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The fourth-moment equation for plane waves of two different frequencies 
propagating through a two-dimensional, dispersive random medium, is solved 
numerically using a split step method. In this numerical scheme, the extended 
medium is replaced by a series of phase screens interspersed with diffraction 
layers and thus it provides a test for the validity of using a single effective 
phase screen to describe an extended random medium in the calculation of 
the intensity cross-correlation function. The intensity cross spectrum in the 
multiple scattering regime is calculated for different values of the ratio of the 
two frequencies under the "frozen flow" assumption, when temporal evolution 

power law spectrum are considered. The effect of varying irregularity strength 
on the normalized cross correlation of intensity fluctuations observed at the 
same location is also investigated. The two-frequency intensity space-time 
cross-correlation function is determined for a special case of "nonfrozen" 
flow where the irregularities have a random drift superimposed on uniform 
convection. 

1. INTRODUCTION correlation scale of the wave field. So far, 
solutions of the moment equations for waves of 

For a complete statistical description of a wave different frequencies have been restricted to the 
field after propagation through a random second moment [Liu and Yeh, 1975] and the 
medium, it is necessary to calculate all the fourth moment [Zavorotnyi, 1981; Mazar et al., 
moments of the wave field with different 1985; Uscinski and Macaskill, 1985; Miller and 
transverse coordinates and different wave Uscinski, 1986; Miller, 1987] under the "frozen 
numbers. Equations which are satisfied by the field" approximation. In this approximation 
moments of the complex amplitude of the wave irregularities in the random medium convect with 
field for different transverse coordinates and a uniform velocity. The two-frequency intensity 
different wave numbers were derived by Lee space-time correlation function is of particular 
[1974] under the forward scattering and Markov interest, since in many situations such as 
approximations. The Markov approximation is communication applications and interstellar 
equivalent to the assumption that in the direction scintillations of pulsar signals, the temporal and 
of propagation, the correlation scale of the spatial evolution of the intensities of signals with 
random medium is much smaller than the different frequencies may be observed. Under the 

frozen field approximation, the spatial and 
temporal variation of the intensity cross- 

1 On leave from the Indian Institute of Geomag- correlation function are simply related to each 
netism, Bombay, India. other through a linear translation due to the 

uniform convection of the irregularities. The two- 
frequency intensity correlation has been investigated 

Copyright 1988 by the American Geophysical analytically by Zavorotnyi [1981]. To make the 
Union. mathematics tractable, he gives only asymptotic 

expressions under which the wave is assumed to 
Paper number 88RS03079. satisfy the saturated statistics. Consistent with 
0048-6604/88/88RS-03079508.00 atmospheric applications, he also assumes the 
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background medium to be nondispersive and the have either a Gaussian or a power law spectrum. 
dielectric fluctuations to have a Kolmogorov The numerical scheme used to solve the fourth- 
spectrum. Mazaretal.[1985]haveusedatwo-scale moment equation is based on a split step 
expansion based on the smallness of a parameter, algorithm which is an extension of a similar 
which does not depend on the scattering strength, to algorithm developed to solve a parabolic equation 
obtain a multidimensional integral expression for the arising in the study of ocean acoustics [e.g., 
two-frequency intensity correlation function in the DiNapoli and Deavenport, 1979]. The method of 
case of a nondispersive medium with a Gaussian solution of the fourth-moment equation for the 
correlation function. The complexity of the higher general case of a space-time dependent 
order terms in their result restricts the intensity correlation function for the refractive index of 
correlation functions to the zero-order term. Other the medium is described in section 2. In section 
analytic solutions of the fourth-moment equation for 3, numerical results for irregularities with a 
an extended random medium [Uscinski and Gaussian spectrum under the "frozen flow" 
Macaskill, 1985; Miller and Uscinski, 1986] also assumption are presented. The phase screen may 
suffer from similar limitations. In these cases, be treated as a special case of the extended 
expressions are obtained for the two-frequency medium problem. For the propagation of 
intensity correlation function in the multiple scatter monochromatic waves, the validity of using a 
regime by approximately evaluating a multiple single phase screen to describe an extended 
convolution solution of the relevant fourth-moment random medium has been examined by Booker 
equation. Uscinski and Macaskill [1985] have et al. [1985]. For waves of different frequencies, 
considered both a plasma medium with a Gaussian however, not only does a phase screen give rise 
irregularity spectrum which is characterized by a to different phase perturbations on the two 
single scale size and a medium with a range of scale waves, but also the diffraction which takes place 
sizes corresponding to a power law irregularity after the waves emerge from a phase screen 
spectrum. However, Miller and Uscinski [1986] depends on the wave frequencies. Hence an 
have examined the range of validity of these results extended random medium may not be adequately 
and have concluded that the approximations made in described by a single effective phase screen. 
the evaluation of the multiple convolution solution This point is discussed with the help of some 
lead to severe underestimation of the intensity cross examples studied in section 3. In section 4, the 
spectrum at high spatial frequencies. Attempts at nature of the spatial frequency cross spectrum of 
solving the fourth-moment equation numerically have intensity fluctuations produced by irregularities 
been made by several investigators. The most with a power law spectrum under the frozen 
thorough work is probably that given by Tur [1985]. assumption is examined. The two-frequency 
He obtains numerical solutions for a Gaussian beam intensity space-time correlation function for 
propagating in a two-dimensional nondispersive irregularities with either a Gaussian or a power 
random medium with a Gaussian correlation law spectrum is described in section 5 for the 
function. However, he calculates these moments situation where the irregularities have a random 
only for one single frequency. On the other hand, drift superimposed on uniform convection. 
Miller [1987] has obtained analytic expressions Finally, this paper is concluded in section 6. Also 
for the intensity cross spectrum in the special discussed in this section is the relationship of the 
case when the intensity fluctuations are caused multiple convolution solution [Uscinski and 
by a one-dimensional deep phase screen with a Macaskill, 1985; Miller and Uscinski, 1986] with the 
randomly varying refractive index independent of numerical scheme used in this study. 
the wave number and with a Gaussian spatial 
correlation function, and these compare well with 2. NUMERICAL SOLUTION OF TttE 
the results of a direct numerical integration of FOURTHMOMENT-EQUATION 
the moment equation in this case. 

In this paper, numerical solutions of the 2.1. The fourth-moment equation 
fourth-moment equation are obtained for waves 
of two different frequencies propagating through For plane waves of unit amplitude propagating 
a two-dimensional extended medium with a wave in the positive z direction and incident normally 
number dependent refractive index, and in on a thick slab of irregularities extending from z 
particular the characteristics of the intensity = 0 to z = L, it is assumed that the refractive 
space-time cross correlation are investigated under index of the slab does not vary in one of the 
both "frozen field" and nonfrozen conditions. transverse directions, so that it is only dependent 
Irregularities in the medium are considered to on the two coordinates x and z. The frequency-, 
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space-, and time-dependent complex amplitude 
u(x,z,t,k) for a wave field is defined in the 
usual manner by the relation 

E(x,z,t,k) = u(x,z,t,k) exp[-i(kz - o)t)] (1) 

where k and to are the wave number and 
angular frequency of the wave. The time scale x 
for temporal variation of the irregularities in all 
physical situations is such that to >> 2•c/x. Hence, 
under the forward scattering assumption, the 
complex amplitude u still satisfies the parabolic 
equation' 

1 

1 

ß AaN(X• - x3,0) - • AAN(x 2 - x4,0) 
1 

+ klk2 [AaN(x• - x2'tl - t2) 
- AaN(x• - x4,h- t2) - AaN(x2- x3,t2- h) 

+ Aas(x3 - x4,h- t2)]}F2,2 (5) 

where.r e is the classical electron radius and 
(x,t) as the integrated space-time correlation 
function for the electron density fluctuations' 

2ik •u •2u - --+ = - k 2 el(X,Z,t)u (2) Aa•(x't) I , ,t) dz (6) •}z •}x 2 = BaN(x z 

where e• represents the fluctuating part of the The occurrence of AaN(x,t ) in (5) is a 
refractive index of the medium relative to the consequence of the Markov approximation 
average refractive index. Here time t plays the according to which the space-time correlation 
role of a parameter which is introduced through function of the density fluctuations is of the 
the dependence of e• on time. The derivation of form 
the moment equations for different wave 
numbers by Lee [1974] starting from the 
parabolic equation (2) is therefore applicable. Ba•(x,z,t) = Aas(x,t)•5(z) (7) 

In order to determine the two-frequency 
intensity space-time correlation function, it is It will be seen later that Aa•(-x,- t) = 
necessary to solve the equation satisfied by (x,t) even for the nonfrozen model of the 
the fourth moment irre•l•fies. 

With the introduction of the following 
I2, 2 = <u(x 1, Z,tl,k 1) u(x2,z,t2,k2) coordinate transformation [Uscinski and Macaskill, 

1985] and normalization with respect to a u* (x3,z,tl ,k 1) u*(x4,z,t2,k2)> (3) characteristic scale ko4 of the irregularities' 
For propagation of radio waves in the 
ionosphere, the interplanetary space or the 
interstellar medium, the wave frequency to satisfies 
the condition to >> top, the plasma frequency of 
the medium. Therefore el(X,Z,t) is given by 

e• (x,z,t) = - (top / 0)) 2 AN(x,z,t)/N 0 (4) 

where /iN is the electron density fluctuation and 
N O is the background electron density. Then, 
following the derivation of Lee [1974], the 
fourth-moment equation satisfied by F2, 2 is 

ko 
X= '•-(x l+x 2+x 3+x 4) 

1 

x = ko[(X - x3) +7 (x2- x4)] 
ko 

•1 = '•-[(Xl + X3)- (X2+ X4)] (8) 
ko 1 

•2 = •' [(Xl- X3)- •' (X2- X4)] 

• = ko •- zA• (9) 

B 1 •}2 •}2 

•}'•F2,2 =-•t•11(•}xi 2 - •X3 2) 
1 •)2 •2 

+•22 (•X2 2 - •X4 2)] F2'2-4 •2 r½2 

where r = k•/k 2 , (5) reduces to 

•2 •2 

1"2, 2 = -i F2, 2 -i• •}x•}X •}•1•}•2 
1 

- F(X,•l,•2,t)F2, 2 

F2,2 

(10) 
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where r2, 2 (•n+l,•l,•2,t) = e iA•(C+D) 
t = t 1 - t 2 •L = k02 L/k• .r2. 2 (•n,•l,•2,t) (15) 

F does not depend on X because AN is which is an exact solution only when the 
assumed to be a homogeneous random field, and operators C and D commute with each other. 
hence F2, 2 must be independent of X. Now x The exponential operator which appears in (15) 
can be set equal to zero since the two-frequency can be split up in various ways [e.g., DiNapoli 
intensity space-time correlation function is and Deavenport, 1979]. The following 
obtained from (3) by setting x• = x• and x a = approximation for the solution 
x 2. Thus (10) further simplifies to 

•} •}2 

•F2, 2 =- i 3•3•'--• F2'2 
1 

- F(•i,•2,t)F2, 2 

r2,2 (•n+l,•l,•2, t) = e lAID/2 

(11) 

ß e ia; c e ia;D/2 r2,2 (•n,•l,•2,t) 

is more accurate than the approximation 

(16) 

where 

1 

2•L 
F(•i •2,t ) 4 •2 r•2 ' = k•ko 2 { (1 + r 2) AaN(0,0) 

- AaN(•2,0 ) - r2AaN(r •2,0) 
l+r 

+ r [AaN(• 1 + •--•2,t) 

- AaN(• 1 + ••2,t) 
- A•axl(• 1 - •'[•2,t) 

1 +r •2,t)] } + A•i'(•i- -•- 

2.2. Svlit stev aleorithm 
_ _ • 

Equation (11) may be written as 

• F2. 2 = i (C + D) F2. 2 
where the operators C and D are given by 

i 
C -- F(•,•2,t) 

2•L 
•2 

D -- 

F2.2 (•n+l,•l,•2,t) 

= e iA[VeiA[C F2. 2 (•n,•l,•2,t) (17) 

This can be seen by computing /)F22/i• using 
either (16) or (17) and comparing wi•tl the right- 
hand side of (13). Whereas the error involved in 
the approximation (16) is proportional to (A0 2, 
that for approximation (17) is proportional to 
A(. Taking note of the fact that the operator C 
gives rise to phase perturbations due to the 
presence of the irregularities and the operator D 

(12) gives rise to diffraction effects, the split step 
solution is seen to be equivalent to the 
replacement of the extended random medium by 
a series of phase screens and diffraction layers. 
Each phase screen imposes a phase perturbation 
equivalent to that produced by an irregularity 
slab of normalized thickness A•. Between two 
neighboring phase screens only diffraction or 

(13) propagation effects take place. Such a phase 
screen- diffraction layer method has been used to 
solve the parabolic equation satisfied by the 
complex amplitude of a wave reflected from a 
turbulent ionosphere [Wagen and Yeh, 1986]. 
Earlier, recurrence relations for the complex field 
moments of arbitrary order were derived by 
Rino [1978] by iterative application of weak 

(14) scatter theory, which was also based on the 
concept of successive phase screens and 
diffraction layers. The approximation considered 

The starting point for the split step algorithm is in (16) is equivalent to placing the phase screens 
the assumption that the solution for F22 at •n+• in the middle of each slab of thickness A• as 
= •n +A•(A• < 1) can be obtained [3om the opposed to the top of each slab which 
solution at •n according to corresponds to the situation described by (17). 
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With the introduction of 

T-2,2(•n,•l,•2,t ) = eiA• D/2 r2,2(•n,•l,•2,t) (18) 

to obtain the required Fourier transforms at each 
step, V2 is cast in the form 

V2(•n,•l,•2,t) = v2(•n,•l,•2,t) 

it follows from (16) that + V2(•n,I •11 --> oo,•2,t ) 

T-2,2(•n+l,• 1,•2, t) = eiA•DeiA• C + V2(•n,•l,I •21 -> oo,t) 

.'r"2.2([•n,• 1,•2,t) (19) 

To obtain the split step algorithm, let 

V2([an,• a 1,•a2,t) = ½iA•C -r,-2.2(•n,• a 1,•a2,t) (20) 

and its Fourier transform be denoted by G2(• n, 
ql,q2,t). Then 

_ V2([an, I •11 _> 0% 1•21--> 0%0 (23) 

where v2(•n,•l,•2,t) -> 0 for I•11 or 1•21 -• 
o% and the other terms on the right-hand side of 
(23) are determined by the boundary conditions 
on V2. Thus the initial value of v 2 at • = 0 is 

A• F(• ,•2,t)] V2(0,•l,•2,t) = exp[- 2• L 1 

-r'-2, 2 (•n+l,•l,•2,t) -- T I G2(•n,ql,q2,t) A• •2,t)] - exp[- 2LL F(I •11 -> oo, 

ß exp(iA•qlq 2) exp(iql•l + iq2•2) dql dq2 (21) 

yields the value of '¾-2 2 for the next step. 
The split step meth}•l of solving the fourth- 

moment equation therefore involves computation 
of the Fourier transform G 2 of V 2 at each step 
followed by the evaluation of the inverse Fourier 

a; 
- exp[-2• L F(•l,I •21 --> o%01 

a; 
+ exp[-•C F(I •11 --> oo,I •21 -• o%01 (24) 

transform indicated in (21) to obtain a new 
value of 'r"22 for the next step. It is to be Next let g2(•n,ql,q2,t)=$[v2(•n,•l,•2,t)] where 
noted that a• I•11 or 1•21 -• o•, •2F22/•_ 1 g indicates the Fourier transform. Then, using 
•2 '-> 0. Also at • =0,.F2,2(0, •1, •2, 't) = 1. (20) and (21) it is straightforward to see that 
Thus the moment equation (11) yields the for the (n+l)th step, 
following solutions under these conditions: 

F2,2 ((,I •11 --> øø,•2,t) 

= exp[- • F(I •l -> o•,•2,t)] 
r2,2 (•,•1,l •21 •> oo,t) 

= exp[- 2• L F(•i,I •21 •> oo,t)] 

(22) 

The corresponding values of V 2 (•,•l,•2,t) for 
I•ll_• o• or 1•2.1-• oo can be derived from 
these solutions using (18) and (20). Before the 
application of discrete Fourie• transform methods 

v2(•n+l,•l,•2,t ) = exp(iA(C) 

ß B-l[exp(iA•qlq2) g2(•n,ql,q2,t)] 

+ exp(iA•C) {V2(•n,I •11 -> øø,•2,t) 

+ V2([an,•al,I •a21-• =,t) 

_ V2(/•n,I •11 -> o%1 •,21-> oo,t )} 

- V2(/;n+l,I •,11 -> 0%/}2,0 

- V2(/•n+1,/}1,I/}21->ø%0 

+ V2 ( •n+l,I •11 --> oo,I •21 -• o%0 (25) 
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The Fourier transform g2 of v 2 and the inverse 
Fourier transform indicated by $-• in (25) can 
now be evaluated using a fast Fourier transform 
(FFT) algorithm. In this scheme of computation where 
the constraints on F2, 2 described by (22) are 
automatically satisfied. 

For the final step within the irregularity slab, 
(18), (19) and (20) yield 

F2,2(•L,•l,•2,t) = eiA•D/2v2(•L - A•,•l,•2,t) 
(26) 

In many of the physical situations where this 
formalism is applicable, there is further 
propagation of the waves beyond the irregularity 
slab. In this region, the operator C vanishes 
identically and F2, 2 satisfies the equation 

i}'• F2'2 = iDF2'2 (27) 

R(•,t) <IlI2> - <Ii> <12> = <I• > <12> (30) 

ij = (xj,z,tj,kj) *(xj,z,tj,kj) 
= k0(x- x2) 

t =tl-t 2 

Since <I•> = <12> = 1 and <I•I2> can be 
obtained by taking x 3 = x• and x 4 = X 2 in (3), 
R(•,t) is given by 

R(•,t )= F2,2(•R,•,0,t) - 1 (31) 

Furthermore, on the basis of differential equation 
(11), the existence of an integral constraint on 
F22(•,•,0,t) can be demonstrated [Lerche, 1979 ]. 
T•'is constraint requires that at each step, F2, 2 
(•,•,0,0 must satisfy the condition 

Thus the solution for F2, 2 at the receiver 
location (• = •) is 

F2,2(•R,•l,•2,t) = exp[i(• R - •L)D] 

ß F2,2(•L, • 1,•2,t) (28) 

which on using (26) reduces to 

F2,2(•,•,•2,t) 

1 

= exp[- • F(I •11 --> oo,•2,t)] 
1 

+ exp[-• F(•,I •21 -o o%01 
1 

- exp[-• F(I •l-o o%1 •21 --> 0%01 

+ $-• { exp[i(• - •L + •'•'•-•)q•q2] 

I [r2,2(•,•,o,t) - 1] d• = 0 (32) 

and thus provides a test for the accuracy of the 
numerical solution. 

3. GAUSSIAN IRREGULARITY SPECTRUM 

In this section the random medium is considered 
to be frozen, such that 

BaN ( p ,t) = BaN (p - v00 (33) 

where p refers to the x-z coordinates and v 0 is 
the uniform convection velocity of the 
irregularities in the medium. Thus it is not 
necessary to consider the time variation 
explicitly. Then the x-dependent integrated 
correlation function AaN is related to the power 
spectrum of the irregularities through [Yeh and 
Liu, 1982] 

'g2(•L - A•,ql,q2,t) } 

2.3. Two-frequency intensi _ty space-time 
correlation function 

(29) 

AaN(x ) = 2• I OaN(qx,0) exp(iqxx) dqx (34) 

An irregularity power spectrum of the Gaussian 
form: 

The space-time cross-correlation function of 
intensity fluctuations is defined as •aN(•) = [<(AN)2>/a:k02] exp(- q2/k02 ) (35) 
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is frequently assumed for reasons of is very well approximated by that for a centrally 
mathematical simplicity. For a Gaussian power located phase screen which produces the same 
spectrum, the function F(•,•2,t), which does mean square fluctuation of phase (•,2, as long as 
not depend on t for the frozen case under the Fresnel scale is smaller than the outer scale 
consideration, is given by 

F(•l,•2 ) = 20,2{ 1 + r 2_ exp(- •22/4) 

- r 2 exp(- r 2•22/4) 
l+r 

+ r (exp[- (•l + •-•2)2/4] 
- + r2)2/4 ] 
- exp[- (•1- 1-•2)2/4] 
+ exp[- (•1- 1-•2)2/4])} 

of the irregularities [Booker et al., 1985]. 
However, the situation is different for the 
intensity cross correlation of waves of different 
frequencies. In this case, as noted in section 1, 
it may be necessary to take into account the fact 
that the diffraction which takes place in the 
region between two successive phase screens 
depends on the wave frequency. In the fourth- 
moment equation (11), the diffraction effects 
which can be attributed to the difference in the 

frequencies of the two waves are manifested 
only through the r-dependent arguments of the 
integrated correlation functions AaN which appear 

(36) in F(•,•2,t), as a result of the coordinate 
transformations (8). 

1 F(• ,I •21 • •)] R(•) = exp[- • • 
1 

- exp[- • F(I •,l-• ,,%1 •21 --)e•)] 

+ $-• { exp[i (•R - •L + •--'•)q•q2] 
'g2(•L - A(,ql,q2)}l {2 = o 

where (•2 is the variance of phase fluctuations The discrepancy between the phase screen and 
produced' by the random medium for waves with extended medium results for the intensity cross- 
wave number k•. It can be seen from (36) that correlation function R(•)is expected to be more 
F(I •l--} o% 0)= 0. Hence, according to (29) and pronounced as the thickness of the irregularity 
(31), the two-frequency spatial correlation slab increases. Some results for a normalized 
function for intensity fluctuations is of the form thickness •L = 0.38 are shown in Figure 1. In 

terms of the irregularity scale size L 0 (= 2/k9), 
this thickness is 5 x 10 2 L0 ' In order to allow for 
propagation outside the irregularity slab, • has 
been chosen such that •- •L =0.13. In this 
case, the effective phase screen would be located 

at a normalized distance s• = 0.32 from the receiver. The value of o, 2 i 100 and the ratio 
of the two frequencies, r = 0.714. For the 
evaluation of R(•) in the extended medium case, 
the step size in the split step algorithm has been 

(37) taken as A• =•iJ4. Decreasing the step size 
further did not produce appreciably different 
results as will be seen in Figure 2. In Figure 1, 

The frequency cross spectrum of intensity the intensity cross-correlation function R(•)is 
fluctuations is then obtained from shown as a function of the normalized distance 

•, for an extended medium and a centrally 
o• located phase screen. Thus replacement of the 

1 extended medium by an effective phase screen P(v)=•"•E I R(•)e-i•d• (38) reduces the value of the two-frequency cross 
_oo correlation of intensity fluctuations observed at a 

single location by as much as 33% in this case. 
It should be noted that in the split step The cross spectra P(v)of intensity fluctuations 

algorithm if the number of steps inside the computed with the step sizes A•=•L, A•=•L/4, 
random medium is reduced to one, the results and A• = •L/10 are plotted in Figure 2. In each 
obtained are those for an effective phase screen case the computed value of P(0) is less than 
which replaces the extended random medium. 10 -•5 which, according to the constraint 
This effective phase screen is located at the represented by (32), shows that the computation 
center of the thick slab, i.e., at • = •L/2. For scheme yields fairly accurate results. The curves 
monochromatic waves, numerical solutions of the for A• = •L/4 and A• = •L/10 overlap for the 
fourth-moment equation show that the intensity spatial frequency range shown, but the phase 
autocorrelation function for an extended medium screen yields lower values for the power 
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ß 3O 

.25 

z 

k- 
z 

-. tO 

-.IS 
0 .1 .2 .3 .• .5 .6 .7 .8 .9 1.0 1.1 

I•R• IZED D] STRNCE 

Fig. 1. Intensity cross-correlation functions for an irregularity slab of normalized 
thickness •[ = 0.38 (solid line), and a centrally located •phase screen (dashed line). 
Irregularities have a Gaussian power spectrum with •½z= 100. Ratio of the two 
frequencies, r, is 0.714. 

spectrum over the entire range of spatial present calculation, 128 x 128 grid points were 
frequencies with a more rapid decrease in power used, which is adequate for a study of the 
at high spatial frequencies compared to that nature of the intensity cross spectrum at 
obtained for an extended medium. intermediate frequencies where analytical results 

Behavior of the two-frequency intensity cross are least reliable. For Figure 3, normalized 
spectrum at high spatial frequencies changes distance of the effective phase screen from the 
noticeably with r, the ratio of the two observation point is • = 0.15. At this distance, 
frequencies. For the purpose of comparison with intensity fluctuations are fully developed for both 
the results obtained by Miller [1987] (see in the frequencies. It should be noted, however, 
particular, Figure 4 of this reference), the phase that k 0 , which has been used for normalization 
screen results for three values of r, namely r = 1, in this calculation is twice the reciprocal of the 
0.714, and 0.5, are presented in Figure 3. Due distance used for normalization by Miller [1987, 
to the limitation of frequency resolution in the equations (14) and (56)]. Consequently • =0.15 
present calculation, values of the intensity cross corresponds to a normalized distance of 0.038 in 
spectrum at spatial frequencies v lying between 0 the above reference. The main difference between 
and the lowest frequency depicted in Figure 3 the present results and those obtained by Miller 
are unavailable. This problem can be overcome [1987] is that whereas in the latter, P(v) is 
by increasing the number of grid points used in independent of r for low and intermediate spatial 
the computation at the cost of increased frequencies beyond the frequency at which P(v) 
computer time and memory requirements. For the is maximum, Figure 3 indicates that, in the case 
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Fig. 2. Intensity cross spectra obtained with different step sizes: A• = •L (short-dashed 
line); A• = •L/4 (solid line); A• = •L/10 (long-dashed line). The last two curves 
overlap. Other parameters of the irregularities are the same as for Figure 1. 

under consideration here, the intensity cross- 4. POWERLAW IRREGULARITY SPECWRUM 
spectrum varies with r even at low spatial 
frequencies. This difference arises due to the On the basis of experimental observations, 
nondispersive nature of the phase screen considered ionospheric irregularities which cause intensity 
by Miller [1987] whereas in the present study the fluctuations on radio wave signals are 
random medium is dispersive with a frequency characterized by a power law type of spectrum 
dependence given by (4), a situation which pertains [Dyson et al., 1974; Umeki et al., 1977]. In 
to radio wave propagation in the ionosphere, the particular, irregularities found in the equatorial 
interplanetary space or the interstellar medium. At ionosphere are usually very much elongated 
high spatial frequencies, the intensity cross along the geomagnetic field direction and hence 
spectrum shows similar behavior irrespective of may be considered to be two-dimensional. These 
the wave number dependence of the refractive irregularities are frequently described by a two- 
index of the phase screen. As demonstrated in dimensional power law spectrum with index 3: 
Figure 3, the truncation of the intensity cross 
spectrum at high spatial frequencies occurs more •al• (•) <(AN)2> kø rapidly with increasing deviation of r from unity, = 2;r [ko2+ q213/2 (39) 
which was also observed by Uscinski and 
Macaskill[1985] andMiller[1987].. where 2;r/k o corresponds to the outer scale of 
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Fig. 3. Intensity cross spectra for a phase screen with Gaussian power spectrum (o• 2 
= 100) for frequency ratios r = I (solid line); r - 0.714 (long-dashed line); r = 0;5 
(short-dashedline). •R = 0.15. 

the irregularities. Under the assumption of frozen Here K1 is a modified Bessel function. The 
flow, this form of the irregularity power normalized two-frequency intensity correlation 
spectrum leads to the following expression for function R(•)and the cross spectrum P(v) can 
F(•l,•2,t ) where the explicit dependence on t now be computed from (37) and (38). In Figure 
has been dropped: 4, the general nature of the intensity cross 

spectrum is seen to be the same as found for 
F(•l,•2 ) = 2002 { 1 + •-1•2 IK1(1•2 I) 

- 1 '31•2 IKl(rl•2 I) 

+ rtl{z + J• {2 IKz(I {z+ J• {2 I) 

irregularities with a Gaussian power spectrum. 
Uscinski and Macaskill [1985] had also reached a 
similar conclusion on the basis of approximate 
analytic expressions for the solution of the relevant 
fourth-moment equation. The value of oe 2 is 
56.4 for Figure 4. The normalized distance of 
the effective phase screen from the point of 
observation has been taken as • = 0.0603, which 
is applicable to scintillations on a wave of 
frequency 125 MHz caused by irregularities at an 
effective height of 400 km in the ionosphere and 
with an outer scale (= 2;c/k0) of 10 km. For r = 
1, the high-frequency asymptote of the intensity 
power spectrum appears to have a power law 

(40) dependence of the form v-P with p = 2.55. For 
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Fig. 4. Same as in Figure 3, but for /r•e•larities witha power law spectrum with spectral index of 3, o, z= 56.4, and •]• = . . 

weak intensity scintillations caused by where $4(ki) is the S 4 index for a signal of 
irregularities with a two-dimensional power law wave number k i, are plotted as a function of spectrum with spectral index -p, the high- in Figure 5. The wave frequency f] (= 2•t/k])(?s 
frequency asymptote of the intensity power taken to be 125 MHz. The center of the 
spectrum has a power law dependence of the irregularity slab of thickness 100 km is at a 
form v'P [Yeh and Liu, 1982]. For strong height of 400 km above the receiver, and the 
scintillations arising due to a deep phase screen, outer scale of the irregularities is 10 km, which 
the same relationship exists between the slope of are the values of the parameters applicable to 
the high-frequency asymptote of the intensity ionospheric propagation. In Figure 5, the two 
power spectrum and the spectral index of the curves are for two different values of r, the 
irregularity power spectrum [Rumsey, 1975]. The ratio of the two frequencies. When k] = k2 = k, 
present result, which is for irregularities with a R(0) = S42(k) by definition and B I has the value 
two-dimensional power law spectral index of-3 1. The normalized correlation of weak amplitude 
and corresponds to an S4 index of 1.02, is in scintillations on waves of different frequencies, 
reasonable agreement with the result of Rumsey defined in a manner similar to Bi(k],k2), was 
[1975]. shown to be independent of the strength of the 

In order to study the variation of the cross irregularities in a thin phase changing screen by 
correlation of intensity fluctuations with the Budden [1965]. The Rytov solutions of the 
strength of the irregularities, values of parabolic equations for weak scintillations due to 

an irregularity slab [Yeh and Liu, 1982] also 
' demonstrate that in the weak scintillation limit 

Bi(k],k2)=R(0)/S4(k])S4(k2) (41) ((•2 << 1), B I is independent of (• and is 
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Fig. 5. Variation of the normalized intensity cross-correlation B I (kl, k2) (defined in 
(41)) with •, for r - 0.714 (solid line) and r -- 0.5 (dashed line). Irregularities have a 
power law spectrum with spectral index of 3. For both curves •I•- 0.015 and •a - 
0.O678. 

determined by r, •L and •1•. Whereas the undergoes multiple scatterings. This results in 
analytic expression for the frequency cross increasing decorrelation of the intensity 
spectrum of intensity fluctuations derived by fluctuations on the two waves. When both the 
Miller [1987] is valid for values of •,2 >> 1, the waves undergo strong scintillations, there is litfie 
present numerical solution does not have this further loss of correlation with increasing 
limitation. Thus, it is possible to investigate the strength of the irregularities. 
dependence of Bi(kl,k 2) on c•, for a range of 
values of c•, starting with the weak scintillation 5. NONFROZENFLOW 
limit. Since' c•, is the standard deviation of 
phase fiuctuati6ns for the wave with wave Temporal evolution of the irregularities in the 
number k l, and for the curves in Figure 5, k 1 random medium may occur due to decay caused 
is held constant along with the height and by fluctuations in the convection velocity of the 
thickness of the irregularity slab, variations in irregularities. This mechanism was considered by are equivalent to changes in the strength of t•e* Shkarofsky [1968] among other mechanisms, for 
irregularities. It is seen from Figure 5 that in the which_•he suggested that the Fourier transform 
weak scintillation limit, Bl(kl,k2)approaches a Salt (q ,to) of the irregularity space-time 
constant value determined by r = kl/k 2. As the correlation function Ba•t(x,z,t) may be 
strength of the irregularities increases, the higher- decomposed as follows: 
frequency wave may still be considered to be 
singly scattered while the lower-frequency wave Sa•4(•,to) = tI)a•(•)•(•,to) (42) 
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where •a•(•)is the irregularity power spectrum With the choic of the Gaussian form given in 
fo• frozen flow. The Fourier transform of (35) for •aN(q), the following expression is 
w(q,00) with respect to 00 is given by derived for F(•,•2,t) when the irregularities 

•I/(•,t) = exp(- i•.v 0 t - q2Ov2 t 2/2) (43) 

when the decay is caused by fluctuations in the 
velocit of the irregularities [Shkarofsky, 1968] 
Here v 0 •s the average drift velocity of the 
irregularities and •v is the standard deviation of 
the velocity fluctuations. The integrated space- 
time correlation function AaN(x,t is related ß o :)o tO 
the uregulanty power spectrum SaN(q ,t) through 

AaN(x,t) = 2•t I SaN(qx,qz = 0,t) exp(iq x) dqx 

have random velocity fluctuations superimposed 
on an uniform convection in the x direction: 

F(• 1 •2,t) = 20,2{ l+r 2. exp(- •22/4) 
_ r2exp( - r2•22/4) + r_.. 

l+r 

ß (exp[-(• +-•'r•2- k0v0t )2/40[21 

- exp[- (•+ q•2- k0v0t)2/4(z2] 
- exp[- (•- r •2- k0v0t )2/4 (z2l 

l+r 

+ exp[- (•- -•-•2- k0v0t )2/4 (45) 

(44) where 

ß 3o 

.25 

ts 
.10 

ß o5 / \ 
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Fig. 6. Time variation of the intensity cross correlation for two frequencies with ratio 
r = 0.833 measured at the same location, for •v TM 0 (solid line); •v = 0.2 v 0 
(short-dashed line); and •v =0.8 v 0 (long-dash%d line). Irregularities have a Gaussian 
power spectrum with scale size L 0 = 2 km, •,z = 100 and v 0 = 100m/s. Here •. = 
0.019 and • =0.0668. 
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Fig. 7. Time variation of the intensity cross correlation for a spatial separation of L0/4, 
r = 0.833. Here o v = 0 (solid line); o v = 0.2v 0 (short-dashed line); o v = 0.8 v 0 
(long-dashed line). Irregularity parameters are the same as in Figure 6. 

k02(•v2t 2 affect the wings of the cross-correlation function 
et--(1 + 2 )•/2 (46) R(0,t). However, when the two waves are 

observed at different locations, the effect of 
This expression has been used to calculate velocity fluctuations on the intensity crossø 

R(•,t) for several values of Ov keeping v0 correlation function R(•,t) is more pronounced. 
constant. Some typical results for o,z- - 100, This can be perceived from Figure 7, where 
when multiple scatterings take place for the R(•,t) for a normalized separation g- 0.5, which 
wave number k•, are shown in Figures 6, 7, corresponds to a transverse distance of a quarter 

and 8f. For these figures, L 0 --2 km, v0: 100 of the irregularity scale size, is plotted as a m/s, •: 250 MHz, •t.--0.019 and •l•- 0.0668. function of time. As the ratio Ov/V 0 is increased 
These values of •L and •l• correspond to an from 0 to 0.8, there is an appreciable decrease 
irregularity slab of thickness 100 km at an in the peak value of the cross correlation. The 
average height of 350 km above the observation peak also shifts toward a smaller time lag as in 
point. The cross correlation R(0,t) of intensity the monochromatic case [Wemik et al., 1983; 
fluctuations, observed at the same location, on Franke and Liu, 1987]. In addition to these 
two frequencies with a ratio r--0.833, is effects, velocity fluctuations introduce a positive 
depicted in Figure 6. The effect of velocity skewness in the cross-correlation function which 
fluctuations in this case is similar to that increases with increasing o v, as observed in 
observed in the monochromatic case [Wemik et Figure 7. A comparison of Figure 7 with Figure 
al., 1983]; i.e., the velocity fluctuations only 8, where R(•--0.5,0 is plotted as a function of 
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Fig. 8. Same as in Figure 7 for r = 0.5. 

time for r =0.5, shows that whereas the peak of possible to obtain an analytic expression for 
the correlation function is broadened as the F(•l,•2,t). The resultant space-time correlation 
deviation of r from unity increases, the peak function R(•,t) for a spatial separation of L0/32, 
itself moves to a smaller time lag. Also, where L0 = 10 km, is shown as a function of 
decorrelation associated with the velocity time in Figure 9. The ratio of the two wave 
fluctuations decreases as r decreases. Thus frequencies, o, 2, and v 0 have the same values 
velocity fluctuations cause maximum decorrelation as in Figure 7; however, (I• = 0.0075 and (a = 
in the case of monochromatic waves. This 0.033 on account of the different value of L0. 
follows from (45), which shows that for a The only difference between R(•,t) for power law 
fixed strength of the irregularities, the Ov- and Gaussian irregularity spectra is that in the 
dependent terms in F(•l,•2,t) decrease in former case, the skewness of the cross- 
importance as r decreases from unity. correlation function for a fixed spatial separation, 

The effect of nonfrozen flow in the case of caused by the velocity fluctuations, is more 
irregularities with a power lax spectrum is pronounced than in the latter case. 
investigated by considering (I)•(q') to be of the 

(I)z•N(•) = <(AN) 2> ko 2 •r [ko2+q2] 2 
(47) 

6. CONCLUSION 

The fourth-moment equation with different 
wave numbers is solved numerically using a split 
step algorithm which replaces the extended 

where 2•t/k 0 (= L 0) is the outer scal of the random medium by a series of phase screens .• . 
irregularities. For this form of tI)a•( q ), •t is interspersed with diffraction layers. The 
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Fig. 9. Time variation of the intensity cross correlation for a spatial separation of L0/32 
in the case of a power law Lrregularity spec.tm_ m with spectral index 4 and outer scale 
L 0 -- 10km. Herer -- 0.833, o, 2 = 100, •t, -- 0.0075, •l• - 0.033 and v 0 -- 100 
m/s. The three curves are as follows': o v = 0 (solid line ), o v -- 0.2 v 0 (short-dashed line), 
and o v -- 0.8 v 0 (long-dashed line). 

following results are obtained: (1) The spatial wave frequencies deviates from unity. On the 
correlation function for intensity fluctuations due other hand, for low frequencies, the nature of 
to irregularities in an extended random medium the intensity cross spectrum is determinexl by the 
is compared with the correlation function wave number dependence of the refractive index 
obtained for a centrally located phase screen, fluctuations. (3) The general behavior of the 
under the assumption of "frozen flow." The two intensity cross spectrum remains unchanged when 
results differ significantly as the thickness of the the irregularities have a power law spectrum 
irregularity slab is increased because propagation instead of a Gaussian spectrum. (4) Multiple 
within the slab becomes important on account of scatterings on the lower-frequency wave cause 
additional diffraction effects which arise due to further decorrelation of intensity fluctuations on 
the difference in the frequencies of the two the two waves as the strength of the 
waves. (2) Comparison with the analytical results irregularities is increased. (5) The two-frequency 
obtained by Miller [1987] shows that the space-time intensity correlation function is 
intensity cross spectrum has the same obtained for the "nonfrozen" situation where the 
characteristics at high spatial frequencies irregularities have random velocity fluctuations 
irrespective of the wave number dependence of with standard deviation Ov superimposed on a 
the refractive index of the medium. The intensity uniform drift. The effects produced by the 
cross spectrum at high spatial frequencies velocity fluctuations are similar to those in the 
decreases more rapidly as the ratio of the two monochromatic case [Wernik et al., 1983; Franke 
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and Liu, 1987]. The peak value of the cross- ionosphere, J, Atmos. Terr. Phys., 27, 883- 
correlation function for different spatial locations 897, 1965. 
decreases as o v increases and the peak itself DiNapoli, F. R., and R. L. Deavenport, Topics in 
moves toward a smaller time lag and has a current physics, in Ocean Acoustics. edited by 
positive skewness. However, velocity fluctuations J.A. DeSanto, chap. 3, Springer-Verlag, New 
become increasingly ineffective in causing York, 1979. 
decorrelation as the ratio of the two frequencies Dyson, P. L., J.P. McClure, and W. B. Hanson, 
deviates from unity. In-sire measurements of the spectral 

It has been demonstrated by Uscinski [1985] that 
for monochromatic plane waves which undergo 
multiple scattering, the multiple convolution solution 
is equiv0rlent to the field of a wave that has traversed 
N(= 2c•>>1) phase screens, each of which gives 
rise to a mean square phase deviation of 0.5 (tad) 2 

characteristics of F region ionospheric 
irregularities, J. Geophys. Res., 79, 1497- 
1502, 1974. 

Franke, S. J., and C. H. Liu, Space-time statistics 
of waves propagating through a deep phase 
screen, Conf. Proc. 419, p. 15-1, Adv. Group for 

and is located at a distance IdN from the next phase Aerosp. Res. and Dev., NATO, Brussels, 1987. 
screen. This equivalence should also hold for a Lee, M. C., Wave propagation in a random 
multiple convolutionsolutionofthe fourth-moment medium: A complete set of the moment 
equation for waves of two different frequencies equations with different wave numbers, J. 
obtained by Uscinski and Macaskill [1985]. Thus, Math. Phys., 15, 1431-1435, 1974. 
in principle, the split step solution obtained in the Lerche, I., Scintillations in astrophysics, I, An 
present study would yield the same result as the analytic solution of the second-order moment 
multiple convolution solution, if the number of steps equation, Astrophys. J., 234, 262-274, 1979. 
within the random medium is taken to be equal to Liu, C. H., and K. C. Yeh, Frequency and 
2•when c•,>>l. However, on the basis of the spatial correlation functions in a fading 
numerical results obtained here, it is found that, in communication channel through the ionosphere, 
practice, the split step solution for the two-frequency Radio Sci., 10, 1055-1061, 1975. 
intensity space-time correlation function converges Mazar, R., J. Gozani, and M. Tur, Two-scale 
rapidly as the number of steps within the random solution for the intensity fluctuations of two- 
medium is increased, and therefore, the number of frequency wave propagation in a random medium, 
steps required for an accurate estimate of the two; J. Ore. Soc. Am., A, 2, 2152-2160, 1985. 
frequency intensity correlation is much less than 2• Millerj S. J., Frequency cross-spectrum of 
when o•>>1. It may be possible to cast the multip16 intensity fluctuations produced by a deep-phase 
convolution solution in a form where this screen, Proc. R. Soc. London. Ser. A. 410. 
convergence can be demonstrated analytically, in 229-249, 1987. 
which case the split step scheme of solving the Miller, S. J., and B. J. Uscinski, Frequency cross- 
fourth-moment equation could provide a practical correlation of intensity fluctuations; Limitations of 
means of evaluating the multiple convolution 
solution. 
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