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Numerical methods for partial differential equations

There are many methods which may be called upon to solve systems of partial differ-
ential equations. Examples include:

• Finite difference methods

• Finite volume methods

• Finite element methods

• Spectral/Galerkin methods

• Lattice Boltzmann methods

• Smoothed particle hydrodynamics

• Radial basis functions
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Finite difference methods — a simple case

• The central idea is that differential equations are replaced by difference equations.

• For example, if we wish to solve

du

dx
= −au

on the set of discrete points, x0, x1, x2 · · · , where there is a constant steplength,
h, then at x = xn we may replace du/dx by the forward difference,

du

dx
(xn) ≃

un+1 − un
h

,

where un is the numerical approximation to the exact value, u(xn).

• The right hand side may also be interpreted as the slope of the tangent to u(x) at
x = xn. Hence we obtain,

un+1 − un
h

= −aun =⇒ un+1 = (1− ah)un,

a difference equation!
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Finite difference methods — Taylor’s series

• The finite difference approximation to a derivative is usually derived by using a
Taylor’s series expansion. If we focus on x = xn, then we have,

u(xn+1) = u(xn + h) = u(xn) + hu′n +
1

2
h2u′′n +

1

6
h3u′′′n + 1

24
h4u′′′′n +O(h5) (1)

u(xn−1) = u(xn − h) = u(xn)− hu′n +
1

2
h2u′′n −

1

6
h3u′′′n + 1

24
h4u′′′′n +O(h5) (2)

• If we add together Eqs. (1) and (2), then

u(xn+1) + u(xn−1) = 2u(xn) + h2u′′n +
1

12
h4u′′′′n +O(h6).

Upon rearrangement we find that,

u′′n =
un−1 − 2un + un+1

h2
−

1

12
h2u′′′′n + O(h4).

• Upon neglecting the error terms in red, we have the finite difference approximation,

u′′n ≃
un−1 − 2un + un+1

h2
.

The error associated with this approximation is of O(h2), a 2nd order method.
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Finite difference methods — Taylor’s series

• Recapping the Taylor’s series:

u(xn+1) = u(xn + h) = u(xn) + hu′n +
1

2
h2u′′n +

1

6
h3u′′′n + 1

24
h4u′′′′n +O(h5) (1)

u(xn−1) = u(xn − h) = u(xn)− hu′n +
1

2
h2u′′n −

1

6
h3u′′′n + 1

24
h4u′′′′n +O(h5) (2)

• If we subtract Eq. (2) from Eq. (1), then

u(xn+1)− u(xn−1) = 2hu′n +
1

3
h3u′′′n +O(h5).

Upon rearrangement we find that,

u′n =
un+1 − un−1

2h
−

1

6
h2u′′′n +O(h4).

• Upon neglecting the error terms in red, we have the finite difference approximation,

u′n ≃
un+1 − un−1

2h
.

The error associated with this approximation is again ofO(h2), a 2nd order method.
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Finite difference methods — notations and representations

In many contexts the following notation is used:

u′n ≃
un+1 − un−1

2h
≡ δx un

and

u′′n ≃
un−1 − 2un + un+1

h2
≡ δ2x un.

If the following grid is visualized,

• • • • • • • • • • •

i= 0 1 n−1 n n+1 N−1 N

hh hh

then...
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Finite difference methods — notations and representations

u′′n = (un−1 − 2un + un+1)/h
2 may be represented using the coefficients:

• • • • • • • • • • •

i= 0 1 n−1 n n+1 N−1 N

1/h2 −2/h2 1/h2

or in finite difference stencil or finite difference molecule form,

u′′n =
( 1

h2
−

2

h2

1

h2

)

un,

or
u′′n =

1

h2
(1, −2, 1)un.

Similarly,
u′n =

1

2h
(−1, 0, 1)un.
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Finite difference methods — example of a second order method

• Let us solve u′′ − 4u = −4x2 numerically, subject to u(0) = u(1) = 0.

• The analytical solution is

u = x2 + 1

2
−

1

2
cosh 2x +

1

2
cosh 2− 3

2

sinh 2
sinh 2x.

• The finite difference approximation is
1

h2
(1, −2, 1)un − 4un = −4x2n

at x = xn, the general point. It is valid for n = 1, · · · , N − 1, and we use
u0 = uN = 0.

• For N = 5 and where h = 1

5
, the assembled set of difference equations is









−2− 4h2 1 0 0
1 −2− 4h2 1 0
0 1 −2− 4h2 1
0 0 1 −2− 4h2

















u1
u2
u3
u4









= h2









−4x21
−4x22
−4x23
−4x24









.
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Finite difference methods — example of a second order method

Table of results.

N uN/2 error error/h2

10 0.101 126 67 0.000 819 05 0.081 905 30
20 0.101 740 30 0.000 205 43 0.082 170 24
40 0.101 894 33 0.000 051 40 0.082 236 83
80 0.101 932 87 0.000 012 85 0.082 253 50
160 0.101 942 51 0.000 003 21 0.082 257 67
∞ 0.101 945 73 0

We see the typical behaviour for a second order accurate method where the error,
which is roughly proportial to h2, reduces by a factor of 4 when h is halved.
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Finite difference methods — higher orders of accuracy

• Second order accurate methods are typical when solving PDEs, but we are used to
better schemes for ODEs such as the fourth and sixth order Runge-Kutta methods.
Can we do better than second order with finite differences?

• We may, but with larger stencils. The following schemes

• • • • • • • • • • •

i= 0 1 n−1 n n+1 N−1 N

−
1

12
h2

4

3
h2 −

5

2
h2

4

3
h2 −

1

12
h2

• • • • • • • • • • •

i= 0 1 n−1 n n+1 N−1 N

1

90
h2 −

1

3
20h2

3

2
h2 −

49

18
h2

3

2
h2 −

3

20
h2

1

90
h2

have 4th and 6th order accuracies, respectively, but involve five and seven points.

• Near boundaries even more points are needed to maintain the accuracy.
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Compact differences for an ODE

We shall solve u′′ + bu = f(x).

• The finite difference approximation for the second derivative was shown to be:

u′′n =
un−1 − 2un + un+1

h2
−

1

12
h2u′′′′n + O(h4). (1)

• We may now achieve an O(h4) approximation if we can model the u′′′′ term which
is in the first error term on the right hand side.

• We may find an expression for u′′′′ by differentiating the original equations twice:

u′′′′ = f ′′
− bu′′,

where it is assumed here that b is a constant, for the sake of simplicity.

• Hence Eq. (1) becomes,

u′′n =
un−1 − 2un + un+1

h2
−

1

12
h2

(

f ′′
− bu′′

)

+O(h4).
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Compact differences for an ODE

• We had:

u′′n =
un−1 − 2un + un+1

h2
−

1

12
h2

(

f ′′
− bu′′

)

+O(h4), (2)

and therefore the original ODE becomes,

u′′n + bun − f =
un−1 − 2un + un+1

h2
+ bun −

1

12
h2

(

f ′′
− bu′′

)

+O(h4),

and we may develop this in two different ways.

• First way: Use the usual three-point stencil for u′′. Eventually this leads to
[ 1

h2
+

b

12
, −

2

h2
+
10b

12
,

1

h2
+

b

12

]

un =
[ 1

12
,
10

12
,

1

12

]

fn.

• Second way: Find u′′ from Eq. (2) and substitute that into the orginal equation:
[ 1

h2
, −

2

h2
,

1

h2

]

un + b
(

1−
bh2

12

)

un =
[ 1

12
, −

2

12
,

1

12

]

fn +
(

1−
bh2

12

)

fn.

• Slightly different forms are available for the right hand sides if f(x) is given ana-
lytically.
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Finite difference methods — example of a fourth order method

N uN/2 error error/h2

10 0.10112667 0.00081905 0.08190530
20 0.10174030 0.00020543 0.08217024
40 0.10189433 0.00005140 0.08223683
80 0.10193287 0.00001285 0.08225350
160 0.10194251 0.00000321 0.08225767
∞ 0.101 945 73 0

Second order method

N uN/2 error error/h4

10 0.10194737 -0.00000164 -0.01642592
20 0.10194583 -0.00000010 -0.01644530
40 0.10194573 -0.00000001 -0.01645018
80 0.10194573 0.00000000 -0.01645140

N uN/2 error error/h4

10 0.10194464 0.00000109 0.01090290
20 0.10194566 0.00000007 0.01095157
40 0.10194572 0.00000000 0.01096380
80 0.10194573 0.00000000 0.01096671

First way Second way

We see the typical behaviour for a fourth order accurate method where the error, which
is roughly proportial to h4, reduces by a factor of 16 when h is halved.
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A fourth order method for a more general ODE

• We shall develop a fourth order method for the ODE,

u′′ + au′ + bu = f(x).

• Application of the Taylor’s series developed earlier leads to.

δ2xun + aδxun + bun −
h2

12
u′′′′n −

ah2

6
u′′′n = fn.

• Differentiation of the ODE yields

u′′′ = f ′
− au′′ − bu′

and
u′′′′ = f ′′

− au′′′ − bu′′.

• Substitution into the red terms eventually gives,
[

1 +
(a2 + b

12

)

h2

]

δ2xun + a
[

1 +
b

12
h2

]

δxun + bnun = fn +
ah2

12
δxfn +

h2

12
δ2xfn.
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A fourth order method for a more general ODE

We shall solve
u′′ + 4u′ + 3u = −16e−5x

subject to u(0) = 0 and u(1) = e1 + e−3 − 2e−5. The analytical solution is

u = e−x + e−3x
− 2e−5x.

Table of results.

N uN/2 error error/h4

10 0.66544157 0.00004925 0.49250582
20 0.66548778 0.00000304 0.48715954
40 0.66549063 0.00000019 0.48582812
80 0.66549081 0.00000001 0.48549544

Once more we see the typical behaviour for a fourth order accurate method.
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Some general comments about solving ODEs with 4th order compact methods

• Unlike second order methods, fourth order compact methods are tailored to the
equation which is being solved.

• When programmed correctly they will exhibit the error-reducing properties which
are associated with an O(h4) method. Slight errors of programming or analysis
will manifest themselves as second order methods.

• These methods may also be applied to systems with other types of boundary
condition, such Neumann or Robin conditions.

• They can also be applied to nonlinear equations.

• It is possible to take this theory still further and produce 6th order accurate solvers
but still retaining the three-point compact stencil.

• What happens with PDEs? We shall consider Poisson’s equations.
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Compact differences for the 2D Poisson’s equation

For simplicity we shall consider a square grid steplengths of magnitude, h, in both the
x and y directions.

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•

•

•

• •

x0 x1 x2 xi

y0

y1

y2

yj

The red nodes represent the classical finite difference stencil which is used to solve
Poisson’s equation in 2D.
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Compact differences for the 2D Poisson’s equation

Our aim will be determine a nine-point stencil:

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

•

•

•

• •

•

•

•

•

x0 x1 x2 xi

y0

y1

y2

yj
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Compact differences for the 2D Poisson’s equation

Poisson’s equation is

∂2u

∂x2
+
∂2u

∂y2
= f(x, y) or uxx + uyy = f.

Using Taylor’s series as before we obtain,

uxx =
1

h2

(

1, −2, 1
)

uij −
h2

12
uxxxx +O(h4),

uyy =
1

h2





1
−2
1



uij −
h2

12
uyyyy +O(h4).

The order O(h2) errors may be accounted for by using the appropriate derivatives of
the Poisson’s equation. Hence

uxxxx = fxx − uxxyy, uyyyy = fyy − uxxyy.
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Compact differences for the 2D Poisson’s equation

Therefore we obtain,

uxx + uyy − f =
1

h2





0 1 0
1 −4 1
0 1 0



 ui,j − fi,j −
h2

12

(

fxx + fyy − 2uxxyy

)

+O(h4).

The mixed fourth partial derivative has a compact stencil:

uxxyy =
1

h4





1 −2 1
−2 4 −2
1 −2 1



ui,j +O(h2).

After some manipulations we eventually obtain the following compact difference equa-
tion,

1

6h2





1 4 1
4 −20 4
1 4 1



ui,j =
1

12





0 1 0
1 8 1
0 1 0



 fi,j.
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Compact differences for the 2D Poisson’s equation

1

6h2





1 4 1
4 −20 4
1 4 1



ui,j =
1

12





0 1 0
1 8 1
0 1 0



 fi,j.

The finite difference formula on the left hand side is a well-known fourth-order accurate
nine-point formula which may be used when f = constant, but an analysis of this
stencil by itself using Taylor’s series will imply that it only has second order accuracy.

The present analysis guarantees fourth order accuracy because we have accounted for
the inhomogeneous term, f(x, y), in our derivation.
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Comparison between the 2nd order, standard 4th order and compact 4th order methods

2nd order
1

h2





0 1 0
1 −2 1
0 1 0



ui,j = fi,j.

4th order
1

h2













0 0 −1/12 0 0
0 0 4/3 0 0

−1/12 4/3 −5 4/3 −1/12
0 0 4/3 0 0
0 0 −1/12 0 0













ui,j = fi,j.

Compact 4th order
1

6h2





1 4 1
4 −20 4
1 4 1



ui,j =
1

12





0 1 0
1 8 1
0 1 0



 fi,j.
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The application of compact differences to Poisson’s equation

We shall solve
∂2u

∂x2
+
∂2u

∂y2
= −ex+2y,

in the unit square, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

The boundary conditions are that u = 0 on all four boundaries.

The value of u at the centre is computed to be u(1
2
, 1
2
) = 2.385891352 (9DPs).
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The application of compact differences to Poisson’s equation

N uN/2,N/2 error error/h2

10 2.316727002892 0.069164349348 6.9164
20 2.368308146803 0.017583205436 7.0333
40 2.381476871123 0.004414481117 7.0632
80 2.384786557124 0.001104795116 7.0707
160 2.385615079383 0.000276272857 7.0726
320 2.385822278850 0.000069073390 7.0731

Second order method

N uN/2,N/2 error error/h4

10 2.386695367753 -0.000804015514 -8.040155137405
20 2.385941851193 -0.000050498953 -8.079832482579
40 2.385894511633 -0.000003159394 -8.088047424053
80 2.385891549040 -0.000000196800 -8.060930122156

Fourth order compact method

For this example compact differences with N = 20 gives a more accurate solution than
second order differences with N = 320.
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Conclusions and comments

• For second order methods it is generally the case that each derivative is simply
replaced by its finite difference stencil, but for compact fourth order methods the
appropriate scheme depends on the form of the equation being solved.

• The derivation of the compact 4th order scheme takes much longer than for a 2nd
order scheme, as does the programming, but there is a substantial gain in accuracy
and speed of computation.

• The general methodology may still be applied to nonlinear equations.

• It may also be applied in 3D.

• It is not restricted to Dirichlet boundary conditions.

• This methodology can be applied at an interface between two media with continuity
of flux conditions.

• The multigrid method may be applied to accelerate iterative convergence.
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