The use of Signals of Opportunity for the Measurement of Atmospheric Refractivity

Robert J Watson, University of Bath

robertwatson@ieee.org

Christopher J Coleman, University of Adelaide

EuCAP 2010, 12-16 April, Barcelona Department of Electronic and Electrical Engineering

1

Outline

Atmospheric refractivity measurements

- Signals of opportunity for remote sensing
 - ► Basic concepts
 - ► Example: DAB digital radio
- Modelling the availability of signals
 - Overview of Parabolic Equation approach
 - Example: propagation loss results Mendip-Bath
- Evidence of observed refractivity changes
- ► Summary

Atmospheric refractivity

Why are we interested in refractivity?

Why is refractivity so important?

- Numerical Weather Prediction models have improved enormously in recent years
 - Key to many advances has been significant increases in computational capacity
 - Reaching the point where the "skill" of the model is being limited by the available observation data
- ► The current Met Office "UK" model runs with ≈4 km grid (soon to be reduced down to ≈1.5 km)
- With current models predictability horizon for is estimated to be 1-2hrs for thunderstorm size features
 - ► To improve this wide-area, high-resolution observations of key parameters such as water vapour (refractivity) are required

Water vapour from GPS

GPS IWV 200906061700 UTC - 2km winds

- Water vapour derived from UK dual-frequency GPS network (courtesy Jon Jones, UK Met Office)
- Vertically integrated water vapour
- Routinely assimilated into UK NWP model
- Good, but resolution not good enough

Refractivity measurements

► Why is water vapour (refractivity) so important?

- Small differences in boundary layer temperature ≈1K and moisture ≈ 1 g kg⁻¹ can make the difference between severe and no convection – Crook (1996)
- Forecasting of convective initiation requires information about moisture on scales of 2-5 km – Deeter & Evans (1997)
- Current sensor technologies e.g., satellite imagery, radiosondes, radiometers, surface measurements etc all have significant limitations.

► Is there a low-cost (passive) solution?

Signals of Opportunity

Indirect measurement of refractivity

Sensing using signals of opportunity

- Use of signals for applications other than their original intended purpose e.g., digital radio (DAB) and television signals (DVB-T)
- Changes in refractivity, lead to changes in the propagation velocity Tx
 Rx

$$v = c/n$$

Refractivity in N units can be written:

$$N = (n-1) \times 10^6 = 77.6 \frac{P}{T} + 3.73 \times 10^5 \frac{p}{T^2}$$

Excess path delay (propagation path – geometric path)

$$\Delta s = \int_{T_x}^{R_x} n(s) ds - \int_{T_x}^{R_x} ds = 10^{-6} \int_{T_x}^{R_x} N(s) ds$$

Network of sensors

- Assuming direct path each link gives a delay $\Delta s_i(t) = \int_{T_v}^{R_x} N(s,t) ds$
- For real-time applications use inverse methods
- Challenging as delays/excess path is small a few ns!
- ► For NWP application likely assimilate raw delay

Digital radio (DAB) coverage in the UK

- ► 1.5MHz C-OFDM
- Single-Frequency Network
- National transmitters
 - ► 225.640 MHz BBC
 - ► 222.068 MHz DigitalOne
- Closest to Bath
 - Mendip 5 kW (30km)
 - ► Wenvoe 9 kW (70km)
 - Bathampton 2kW (300m)
 - Oxford 10 kW (90km)
 - ► Salisbury 2kW (50km)

DAB signal sampling and processing

Title: DAB 222.068 MHz Average Comment A: DAB 222.068 MHz Average spectrum Date: 19.MAY 2009 14:44:58

Title: DAB Filter Comment A: DAB anti-alias filter Date: 27.JUN.2008 16:05:03

Phase estimation: single-site auto-correlation

Phase estimation: multi-site cross-correlation

Multiple-site cross-correlation phase

- Change in phase with time between to sites (double-difference)
- Need network "coherency" between receiver sites
- Only one transmitter lies on ellipse isolate Tx in time domain

Coverage area modelling

"Forward" modelling using parabolic equation method

Propagation path modelling

- ► Where should we site the receivers?
- ► This is a coupled problem:
 - SFN multiple transmitters on same frequency as we have seen we can isolate transmitters in time domain if:
 - Single site only one transmitter on range circle
 - Multiple site only one transmitter on range ellipse
 - Inversion of data depends on having "well conditioned" problem
 - Need many intersecting links
 - Manage dynamic range different transmitter powers, radiation patterns, propagation conditions – need propagation model

Parabolic equation modelling

Department of Electronic and Electrical Engineering

- ► Well described e.g., Levy (2000)
- Paraxial propagation, low elevation angles

- Split-step method decouples:
 - Refractive effects
 - Diffractive effects

Diffractive

- lnitial field u(0,z) determined by transform of far-field antenna pattern
- Phase screens modulated by refractive index
- Operator S is the Fourier sine transform

Starting field

16

Propagation loss: Mendip & Hannington

Path: Mendip to University of Bath

-1

-2.5 -2 longitude [deg]

Path: Hannington to STFC, Chilbolton observatory

EuCAP 2010, 12-16 April, Barcelona Department of Electronic and Electrical Engineering

Parabolic equation modelling I: Wenvoe

150

140

130

120

110

100

90

80

70

60

50

- Pseudo 3D propagation maps – generated from number of slices
- Vertical slices through propagation loss (dB)
- Wenvoe DAB transmitter in Wales located at origin
- Terrain data from SRTM (Shuttle SAR imagery)
- Refractivity data from WRF model output

Parabolic equation modelling II: Wenvoe

- ► N-S (left) and E-W (right) slices coloured by propagation loss (dB)
- Wenvoe DAB transmitter centred at origin
- Diffraction loss caused by Brecon Beacons and Exmoor easily visible

DAB signal analysis

Evidence of water vapour changes affecting propagation

Phase estimation processing: pilot tracking

Department of Electronic and Electrical Engineering

Vertical refractive index structure

- The distance VHF/UHF signals travel depends on the vertical refractive index profile
- The signal strength will vary depending on the profile and transmitters e.g., Tx2 only visible under certain refractive conditions

Single-site autocorrelation magnitude

OF

Summary

- Techniques show potential but need further development
- ► Many technical challenges e.g., receiver synchronisation
- Cost of DAB receiver sensor nodes will be low
 - ► A simple passive receiver with embedded processor
 - Integration with existing present weather sensor systems
- ► Receiver locations need to be optimised
 - Parabolic equation approach predicts well the path loss (PE can also estimate phase –not shown here)

