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Abstract

While diffusion has been well studied, diffusion across multiple layers, each

with different properties, has had less attention. This type of diffusion may

arise in heat transport across composite materials or layered biological mate-

rial. Usually of most interest is a critical time, such as the time for a material

to heat up. Here an exact solution is found which demonstrates the critical

time behaviour for transport across multiple layers. This solution illustrates

the limitations of traditional averaging methods.
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Nomenclature

α proportion of the steady state n total number of layers

D = d2 single layer diffusivity t time

Dav = d2
av average diffusivity tav typical critical time

Di = d2
i layer diffusivity tc multilayer critical time

f(x) initial condition ts single layer critical time

i layer index θ1 boundary condition at x = x0

L total length of medium θ2 boundary condition at x = xn

li layer width U(x, t) temperature

λm multilayer eigenvalues v(x, t) transient solution

m eigenvalue index w(x) steady state solution

µm single layer eigenvalues x spatial position

Hi contact transfer coefficient

[A,B]
shorthand for n/2 biperiodic layers,

material properties DA, DB as ABAB . . . AB

1. Introduction

Diffusion through multiple layers has applications to a wide range of areas

in heat and mass transport. Industrial applications include annealing steel

coils (7; 24; 33), the performance of semiconductors (2) and electrodes (9; 11),

and geological profiles (16). Biological applications include determining the

effectiveness of drug carriers inserted into living tissue (31), the probing of

biological tissue with infrared light (22), and analysing the heat production

of muscle (14).
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For multilayer diffusion across n layers the standard diffusion equation,

∂Ui
∂t

= Di
∂2Ui
∂x2

, i ∈ [1, n] , (1)

is applicable in each layer where xi−1 ≤ x ≤ xi is distance, Ui is the tem-

perature in layer i at time t, and Di is the diffusivity of layer i, as shown in

Figure 1. For clarity, in subsequent sections the notation di ≡
√
Di is also

used.

Exact solutions for diffusion in layered media have been found for diverse

applications and geometries. These include solutions in Cartesian coordi-

nates for two layers (29; 30; 31) and n layers (12; 17; 27; 28; 32), and

cylindrical n layer solutions (13; 21). Many of these publications use sep-

aration methods similar to that outlined in Sections 2 and 3 of this arti-

cle. However previous publications that use separation methods, and also

consider Cartesian coordinates, assume perfect contact between the lay-

ers (12; 17; 27; 28; 32) and some (12; 17; 32) have less general boundary

conditions. Laplace transform approaches are also used (5; 9), but are less

common due to the difficulty of the inverse transform, which are often only

numerically found.

An important aspect of multilayer diffusion is the ‘critical time’, which

is a measure of how long the diffusive process takes. This is important for

a number of applications, such as the ‘time to heat’ when annealing steel

coils (7; 24; 33). There are multiple definitions of critical time since mathe-

matically, an infinite amount of time is required to reach steady state (20).

A common definition is the time when the average temperature reaches a

proportion of the average steady state. That is, the value of t = tc such that
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∫ L

x=0

U(x, tc) dx = α

∫ L

x=0

w(x) dx , (2)

where U(x, t) is the temperature, 0 < α < 1 is a chosen constant, and w(x) is

the steady state. Landman and McGuinness (20) summarise previous work

and applications using this critical time definition, also called the mean action

time (25; 26).

The most common approximation of critical time (see for example (3; 6;

15; 19)), is the simple expression

tav =
L2

6Dav

, (3)

where Dav is the commonly averaged diffusivity for layered materials, given

by
L

Dav

=
n∑
i=1

li
Di

. (4)

Here L is the total medium length, and li are the lengths of each layer with

material diffusivity Di. This series-averaged diffusivity is a valid measure

when calculating heat fluxes at steady state, or for a large number of layers.

The critical time, Equation (3), corresponds to the critical time definition

given in Equation (2) for α ≈ 0.8435, a result calculated in Section 2. How-

ever, Equation (3) is only valid for a single layered material. Absi et al. (1)

describe a brief numerical and experimental comparison using Equation (3)

versus the full coupled numerical system for two layers. Their results indi-

cate the limitations of this formula, a result we corroborate in our numerical

simulation shown in Figure 3.

Several publications have attempted to calculate a diffusive critical time

through composites, in Cartesian, cylindrical and spherical geometries with
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Ash et al. (3; 4) giving detailed solutions. These are summarised in Bar-

rer (6) for some of the usual layer configurations, such as two repeated lay-

ers, ABAB . . . , also referred to as a ‘biperiodic region’. Their complicated

derivation is equivalent to choosing α ≈ 0.8435 in Equation (2). However,

as shown in our companion paper Hickson et al. (18), their result for a one-

dimensional Cartesian layered material does not reflect the actual critical

time. Aguirre et al. (2) determined a solution for sinusoidally imposed tem-

perature, calculating an effective diffusivity for a composite material. Their

result is an improved version of the series-averaged diffusivity given in Equa-

tion (4). The effective diffusivity was found in terms of the imposed frequency

where Equation (4) is reflected in the low frequency limit when the material

is in quasi-steady state.

We will show the standard Equations (3) and (4) give inaccurate results.

The exact solution is found for diffusion in a one-dimensional Cartesian ma-

terial with only one layer in Section 2. This is extended to the more compli-

cated multilayer case in Section 3 where the solutions are also verified. The

critical time is calculated numerically in Section 4 and discussed in Section 5.

2. Single layer solution

In this section we find an exact solution for the single layer case. Whilst

not original, this will demonstrate the solution method used for the more

difficult multilayer diffusion problem in Section 3. Additionally, these results

will assist in understanding the definition and behaviour of critical time.

The single layer case is depicted in Figure 2, where

∂U

∂t
= D

∂2U

∂x2
, (5)
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for some initial condition, U(x, 0) = f(x), and mixed boundary conditions,

a1U + b1
∂U

∂x
= θ1 at x = x0 ,

a2U + b2
∂U

∂x
= θ2 at x = x1 , (6)

where a1, a2, b1, b2, θ1 and θ2 are constants.

Due to the boundary conditions the problem must be split into the steady

state, w(x), and transient, v(x, t), components (8) where U(x, t) = w(x) +

v(x, t). The steady state solution is found by integrating and substituting in

the boundary conditions to give

w(x) =
(a1 θ2 − a2 θ1)(x− x0) + θ1(a2 L+ b2)− b1 θ2

a1 a2 L+ a1 b2 − a2 b1
. (7)

It has been assumed that a1 and a2 cannot both be zero. If a1 = 0 = a2

then a solution only exists if b2 θ1 = b1 θ2 ; otherwise the finite medium has

an unbalanced heat input giving rise to unbounded temperature.

The transient solution, v(x, t), satisfies

∂v

∂t
= D

∂2v

∂x2
, (8)

a1v + b1
∂v

∂x
= 0 at x = x0 , (9)

a2v + b2
∂v

∂x
= 0 at x = x1 , (10)

v(x, 0) = g(x) , (11)

where g(x) = f(x)− w(x) . This can be solved using separation of variables

where v(x, t) = X(x)T (t), resulting in the two eigenfunction solutions

X(x) = sin
(µm
d

(x− x0)
)
− b1µm

a1 d
cos
(µm
d

(x− x0)
)
, (12)

T (t) = e−µ
2
mt , (13)
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where we use the simpler notation d =
√
D and the eigenvalues, µm, satisfy

sin

(
µm L

d

)[
a1 a2 d

µm
+
b1 b2 µm

d

]
+ cos

(
µm L

d

)
[a1 b2 − a2 b1] = 0 . (14)

Therefore the transient solution is

v(x, t) =
∞∑
m=1

Ame
−µ2

mtX(x) , (15)

where Am is determined by Sturm–Liouville theory as

Am =

∫ x1

x0

g(x)X(x) dx∫ x1

x0

X2(x) dx

. (16)

Hence the complete solution is

U(x, t) = w(x) +
∞∑
m=1

Ame
−µ2

mtX(x) . (17)

Equation (2) can now be written as

(1− α)

∫ x1

x=x0

w(x) dx+

∫ x1

x=x0

v(x, ts) dx = 0 , (18)

for the critical time, t = ts .

For illustrative purposes we consider the simpler case of constant bound-

ary conditions, where a1 = 1 = a2 and b1 = 0 = b2 in Equation (6). These

give µm = mπd/L and when f(x) = 0 , Am = 2(θ2(−1)m − θ1)/(mπ). The

critical time is then evaluated using Equation (17) to give

(1− α)(θ1 + θ2) + 4
∞∑
m=1

[1 + (−1)m+1]

(mπ)2
[θ2(−1)m − θ1] e

−µ2
mts = 0 . (19)

Due to the infinite sum over the eigenvalues, Equation (19) cannot explicitly

be solved for the critical time, ts . However for large enough times this solu-

tion is dominated by the leading order eigenvalue. Hence if only the leading
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eigenvalue is considered, when m = 1, Equation (19) can be rearranged to

give

ts ≈ L2

π2D
log

{
8

π2(1− α)

}
. (20)

The critical time must be positive, therefore (1 − 8/π2) < α < 1. Equating

this to Equation (3) gives α = 1− (8/π2) exp(−π2/6) ≈ 0.8435.

Similarly, for an insulated boundary at x = x1, where a1 = 1, a2 = 0,

b1 = 0, b2 = 1 and θ2 = 0 in Equation (6), the critical time for the leading

eigenvalue is

ts ≈ 4L2

π2D
log

{
8

π2(1− α)

}
. (21)

Equating this to Equation (3) gives α = 1 − (8/π2) exp(−π2/24) ≈ 0.4627.

The difference between Equations (20) and (21) is of interest, as it shows

that insulation allows the medium to reach the critical temperature four

times more quickly.

3. Multilayer solutions

In this section the multilayer solution for general boundary conditions are

found using the same method as the single layer, by splitting the solution

into the steady state, wi(x), and transient, vi(x, t), components.

The contact between layers is often imperfect giving rise to a jump con-

dition between layers represented by

Di
∂Ui
∂x

= Hi (Ui+1 − Ui) , (22)

Di+1
∂Ui+1

∂x
= Hi (Ui+1 − Ui) , (23)

at x = xi for i = 1, 2, . . . , (n− 1) where Hi is the contact transfer coefficient.

This reflects roughness (7) and contact resistance (8). If Hi →∞ then con-
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tact becomes perfect and hence this limit represents the equivalent matching

conditions

Ui(xi, t) = Ui+1(xi, t) , (24)

Di
∂Ui
∂x

∣∣∣∣
xi

= Di+1
∂Ui+1

∂x

∣∣∣∣
xi

, (25)

which represent continuity in ‘temperature’ and flux respectively.

After Equation (1) has been split into steady state and transient parts,

the steady state solution, wi(x), satisfies

Di
∂2wi
∂x2

= 0 , (26)

a1w1 + b1
∂w1

∂x
= θ1 at x = x0 , (27)

a2wn + b2
∂wn
∂x

= θ2 at x = xn , (28)

Di
∂wi
∂x

= Hi (wi+1 − wi) , (29)

Di+1
∂wi+1

∂x
= Hi (wi+1 − wi) . (30)

Integrating Equation (26) results in

wi(x) = qi(x− xi−1) + hi , (31)

where qi and hi are constants. Using the boundary conditions, Equations (27)

and (28), respectively give

h1 =
θ1 − b1 q1

a1

,

(a2 ln + b2) qn + a2 hn = θ2 , (32)

and the interface conditions, Equations (29) and (30), result in recursively
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defined constants:

qi+1 =
Di

Di+1

qi =
D1

Di+1

q1 , (33)

hi+1 = hi + qi

(
Di

Hi

+ li

)
= h1 +

i∑
j=1

(
Dj

Hj

+ lj

)
qj . (34)

These are used to calculate qn and hn, which are substituted back into Equa-

tion (32) to find q1. After some algebra,

q1 =
(a1θ2 − a2θ1)Dn

a1b2D1 − a2b1Dn + a1a2D1Dn

(
L

Dav

+
n−1∑
j=1

1

Hj

) , (35)

qi =
D1

Di

q1 , (36)

hi = h1 +D1q1

i−1∑
j=1

(
lj
Dj

+
1

Hj

)
. (37)

The inclusion of Dav in Equation (35) is interesting as it shows averaging of

the material properties.

The transient solution, vi(x, t), satisfies

∂vi
∂t

= Di
∂2vi
∂x2

, (38)

a1v1 + b1
∂v1

∂x
= 0 at x = x0 , (39)

a2vn + b2
∂vn
∂x

= 0 at x = xn , (40)

Di
∂vi
∂x

= Hi (vi+1 − vi) , (41)

Di+1
∂vi+1

∂x
= Hi (vi+1 − vi) . (42)

vi(x, 0) = fi(x)− wi(x) = gi(x) . (43)

Using separation of variables, where vi(x, t) = Xi(x)T (t), results in the two
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eigenfunction solutions

Xi(x) = K1,i sin

(
λm
di

(x− xi−1)

)
+K2,i cos

(
λm
di

(x− xi−1)

)
, (44)

T (t) = e−λ
2
mt , (45)

where K1,i and K2,i are constants, λm are the eigenvalues, and Xi(x) ≡
Xi,m(x). Applying the boundary and interface conditions to Equation (44)

results in a series of expressions that can be rewritten in terms of one of

the constants, chosen here as K1,1. Hence in Equation (44), K1,1 = 1 by

definition of the chosen constant, from Equation (39)

K2,1 =
−b1λm
a1d1

, (46)

from Equation (42)

K1,i+1 =
di
di+1

[
K1,i cos

(
λm

li
di

)
−K2,i sin

(
λm

li
di

)]
, (47)

from Equation (41)

K2,i+1 = K1,i

[
sin

(
λm

li
di

)
+
λmdi
Hi

cos

(
λm

li
di

)]
+K2,i

[−λmdi
Hi

sin

(
λm

li
di

)
+ cos

(
λm

li
di

)]
, (48)

and the eigenvalues, λm, are defined by the transcendental expression

K1,n

[
a2 sin

(
λm

ln
dn

)
+
λmb2
dn

cos

(
λm

ln
dn

)]
+K2,n

[
−λmb2

dn
sin

(
λm

ln
dn

)
+ a2 cos

(
λm

ln
dn

)]
= 0 , (49)

which comes from Equation (40). Note K1,i and K2,i are recursively defined.

The transient solution is then

vi(x, t) =
∞∑
m=1

Cme
−λ2

mtXi(x) . (50)
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Using the initial condition,

vi(x, 0) = gi(x) =
∞∑
m=1

CmXi(x) , (51)

so to solve for the summation constant, Cm, a suitable orthogonality con-

dition must be used. The following orthogonality condition is proven in

Appendix A,

n∑
i=1

∫ xi

xi−1

Xi(x,m)Xi(x, p) dx =

 0, m 6= p

κ, m = p
(52)

where κ is a constant. Using this gives

Cm =

n∑
i=1

∫ xi

xi−1

gi(x)Xi(x) dx

n∑
i=1

∫ xi

xi−1

X2
i (x) dx

. (53)

The complete solution is therefore

Ui(x, t) = wi(x) +
∞∑
m=1

Cme
−λ2

mtXi(x) . (54)

We will now investigate the case of Hi → ∞; when the jump interface

solution approaches the matching interface solution. First consider the steady

state coefficients, Equations (35) and (37). As Hi →∞,

q1 =
(a1θ2 − a2θ1)Dn

a1b2D1 − a2b1Dn + a1a2D1Dn

(
L

Dav

) (55)

and

hi = h1 +D1q1

i−1∑
j=1

lj
Dj

. (56)
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The only equation involving the jump for the transient solution is Equa-

tion (48). As Hi →∞,

K2,i+1 = K1,i sin

(
λm

li
di

)
+K2,i cos

(
λm

li
di

)
. (57)

The critical time for multiple layers, tc, is found by solving the equivalent

multilayer version of Equation (18):

(1− α)
n∑
i=1

∫ xi

xi−1

wi(x) dx+
n∑
i=1

∫ xi

xi−1

vi(x, tc) dx = 0 . (58)

Substituting the multilayer solution, Equation (54), into this gives

(1− α)
n∑
i=1

{
hi li +

qi l
2
i

2

}
+

n∑
i=1

di

∞∑
m=1

Cm
λm

e−λ
2
mtcΨi,m = 0 , (59)

where

Ψi,m = K1,i

{
1− cos

(
λmli
di

)}
+K2,i sin

(
λmli
di

)
. (60)

Although this could be approximated using the leading eigenvalue, as done

in Section 2, the expression is still complicated and does not provide further

insight to the multilayer critical time behaviour. However, the critical time

can be calculated numerically using Equation (59), and is denoted the ‘exact’

critical time in later analysis.

The solutions given by Equations (17) and (54) were verified for multi-

ple scenarios using two different numerical schemes. The first scheme used

finite differences, explained in Appendix B, and was implemented in mat-

lab (23). The second uses the commercial finite elements package Flex-

PDE (10). Agreement between the two numerical schemes and the analytical

solutions were found to within expected numerical accuracy.
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4. Numerical results

To explore the behaviour of the multilayer critical time a biperiodic region

is considered, with n/2 repeating layers with ‘A’ and ‘B’ properties such as

layer width, lA and lB, and diffusivity, DA and DB. That is, there are n layers

in total with repeated layers ABAB . . . AB, denoted by shorthand as [A,B]

or equivalently [DA, DB]. The region is defined with x0 = 0 to xn = 1, hence

L = 1. For simplicity here, equal widths for both layers are used, so li = 1/n,

but in general this is not necessary. Different diffusivities are used in each

layer, where the larger diffusivity D = 1 and the smaller diffusivity D = 0.1.

The initial condition used is fi(x) = 0 and the proportion of the steady state

is α = 0.5.

Constant boundary conditions are used for Figure 3, where a1 = 1 = a2

and b1 = 0 = b2, θ1 = 1 and θ2 = 0, and continuous interface conditions are

used, where Hi →∞. Three different scenarios are presented in Figure 3 for

the critical time as a function of the number of repeated layers, n/2. The first

scenario uses [1, 0.1] periodic layers, and the second scenario uses [0.1, 1].

The third ‘Single Dav’ scenario averages the diffusivities using Equation (4),

and calculates the critical time for the single layer solution, Equation (20). Of

interest is the convergence of the ‘Exact [1, 0.1]’ and ‘Exact [0.1, 1]’ scenarios

from different sides of the averaged solution and the local maxima for the

‘Exact [0.1, 1]’ scenario.

Similar scenarios are explored in Figure 4, but for different boundary

conditions. The boundary at x = x0 is made constant, with a1 = 1, b1 = 0

and θ1 = 1, and the boundary at x = xn is insulated, with a2 = 0, b2 = 1 and

θ2 = 0. The value the critical times are converging to are noticeably different
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for Figures 3 and 4. Also, both the ‘Exact [1, 0.1]’ and ‘Exact [0.1, 1]’

scenarios are symmetric about the ‘Single Dav’ scenario for Figure 4. Note

the ‘Exact [0.1, 1]’ solution does not give a local maximum as in Figure 3.

Both Figure 3 and 4 demonstrate that a relatively large number of layers

are required for accurate results when using the traditional averaging ap-

proach, Equation (3). In particular, the averaging method is very poor for

less then ten repeated layers, or twenty layers in total.

Although the numerical implementations provide some insight as to how

the behaviour differs for multiple layers as opposed to a single layer, it fails

to explain why this difference occurs. Hence in Hickson et al. (18) we ex-

plore an approximate perturbation of the exact solution which will illuminate

this behaviour, and explain the local maximum found in the ‘Exact [0.1, 1]’

scenario in Figure 3.

5. Discussion

The most interesting point illustrated with this work is that layered ma-

terials do not exhibit symmetric properties. That is, the time taken to diffuse

depends greatly on which order the materials are layered. Hence this work

can be used to consider the inverse problem, where it is possible to apply

the critical time to determine the individual properties of the layered mate-

rials. That is, two measurements of critical time, with the material direction

switched, are sufficient to determine the properties of each individual layer.

Although only one definition for critical time has been explored here,

it is possible to apply the exact solutions found to alternative definitions.

The method used to find the exact solutions is extendable to cylindrical and
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spherical coordinates.

6. Conclusion

Exact solutions were found for multilayer diffusion, with general bound-

ary and interface conditions. These solutions were then used to numerically

demonstrate the limitations of the traditional averaging methods, Equa-

tions (3) and (4). We demonstrated the nearly symmetric behaviour of

critical time with number of layers and the importance of the layer order.

A. Proof of orthogonality condition

The orthogonality condition for n-layers is proven here using standard

Sturm-Liouville theory. The original eigenfunction equation, which results

from the separation of Equation (38), is

∂2Xi,m

∂x2
=
ϕm
Di

Xi,m , i ∈ [1, n] , (61)

for the ith layer and mth eigenvalue, where ϕm = −λ2
m. Multiplying both

sides of Equation (61) by Xi,p, for the pth eigenvalue where m 6= p, and

integrating gives ∫ xi

xi−1

Xi,pX
′′
i,m dx =

ϕm
Di

∫ xi

xi−1

Xi,pXi,m dx (62)

and similarly, for the other eigenvalue,∫ xi

xi−1

Xi,mX
′′
i,p dx =

ϕp
Di

∫ xi

xi−1

Xi,mXi,p dx . (63)
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Subtracting Equation (63) from Equation (62), using integration by parts

and simplifying gives

(ϕm − ϕp)
∫ xi

xi−1

Xi,mXi,p dx = Di

([
Xi,pX

′
i,m

]xi

xi−1
− [Xi,mX

′
i,p

]xi

xi−1

)
= Di

(
Xi,p(xi)X

′
i,m(xi)−Xi,p(xi−1)X

′
i,m(xi−1)

−Xi,m(xi)X
′
i,p(xi) +Xi,m(xi−1)X

′
i,p(xi−1)

)
. (64)

The same is done for the ‘i+ 1’th layer,

(ϕm − ϕp)
∫ xi+1

xi

Xi+1,mXi+1,p dx =

Di+1

(
Xi+1,p(xi+1)X

′
i+1,m(xi+1)−Xi+1,p(xi)X

′
i+1,m(xi)

− Xi+1,m(xi+1)X
′
i+1,p(xi+1) +Xi+1,m(xi)X

′
i+1,p(xi)

)
. (65)

The internal boundary conditions are

Xi,m(xi) = Xi+1,m(xi) , (66)

Di
∂Xi,m

∂x

∣∣∣∣
xi

= Di+1
∂Xi+1,m

∂x

∣∣∣∣
xi

, (67)

for i ∈ [1, n− 1] . Using these, Equation (65) becomes

(ϕm − ϕp)
∫ xi+1

xi

Xi+1,mXi+1,p dx =

Di+1Xi+1,p(xi+1)X
′
i+1,m(xi+1)−DiXi,p(xi)X

′
i,m(xi)

−Di+1Xi+1,m(xi+1)X
′
i+1,p(xi+1) +DiXi,m(xi)X

′
i,p(xi) . (68)

Adding Equations (64) and (68) then gives

(ϕm − ϕp)
[∫ xi

xi−1

Xi,mXi,p dx+

∫ xi+1

xi

Xi+1,mXi+1,p dx

]
=

Xi,m(xi−1)X
′
i,p(xi−1)−Xi,p(xi−1)X

′
i,m(xi−1)

+Xi+1,p(xi+1)X
′
i+1,m(xi+1)−Xi,m(xi+1)X

′
i,p(xi+1) .
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Therefore the middle, xi, points are always going to cancel out, leaving only

the end points, x = x0 and x = xn. That is,

(ϕm − ϕp)
n∑
i=1

∫ xi

xi−1

Xi,mXi,p dx =

X1,m(x0)X
′
1,p(x0)−X1,p(x0)X

′
1,m(x0)

+Xn,p(xn)X ′n,m(xn)−Xn,m(xn)X ′n,p(xn) . (69)

Given general boundary conditions at x = x0:

a1X1,m(x0) + b1X
′
1,m(x0) = 0

a1X1,p(x0) + b1X
′
1,p(x0) = 0 (70)

then for a1 and b1 both non-zero this requires the determinant

X1,m(x0)X
′
1,p(x0)−X1,p(x0)X

′
1,m = 0 (71)

and similarly at x = xn. Hence Equation (69) becomes

(ϕm − ϕp)
n∑
i=1

∫ xi

xi−1

Xi,mXi,p dx = 0 .

When ϕm 6= ϕp,
n∑
i=1

∫ xi

xi−1

Xi,mXi,p dx = 0

and hence the orthogonality condition has been proven.

This proof is extendable to the jump interface conditions, Equation (23),

although with more complicated algebra.

B. Finite difference scheme for layers

The finite difference scheme uses second order central differences with an

Euler time step. An added complexity arises from the layered nature of the

18



problem. Figure 5 depicts an interface between layers with nomenclature and

indexing. The inner points of a layer use the standard first order time and

second order space finite differencing, that is

∂Uj−1

∂t
=

Di

∆x2
[Uj−2 − 2Uj−1 + Uj] , (72)

where Uj is the temperature at the spatial point j in layer i. The point on

the interface is found using the flux matching condition, Equation (25), as

∂Uj
∂t

=
1

∆x2
[Di Uj−1 − (Di +Di+1)Uj +Di+1 Uj+1] (73)

where Uj lies on the intersection of the i and (i + 1) layers, as shown in

Figure 5. Thus the differencing for this system can be illustrated by the

following matrix

d

dt



...

Uj−2

Uj−1

Uj

Uj+1

Uj+2

...


=



. . .

. . .

· · · ci −2ci ci 0 0 · · ·
· · · 0 ci −ci − ci+1 ci+1 0 · · ·
· · · 0 0 ci+1 −2ci+1 ci+1 · · ·

. . .

. . .





...

Uj−2

Uj−1

Uj

Uj+1

Uj+2

...


,

(74)

where ci = Di/∆x, and ci+1 = Di+1/∆x. This is easily extended to multiple

layers with numerous internal points and general boundary conditions. This

can then be iterated in time using standard Euler time steps.
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Figure 1: Multilayer schematic showing the nomenclature. Here Ui is the

temperature in layer i at time t, Di is the diffusivity of a given layer and li is

the width of the layer.
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Figure 2: Single layer diffusion for U(x, t), length L, and a single diffusiv-

ity, D.
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Figure 3: Critical time versus number of repeated layers for a multilayer

medium. Results are calculated numerically using Equation (59). Here L =

1, li = 1/n, α = 0.5, a1 = 1, b1 = 0, θ1 = 1, a2 = 1, b2 = 0, θ2 = 0 and

fi = 0. Diffusivities are either [1, 0.1] or [0.1, 1]. ‘Single Dav’ uses the single

layer critical time, Equation (20), with Dav = 0.18 from Equation (4).
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Figure 4: Critical time versus number of repeated layers for a multilayer

medium. Results are calculated numerically using Equation (59). Here L =

1, li = 1/n, α = 0.5, a1 = 1, b1 = 0, θ1 = 1, a2 = 0, b2 = 1, θ2 = 0 and fi = 0.

Diffusivities are either [1, 0.1] or [0.1, 1]. ‘Single Dav’ uses the second single

layer critical time, Equation (21), with Dav = 0.18 from Equation (4).
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Figure 5: Finite difference scheme indexing where i denotes the layer and j

denotes the spatial discretisation.
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