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Diagnosis of the turbulent state of ionospheric plasma by propagation methods 
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An electromagnetic signal randomized by scattering from plasma irregularities and by subsequent 
diffraction in the nonrandom part of the medium is known to bear statistical information about 
the plasma turbulent irregularities. For example, if the turbulent spectrum is of the form K -p in 
its wavenumber dependence, the received amplitude of the electromagnetic signal will fluctuate 
with a high frequency spectral asymptote of the form • •-P. However, a power-law turbulent spectrum 
of the form K-P has certain nonphysical difficulties if cutoffs at both the inner scale and the 
outer scale are not introduced. In addition, in this paper it is shown that the mean arrival time 
and the mean square pulse width are rather sensitive to values of the outer and inner scales of 
ionospheric turbulence. Information concerning the values of these scales is rather meager at present. 
It is therefore suggested that pulsed experiments be made so that the inner scale and the outer 
scale can be determined. Possibilities of making similar measurements on a laboratory plasma 
are also implied. 

1. INTRODUCTION 

The ionospheric plasma is known to go turbulent 
at various geographic locations for a substantial 
amount of time. That is, the ionospheric electron 
density N(•) may have a part AN(•) that fluctuates 
randomly from the mean value (N(•)). When this 
happens, the scattering of electromagnetic energy 
can be very substantial, resulting in what is known 
as the spread-F echoes. To characterize this turbu- 
lent process completely requires the knowledge of 
a multidimensional probability density function 
which is impossible to measure experimentally and 
extremely difficult to deal with mathematically. As 
is usually the case, one is then forced to make 
correlation measurements and to work with correla- 

tion theories in which only the first two moments 
are needed. In this case the first moment is just 
the mean value and the second moment is related 

to the power spectrum of N(•). 
Even in the realm of correlation theory, a com- 

plete determination of the turbulent process requires 
an extremely large program to cover the three- 
dimensional space of interest, so much so that it 
has never been done. Only through accumulation 
of many, though incomplete, measurements which 
are checked internally for consistency and checked 
against theoretical predictions, does a coherent and 
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average picture emerge. For example, the root mean 
square value of AN/(N) is generally very small 
at temperate latitudes, being less than 1%, but it 
may rise to high values of above 10% in the auroral 
zone and even to 50% or higher near the dip equator 
[Dyson, 1969; $agalyn et al., 1974; Basu et al., 
1976]. The one-dimensional power spectrum of the 
process AN/(N) follows a power law of the form 
1/•m where rn is roughly equal to 2 in the wave- 
number range 10 -3 m -l (scale size 7 km) to 10 -• 
m -• (scale size 70 m) [Dyson et al., 1974; Phelps 
and Sagalyn, 1976]. With the assumption of iso- 
tropic process for AN/N, this implies a three- 
dimensional spectrum of the form 1/•P where p 
is roughly equal to 4. Actually, this power-law 
behavior was implied in propagation measurements 
of a few years earlier [Elkins and Papagiannis, 
1969; Ru[enach, 1972]. In the following the various 
techniques are summarized that can be used to 
characterize the process AN/N within the realm 
of correlation theory. 

(a) The mean square fluctuation •r• of AN/N: 
In-situ measurements can give •r• readily but only 
along the path of the satellite or the rocket. Scin- 

2 through tillation measurements can be related to •r • 
model computations if other parameters are mea- 
sured or assumed and the scintillation is weak 

[ Urneki et al., 1977]. 
(b) The spectral index p: In-situ measurements 

have been used to compute the one-dimensional 
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spectrum but only over a two- to three-decade range 
[Dyson et al., 1974; Phelps and Sagalyn, 1976]. 
In case of weak scintillation, the propagation theory 
[Jokippi and Hollweg, 1970; Singleton, 1974] pre- 
dicts a high frequency asymptote of the form v •-P 
for both amplitude and phase. This has been used 
by various authors to get the spectral index p 
[Ru[enach, 1972; Crane, 1977] but again only over 
a two- to three-decade range in wavenumber space. 

(c) The height and the thickness of the irregularity 
region: Radar observations can yield both values 
[McClure and Woodman, 1972]; they can also be 
measured by scintillation observations at spaced 
stations [Liu, 1965; Paul et al., 1970]. 

The above statistical properties are very impor- 
tant in our search for a basic understanding of the 
turbulent process itself. Additionally, for the 
purpose of computing their effects on waves propa- 
gating through these turbulent irregularities, one 
must first know the statistical properties of AN/N. 
Hence, they are absolutely essential in model 
computations of the kind carried out by Basu et 
al. [1976]. 

2. NEED OF INNER AND OUTER SCALES 

A power spectrum of the form 1 / K p for all values 
of K has several difficulties. For example, for p 
> 2 its associated correlation function will not exist. 

Also, for any finite value of p, the spectral moments 
will fail to exist above a certain order. To partially 
remedy this situation an outer scale l o was intro- 
duced by Tatarskii [1971]. However, the Tatarskii 
spectrum still had problems with large • and a 
gaussian-like cutoff near the inner scale was intro- 
duced by Lee and Jokipii [1976]. While such a 
procedure eliminated all the difficulties with the 
moments, the mathematical manipulation of the 
resulting function became very difficult. Shkaro[sky 
[ 1968] has reviewed this problem and recommends 
a spectrum expressed in terms of Bessel functions 
with imaginary arguments. This Bessel spectrum 
has an inner scale r o and an outer scale l o. For 
wavenumbers in the range l• • < • < r• 1 the spec- 
trum reduces to the desired power-law spectrum. 
For • << l g •, the spectrum is flat and for • >> 
r• • the spectrum decays exponentially. Its moments 
of all orders can be computed analytically and are 
finite. Its three-dimensional, two-dimensional, and 
one-dimensional correlation functions can easily be 
derived and are also given by Bessel functions of 

imaginary argument but of different orders. Mathe- 
matically, they are very convenient to use and have 
been used in connection with the scintillation theory 
[ Yeh and Liu, 1977]. Some of their formulas will 
be adapted in this paper. 

Experimentally, information on the inner scale 
and outer scale is almost nonexistent. Scintillation 

measurements of either amplitude or phase are not 
expected to be of much help in locating the inner 
scale because the presence of noise (receiver cali- 
bration error, scaling error, quantization effects in 
a digital system, etc.) will prevent an accurate 
determination of that part of the spectrum affected 
by small irregularities. In-situ measurements give 
the power spectrum for scales not smaller than 70 
m [Dyson et al., 1974; Phelps and Sagalyn, 1976]. 
This has been extended downward to 3 m by using 
the 40 MHz radar data [ Yeh et al., 1975]. However, 
since Arecibo radar operating at 430 MHz does 
not seem to see spread-F irregularities of size 0.35 
m, we may well surmise that the inner scale must 
be larger than 0.35 m, placing the inner scale in 
the range 0.35 to 3 m. The matter of the outer 
scale is probably not in much better position either. 
In-situ measurements give a power spectrum only 
up to 7 km. Amplitude scintillation measurements 
are affected severely by the Fresnel filtering effect 
and are not expected to be sensitive to scales larger 
than the Fresnel zone [ Wernik and Liu, 1974] which 
is of the order of 1 km at 100 MHz. Large-scale 
perturbations in the ionosphere (e.g., traveling 
ionospheric disturbances which have horizontal 
wavelengths of the order 50 km and up) do exist 
and they contaminate the data because the process 
responsible for their existence is completely dif- 
ferent from that for the turbulent ionosphere. Cur- 
rent popular values for the outer scale are in the 
range of tens of kilometers. For example, in their 
model study Basu et al. [1976] picked l o = 20 
km. 

3. DIAGNOSIS OF INNER AND OUTER SCALES BY 

PULSED SIGNALS 

Recently Yeh and Liu [1977] investigated the 
behavior of temporal moments of signals random- 
ized by scattering from irregularities. These tem- 
poral moments are defined in the following way. 
Let A(z,t) be the complex amplitude of a narrow 
band signal propagating along the z axis. The n th 
moment is defined as 



oe t • (IA(z,t)l 2 ) dt (1) 

where the angle brackets denote ensemble average. 
When properly normalized (i.e., ((tø(z))) = 1), 
and for symmetric modulation envelope, the first 
moment with n - 1 in (1) is just the mean arrival 
time t a and the mean square pulse width x2 is related 
to the second moment through 

2 ß := ((t:(z))) - t• (2) 

The signal is assumed to be impressed a distance 
z from the receiver on top of a turbulent ionosphere 
and propagates through the turbulent slab of 
thickness L. The phase of the signal is then mixed 
through diffraction below the slab. For carrier 
frequencies much larger than the plasma frequency, 
the mean arrival time t a is found to be 

where 

t a = t I + t 2 q- t 3 (2) 

t, = z/c[• - (to • /o,:)] '/: (3) p 

t 2 = 300 • 112 z / 2xo 4 C (4) 

= 2 L(2Z- L)ln(lo/ro)/41oto4c (5) t3 to } o. l• 

The time t I is just the transit time required for 
a signal propagating a distance z with group velocity 

2/002)•/2 The time t• is a correction due c(1 - cop . 
to higher-order dispersion since the signal may have 
a finite bandwidth (112)•/2/2•r. (For precise defini- 
tion of bandwidth, see Yeh and Liu [1977]). The 
time t 3 is caused by'scattering and diffraction, and 
its dependence on the inner scale r o is rather weak 
but its dependence on the outer scale l o is fairly 
strong. For the purpose of making numerical esti- 
mates the following parameter values are taken: 

r o = 3 m, 1 o = 104 m, L = 300 km, z - 600 km, 

.fp = 10 MHz, (112)1/2/2'11' = 1 MHz, o.N = 0.1, 
f= 100 MHz (6) 

The turbulent spectrum is assumed to be given by 
the Bessel spectrum •Shkaro[sky, 1968] which re- 
duces to a power-law spectrum of the form 1/K 4 
within the inner and outer scales. The assumed 

inner scale is nearly equal to the ionic gyroradius. 
The computed numerical values are 
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t• = 2 x 10 -3 + 10 -s sec 

t 2 -- 3 x 10 -9 sec 

t 3 = 1.8 x 10 -7 sec (7) 

In the expression for t 1, the first numerical value 
is just z/c and it has the largest value. The second 
value in t l is a correction which is proportional 
to the integrated electron density or electron con- 
tent. Experimentally its contribution to time delay 
can be measured by monitoring the modulation 
phase of harmonically related frequencies as is done 
in radio beacon experiments. A comparison of these 
numerical values shows that the second-order dis- 

persive effects given by t 2 are very small and can 
be ignored. The scattering term given by t 3 is also 
small but it may rise to a magnitude .comparable 
to the second value of t I which is proportional 
to the electron content value in a strong turbulence. 
The fact that t 3 has a fairly strong dependence 
on the outer scale l o suggests that the measurement 
of t 3 can be used to determine the outer scale lo. 

The mean square pulse width defined by (2) can 
also be computed. It is given by 

,r2 =,r2 + 2+,r• +'r 2+ 2+ 2 0 TI 3 T4 T5 (8) 

where 

2 = ((t2(0))) = 6.3 x 10 -•s s 2 T 0 

2 20.}4 112/to6C2 __ 4 x 10 -14 s 2 Ti•-Z p 

2 2 /2004 2 --14 2 -to4o.NLl ø c = 1.7x 10 s T2 p 

2 to4o.2 L(L 2 2Lz + 3Z2)/31o 2 6 -12 s 2 = - r;to =2 3 x 10 T3 p N ß 

2 = 008 o.4 L2(12z 2 _ 16zL + 6L2)(lnlo/ro)2/481o2to8c 2 T4 p 

=2.7x 10 -2øs 2 

2 = toso.2 zL(2z - L)1121n(lo/ro)/21oto 1ø c 2 = 7.3 T5 p N 

X 10 -18 S 2 (9) 

2 is just the mean square pulse width The quantity Xo 
2 of the impressed signal at z = 0. The quantity *1 

is the contribution toward lengthening of the pulse 
width from dispersive effects. The quantities ,• 
through ,2 . s are contributions from scattering, each 
of these terms can be related to the value of the 
second derivative or the fourth derivative of the 

correlation function of AN/N at the origin. The 
2 For the numerical nonlinear term is given by *4- 

values given by (6) and a gaussian signal spectrum, 
2 through 2 the various values for x 0 * s can be calculat- 
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ed easily and are given numerically in (9). It is 
seen that the original mean square pulse width is 
6.3 x 10 -•5 s 2 and after propagating a distance 
600 km in a medium described by (6), the mean 
square pulse width is almost a factor of 400 larger. 
The dominant contribution comes from x•, which 
is related to the fourth derivative of the correlation 

functidn at the origin and consequently is very 
sensitive to the choice of the inner scale. The inner 

scale of 3 m chosen in (6) is probably the upper 
bound. If a smaller inner scale were used, the value 
of x• would be even larger than that given in (9). 
Consequently, the exact value of the inner scale 
is very important. 

4. DISCUSSION 

We have given formulas for the mean arrival 
time in (2) and the mean square pulse width in 
(8). For numerical values applicable to ionospheric 
conditions it is found that the mean arrival time 
is rather sensitive to the outer scale while the mean 

square pulse width is extremely sensitive to the 
inner scale. It is suggested that this sensitivity can 
be exploited experimentally together with existing 
techniques in order to obtain more accurate values 
for the inner and outer scales which so far are 

very uncertain. Furthermore, the formulas given 
should be applicable to laboratory plasmas even 
though the numerical values given by (6) may not 
be applicable. It is entirely possible that a combina- 
tion of parameters can be found so that the mea- 
surement of arrival time and pulse width can be 
developed as a technique for measuring the inner 
scale and outer scale for a laboratory plasma. 
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