as time progresses, although it
eventually tends towards a steady state. When Rb/Ra = 0.2, which is just below the critical
value above which flow is not possible, then the induced flow is weaker and the region of
stagnation is much larger.

Given that the buoyancy force which is available to induce fluid motion is proportional
to the temperature difference across the cylinder, it is clear that, for any chosen value of Rb,
there must be an interval of time before that force overcomes the yield threshold and flow is
induced. Therefore, there will an initiation time for flow. Figure 11 shows how the locations
of the yield surfaces vary with time for a selected set of values of Rb/Ra and this confirms
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t

Fig. 9 The variation in time of the temperature at the centre (lower) and the edge (upper) of the cylinder.
Continuous curves denote the exact solutions, while the dotted curves denote the large-# asymptotic solutions

the presence of an initiation time. For example, when Rb/Ra = 0.1, the yield surfaces are
atr = 0 and 1 when r = 0.0269225. At earlier times there is no flow, but at later times the
region of stagnation decreases in width until it becomes fixed in time and centred close to
r = 0.6. It is clear from this Figure that the initiation time increases with increasing Rb/Ra,
and this is seen in detail in Fig. 12 where it may also be seen that the initiation time tends to
infinity as Rb/Ra — i. That this is the maximum value for Rb/Ra may be shown easily by
noting first that the maximum temperature difference within the cylinder varies from zero at
t =010 0.5 [see Eq. (22); Fig. 9]. Then, the equivalent of Eq. (16) is

2Rb/Ra=6(1,1) —6(0,1) < 0.5, (23)

for convection to arise, and hence the largest value of Rb for which convection arises is
Rb = Ra/4.

Figure 13 shows the variation with time of the hydrostatic pressure gradient adjustment
which is required in order to maintain a zero mean velocity, and which accounts for the change
in the density of the fluid due to increasing mean temperature. Little detail may be seen when
plotting the variation of p, with time due to the magnitude of the 2¢ term in the expression
for 6 in (20), and therefore the second frame in Fig. 13 shows how Ra~!p. — 2¢ varies
with time. The beginning point of each curve represents the initiation time for convection.
In all cases, this modified hydrostatic pressure gradient adjustment tends to zero as time
progresses, suggesting that p, ~ 2Rat for large times. Therefore, it is worth determining if
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) g Rb/Ra=005 i
0.6 -
t=03
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""""""" t=02
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0.8} Rb/Ra=02 |
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Fig. 10 Showing temperature and velocity profiles for Rb/Ra = 0.05 and 0.2 for the indicated times (constant
heat flux case). Dotted curves correspond to temperature profiles and continuous curves to velocity profiles.
Larger magnitudes of velocity correspond to later times
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1.
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z
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0.1
0.15
0.4 |
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0.21
0.22
02 0.23
0.24
-8 % 0.1 0.2 0.3 0.4 0.5
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Fig. 11 The variation in time of the location of the yield surfaces, r = r (continuous) and r = r, (dotted)
for the constant heat flux case. The curves correspond to Rb/Ra = 0.01, 0.02, 0.03, 0.04, 0.05 0.1, 0.15 0.2,
0.21,0.22,0.23 and 0.24

there are any useful mathematical results which may be obtained for large times. A large-time
analysis is facilitated by the fact that all of the Bessel function terms in Egs. (20) and (22)
tend exponentially to zero as ¢ increases. It is then quite a short analysis to show that

1 2Rb I 2Rb
2 Ra’ and =7+ —-—, (24)

= 2Rar, =
Pz a " 2 Ra

precisely when exponentially terms are neglected. The given locations of the yield surfaces
agree to more than eight significant figures with our numerical work when ¢t = 1.

5 Conclusions

In this paper, we have considered where the outer impermeable surface of a porous circular
cylinder is subject either to a sudden change in the surface temperature or in the applied heat
flux. The porous medium within the cylinder is saturated with a Bingham fluid. In both cases
a thin thermal boundary layer is initiated at the outer surface which conducts inwards. When
a constant temperature is applied, flow is initiated immediately when Rb/Ra < %, but this
flow eventually ceases as the fluid at the centre of the cylinder heats up, thereby providing
a buoyancy force which is too small to overcome the yield threshold of the Bingham fluid.
On the other hand, when the surface is subject to a constant heat flux, there is no flow at
early times, again due to have too small a buoyancy force. However, flow eventually initiates
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FLOWING

STAGNANT

O'OO.OO 0.05 0.10 0.15 0.20 0.25 0.30

Rb/Ra

Fig. 12 The variation with Rb/Ra of the time at which convection is initiated for the constant heat flux case.
There is no flow when Rb/Ra > 0.25

if Rb/Ra < %, and the flowfield tends towards a steady state. In undertaking this analysis,
we have assumed that the flow and temperature fields are independent of z, the vertical
coordinate, and this is the situation which is likely to pertain when the cylinder is very tall
compared with its radius; such a tall but finite height means that the overall flow must satisfy
a zero vertical mean value.

The present analysis may now be extended to flows which arise outside a heated cylinder
which is embedded within a porous medium, or to cases of vertical annuli where the porous
medium is confined between the two surfaces, or even to cases where a volumetric heating
is initiated suddenly. We believe that it is extremely unlikely that these flows will undergo
a convective instability because the Newtonian counterpart has already been shown to be
unconditionally stable in various separate analyses; see Gill (1969), Rees (1988, 2011),
Straughan (1988), Lewis et al. (1995) and Scott and Straughan (2013). The effect of the
threshold pressure gradient is to reduce the strength of the basic fluid flow, which generally
means that flows are less susceptible to unstable disturbances. We note, however, that such
channels will admit instability, but only when quite substantial alterations have been made
from the configuration considered by Gill (1969). Thus Barletta (2015) found that instability
can arise when the impermeable surfaces are replaced by constant pressure surfaces. Shankar
and Shivakumara (2017) allowed the porous medium to be saturated by an Oldroyd-B fluid,
thereby extending the work of Rees (1988), and found that this situation may also be subject
to instabilities. It may be argued that these two respective changes to the Gill’s configuration
allow the fluid more freedom to be destabilised, whereas the present configuration represents
less freedom.
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Fig. 13 The variation in time of the hydrostatic pressure gradient adjustment, Ra~ldp /dz, (upper) and of
Ra—ld p/dz — 2t (lower) for the values of Rb/Ra given in the caption to Fig. 10 (constant heat flux case)
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