Electronics Design and Manufacturing

EE20194: Group Design and Professional Engineering Practice II

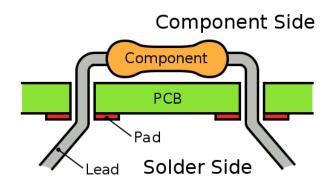
Lecture 1/6 Dr Robert J. Watson

Summary

- Six lectures
 - Thursday 10:15-11:15
 - Friday 13:15-14:15
- Assessed coursework
 - Simple (paper) design and costing study
 - Deadline for submission: UG office 3pm, 27th April 2012
 - Feedback: informal indicative grading of assignment
- Course texts not really one book that's worth buying...
 - "The Circuit Designer's Companion", by Williams is good!
 - "The Art of Electronics" by Horowitz & Hill, old now but classic
 - YouTube check out http://www.EEVblog.com (I don't endorse or agree with everything he says, but some useful info!)

Course outline

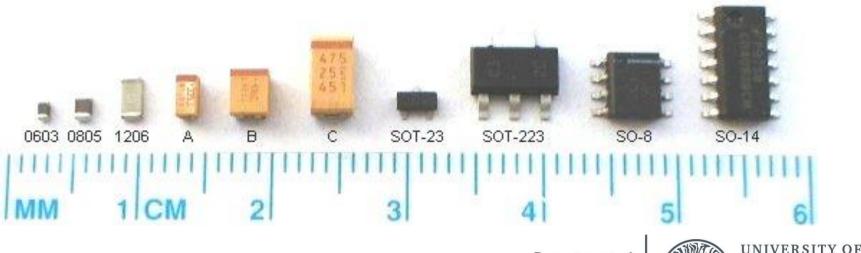
- General introduction to manufacturing methods
 - devices (semiconductors) and systems (boards, boxes)
- Component technologies
 - surface mount and through hole
- Enclosures and connector technologies
 - ingress protection, lifetime
- Thermal design
 - heat-sinks and forced-air convection


Manufacturing

- In production, circuits are generally optimised for cost
- Consumer electronics
 - performance is often sacrificed for cost savings
- Professional: e.g., precision instruments
 - performance goals are fixed
 - Longer lifetime requirements
- Discrete components (Rs and Cs) are more or less free
- Automated assembly is typical
- Economies of scale apply
 - e.g., cost of making 10,000 is not x100 cost of making 100

Component technology (I)

- Through-hole
 - Components have wire-leads (e.g., resistors, capacitors, transistors) or folded metal pins (e.g., integrated circuits aka "chips").
 - Wires passed through drilled holes in printed circuit board and soldered on the copper side.

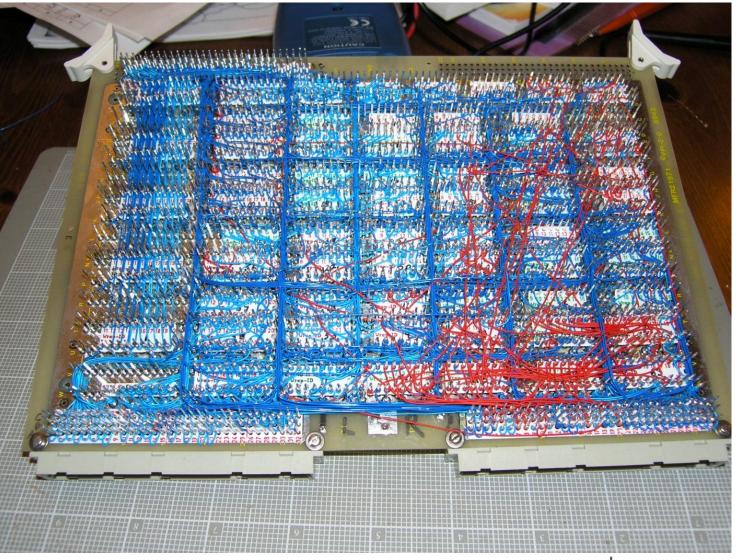

5

Component technology (II)

- Surface mount
 - No leads!
 - Connections are in form or small metal pads
 - Lots of variations:

http://www.intersil.com/design/packages/

6 Dr Robert J Watson, EE20194, 2012



Historical construction methods

- Breadboards wooden boards!
- Plastic boards rows of holes spaced 0.1" (2.54mm)
 - accept dual inline package (DIP) devices
 - OK for quick prototyping, testing ideas.
 - Not useful for high speed digital or RF circuits why?
- Wirewrap
 - Very thin wire 30awg (American Wire Gauge) 0.255mm
 - Thin, flexible, very light plastic insulation Kynar
 - No longer used for "real" work why?

Wirewrap example (retro computer)

http://www.homebrewcpu.com/ De

U.COM/ Department of Electronic & Electrical Engineering

UNIVERSITY OF

Printed circuit boards (I)

- Different types:
 - Single-sided (copper on one-side only)
 - Double-sided (copper on both, can have platedthrough-hole and/or vias)
 - Multi-layer (copper on all planes- has internal layers, complex vias: blind, buried)
- Dielectric substrates
 - FR4 (standard material glass-fibre based)
 - Radio Frequency boards PTFE (teflon) based
 - Exotic (expensive) materials: alumina, quartz (GHz)

Printed circuit boards (II)

- Single-sided boards
 - Cheap, simple dor low-performance and/or high production volumes
- Double-sided boards
 - Medium density, general purpose
- Multilayer
 - Several boards sandwiched together: 4-16 layers
 - High density, high speed, low signal levels
 - Dedicated power connections on "power planes"

Connectors & Enclosures

- Many thousands to choose from!
- Standards are important in some sectors
 - Consumer: e.g., USB
 - Military/Aerospace *e.g.*, MIL-C 5015 connectors
- Things that matter
 - Environmental: *e.g.*, IPXX ingress protection
 - Safety: e.g., high voltages
 - Signal integrity: *e.g.*, shielding, radio-frequency, RF
 - Legislation: *e.g.*, RoHS (some applications are exempt)

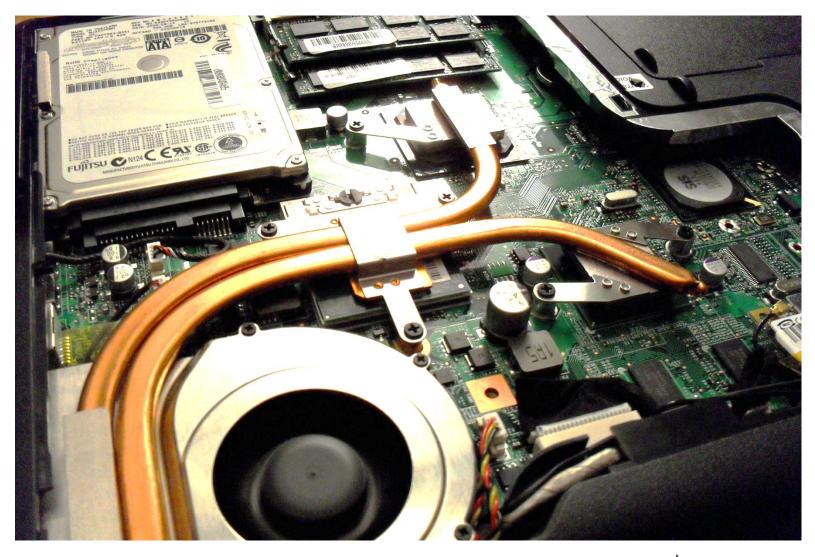
Thermal design

- Electronic devices can consume a lot of power
 - Intel i7 3960X max dissipation: 130W
 - Microchip PIC 16F84A max dissipation: 0.8W
- Assuming energy is not transformed into another form *e.g.*, light (LED) or motion (motor) *etc* - it must be dissipated as heat – it can't just disappear!
- Quick example calculation: simple voltage regulator LM7805 to convert 12V to 5V and pass 1A of current – how much power will it dissipate?

Examples you know of...

Wouldn't be as efficient at high altitude or even in space – why?

13 Dr Robert J Watson, EE20194, 2012



Thermal management

- Quite often it's easier to efficiently move the heat away from the device and then dump it.
 - Heat pipes (sealed tubes transition liquid/vapour)
 - Heat pumps (Peltier effect)
- Cooling in harsh environments
 - "Thin" low density air *e.g.*, high altitudes
 - "No" density air *e.g.*, space!
- Problems caused by temperature
 - Every components has a temperature coefficient

Laptop heatpipes for CPU and GPU

