Electronics Design and Manufacturing

EE20194: Group Design and Professional Engineering Practice II

Lecture 6/6 Dr Robert J. Watson

Outline

- Ingress protection
- Enclosures
- Connectors

- Electrostatic discharge (ESD)
 - Is it that important?
 - Handling and protection of components

Ingress Protection (IP) Rating

- Can be used to classify connectors and enclosures (boxes)
- Protection against solid objects and liquids
 - Covered by standard BS EN 60529:1992 Degrees of Protection provided by enclosures
 - Indicated by a alpha-numeric code: IPxx (e.g., IP54)
 - First digit refers to protection against solid objects (0-6)
 - Second digit refers to protection against liquids (0-8)

IP Ratings

First digit (Solid objects)		Second digit (Liquids)	
0	No protection	0	No protection
1	Protected against objects > 50mm (<i>e.g.,</i> touching with hands)	1	Protection against vertically falling water drops
2	Protected against objects > 12mm (<i>e.g.,</i> touching with fingers)	2	Protected against direct sprays of water up to 15° from the vertical
3	Protected against objects > 2.5mm (<i>e.g.,</i> large tools)	3	Protected against sprays up to 60° from the vertical
4	Protected against objects > 1mm (<i>e.g.,</i> screwdriver)	4	Protected against water sprayed from all directions – limited ingress permitted
5	Protected against dust – limited ingress allowed	5	Protected against low pressure jets of water
6	Totally protected against dust – no ingress	6	Protected against strong jets of water
		7	Protected against the effects of temporary immersion between 15cm and 1m. Duration of test 30 minutes
		8	Protected against long periods of immersion under pressure

4 Dr Robert J Watson, EE20194, 2012

Enclosures

- Enclosure? A fancy name for a box!
 - Materials: ABS, polycarbonate, aluminium, stainless steel
 - Various IP ratings
- Zillions of manufacturers:
 - Hammond <u>http://www.hammondmfg.com/</u>
 - <u>http://www.hammondmfg.com/pdf/1551N.pdf</u>
 - Deltron <u>http://www.dem-uk.com/deltron-enclosures/default.asp</u>

Connectors: rugged wired

- Round multi-way connectors
 - Amphenol, ITT Canon, TT AB
 - Fischer, Lemo

Electrical Engineering

Connectors: board to board

- Connecting PCBs together daughter boards
 - Samtec & Hirose are the biggest manufacturers

Connectors: RF

 Lots of standards: BNC, TNC, SMA, SMB, SMC, Ftype, N-type, APC 7mm, 3.5mm, K-type, V-type, MCX, MMCX, UFL, 7/16"

Department of Electronic & Electrical Engineering

UNIVERSITY OF

ESD: Electrostatic Discharge

- Why is it a problem?
 - electronic devices are small and can suffer permanent damage if subjected to electrostatic discharge
 - can impair/destroy and/or shorten lifetime of devices
- ESD safe work areas need to dissipate static electricity
 - dissipative mats, shoes, clothing, benches etc
 - human body model: 100pF capacitor and 1.5k resistor
 - big problem in dry (low humidity) environments

ESD damage

ESD warning signs

• Shielding and susceptibility

Companies like Vermason
 <u>http://www.vermason.com</u> specialise in static handling and component protection

11 Dr Robert J Watson, EE20194, 2012

Summary of Lectures

- Components
- PCB manufacturing processes
 - Board types and manufacturing methods
 - Assembly, pick-and-place (component population)
 - Soldering, IR reflow
- Thermal design
 - Heat removal and heatsink calculations
- Enclosures and connectors
- Electrostatic discharge

