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Equations for the two-frequency two-position mutual coherence functions are derived under the 
usual parabolic and Markov approximations. These equations are then solved numerically. It is 
shown that the mutual coherence functions occur naturally in the study of pulse distortion through 
a random communication channel and in the investigation of signal correlations. Contour plots 
of correlation functions show the possibility of having equal values at two frequency separations 
for a given spatial separation. This behavior is explainable in terms of overlapping Fresnel zones. 

1. INTRODUCTION 

Recently it has been observed that radio signals 
from communication satellites at a frequency as 
high as several GHz may experience the scintillation 
phenomenon when received on the ground [Pope 
and Fritz, 1971; Skinner et al., 1971; Sessions, 1972; 

_ Craft and Westerlund, 1972; Taur, 1973]. This came 
as a surprise since scintillation was not anticipated 
to occur at such a high frequency. After some 
experimentation it is now believed that the scintilla- 
tion is caused by the electron density irregularities 
in the ionosphere. As is well known, for a given 
electron density fluctuation, th e rms fluctuation in 
the refractive index of the ionospheric medium is 
inversely proportional to the square of the signal 
frequency. Therefore, under conditions when GHz 
scintillation occurs, signals with a lower frequency 
will experience even more severe fading. This 
implies that the effects of multiple scattering on 
signal statistics are very important under such 
conditions. To obtain their statistics correctly, it 
is desirable to develop a scintillation theory that 
takes into account the multiple scattering effects. 
Thanks to the recent advances in the theory of 
wave propagation in random media, it is now 
possible to develop such a theory [Liu et al., 1974a; 
Yeh et al., 1975]. In this paper, we shall apply 
a similar technique to investigate the frequency and 
spatial correlations of signals passing through the 
irregularity slab. In satellite communications the 
ability to transmit wideband data is limited primarily 
by the inter-symbol interference which is closely 
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related to the frequency correlation of the signal. 
On the other hand, information about the frequency 
and spatial correlation of the signal is essential in 
designing and analyzing frequency and/or spatial 
diversity schemes. 

The problem is formulated in section 2, where 
equations for the mutual coherence functions used 
in the computation are derived. In •section 3, nu- 
merical results are presented with discussions based 
on scattering theory and ionospheric physics. Some 
conclusions are made in section 4. 

2. THE TWO-FREQUENCY ,MUTUAL COHERENCE 
FUNCTIONS 

The geometry of the problem is shown in Figure 
1. A slab of random electron density irregularities 
with thickness L is present in the ionosphere. The 
slab is characterized by the dielectric permittivity 

•(•) = (•)[• + •(•)]•o (1) 

where 

(½) = (1 - to •2,/to 2) (2) 

½,(?)=_ (top2/to2)[AN(j)] 1 - to p2 / to 2 N O (Z) (3) 
and to p2 _ e 2 No (Z) / meoiS the square of the angular 
electron plasma frequency of the background iono- 
sphere. e o is the vacuum permittivity, e and m are 
the charge and mass of electrons respectivelY', The 
background electron density No(z) is a function 
of height with a typical scale height H. The percent- 
age electron density fluctuation /X N( F) / No (z) is 
assumed to be a homogeneous random field with 
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TO TRANSMITTER AT -a) 

Fig. 1. Geometry of the problem. 

a typical scale size lo. In case of ionospheric 
propagation, the following inequality is usually 
satisfied' 

H >> l 0 >> h (4) 

where X is the wavelength of the wave. This 
inequality implies that only forward scattering is 
important in the random scattering process [ Tatar- 
ski, 1971] and the WKB solution is valid for the 
wave propagation [Yeh and Liu, 1972]. Let us 
assume a monochromatic wave propagating in the 
z direction in the medium. The field can be expressed 
as 

E(•,t) = u(•,to)exp ((jto {t 
-- [ (E([))] I/2 d[/c (5) 

with the complex amplitude u(•,to) approximately 
satisfying the equation 

-2jkOu/Oz + X7•u + k2E• (P) u = 0 (6) 

where k = to((e)) •/2 / c. In deriving (6), the validity 
of the WKB solution is assumed and the depolariza- 
tion effect has been neglected. If, instead of a 
monochromatic wave, a signal with Fourier ampli- 
tude A (to) is incident on the irregularity slab, we 
can express this signal as it propagates through 
the medium as 

p(•,t) = A(to) u(•,to)exp jto t 

__ [ ((([))] 1/2 d[/c dto (7) 

In (7) we note that the effect of the background 
dispersive properties on the signal is contained 

mainly in the exponential factor while the effect 
due to random scattering is given by u(•,to) which 
satisfies (6). The statistical properties of the signal 
p, such as rms intensity fluctuation, correlation, 
etc., are related to the statistical characteristics of 
the complex amplitude u. In particular, we shall 
be concentrating on the following two second- 
moment functions 

F(fi,Z, tol,to2) = (u(5•,Z, to•)u*(•2,Z, Oh)) ---- (u• u•*) 

(8) 

F(•,z, tol ,to2)-- (U(•l ,z, tol)U(•2,z, to2)) • (/11/12) 

(9) 

where • = (x•,y•), i= 1 or 2, is the transverse co- 
ordinate of the field point and fi- fi•- fi2- We 
shall call F and F the symmetric and antisymmetric 
two-frequency mutual coherence functions, respec- 
tively. 

Using F and F, it is possible to derive the statistical 
characteristics of the signal p(t). For example, the 
intensity of the pulse at a given receiving point - 
can be expressed as 

(10) 

where the mutual coherence function appears natu- 
rally. In addition to its close relation to the signal 
statistics, the mutual coherence function also con- 
tains information about both the frequency and 
spatial correlations of the signal, information that 
is vital to the analysis of frequency and/or spatial 
diversity schemes for the satellite-earth communi- 
cation links. 

Starting from (6), under the so-called parabolic 
equation approximation and Markov assumption 
[ Tatarski, 1971], it is possible to derive equations 
for the mutual coherence functions that take into 

account the effects of multiple scattering [Liu et 
al., 1974b; Lee, 1974]. In terms of the ionospheric 
parameters, these equations can be written for the 
case of plane waves: 
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0r 

r=o 
k• k 2 

0P 
+j• + - + AN(O) 2k I k e •- 

(11) 

2 ]_ + AN(O) r - o (12) 
k I k2 

where 

kp - to p/c, 
and 

ki_ 00i [(([(O)i))] I/2/C, i '-- 1,2 (13) 

AN(fi) = [(AN(•,,z)AN(•,Z))/N•] dz 

•7• '-- O2/OX 2 -{- O2/Oy 2 

(14) 

(15) 

Equation 11 has been used to study the propagation 
of pulse trains in a turbulent plasma under weak 
scattering conditions [Liu et al., 1974b]. Some 
approximate analytic solutions of (11) and (12) have 
been obtained recently [Ulaszek et al., 1975]. 
Erukhimov et al. [ 1973] solved (11) numerically 
for some special cases. In this paper, we shall 
present some results by numerically solving (11) 
and (12) for typical ionospheric conditions. For 
numerical convenience, the equations are first 
transformed into dimensionless forms in terms of 
normalized coordinates 

x/t o , xl= Y/to, [= z/kol• 

=O•o(l-X), to e=too(1 +X), 

(16) 

k o = OOo/c (17) 

(11) and (12) become, after the transformation, 

or, 

0• 
• + ie•x7•r• - [CG(•,•)/D]r• =o (18) 

o• 
+ jB•X72rr2 + [CG((,xl)/D] = o (19) 

where V • now stands for O 2/Ol• 2 _{_ 02/O'l] 2, and 

C= (1/4) k}l} (top/tOo)' ((AN/No) 2 ) 

G(I•,•I) = A N(/•, •1) / lo {(AN/No) e) 

D= (1 - X2) a[3 

(20) 

(21) 

(22) 

B, = [(a + I3)X + 13 - a]/2D 

B 2 = [a + 13 + (13 -a)X]/2D 

a = [1 -(to•/tOo)2/(1 - X)2] 1/2 

13 = [1 -- (to,/tOo)2/(1 + X) 2 ] ,/2 

(23) 

(24) 

(25) 

(26) 

The functions F• and ['2 in (18) and (19) are related 
to the mutual coherence functions by 

r(fi,Z,o,X) = rl exp[-CG(O)B31•] 

P(0,Z,o,X) = r2 exp[-CG(0)B3/•] 
where 

(27) 

(28) 

B 3 = [1 + X 2- (to•/tOo) 2]/al3D(1 - X 2) (29) 
Referring to the geometry of Figure 1, (18) and 
(19) are solved numerically from z = 0 to z = L 
through the irregularity slab. The mutual coherence 
functions F and F are then computed from (27) 
and (28) respectively. The values of F and F at 
z = L are then used respectively as "initial" condi- 
tions for the equations 

or/o[ + jB I = o, [ > (30) 

O•'l O[ + jB2X7•.P = O, • > t; o (31) 

which are the equations for the mutual coherence 
functions for z • L in the region below the irregu- 
larity slab. In (30) and (31),/•o-- L/ko lg. 

In the next section we present the numerical 
results computed this way. 

3. NUMERICAL RESULTS 

In order to carry out our computations numerical- 
ly, a model ionosphere has to be chosen first. Since 
our main concern here is to investigate the effects 
of the localized irregularity slab on the radio signal, 
the background ionosphere is assumed to have a 
constant profile within the slab. On the other hand, 
we have tried to include in the irregularity models 
some features which are believed to be realistic 
based on the recent in-situ measurements. These 

measurements indicate that the power spectrum for 
the irregularities follows a power-law dependence 
in wave number, that the electron density fluctua- 
tions can be as high as 20% or even higher, and 
that the irregularity slab may extend to several 
hundred kilometers [Dyson, 1969; Ru[enach, 1972; 
McClure and Hanson, 1973; Dyson et al., 1974]. 
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•.Olx.-.•. • is assumed. For comparison, results are also ob- 
I -% c:•.55, •o--0.2• tained for a gaussian spectrum proportional to 

0.9[ x•(X •--,.484 . Irl exp (-l• K2). 
/•'X •auss,a•.. __ __ Lr Figure 2 shows I rl and the phase of F as functions 
l• 'x POWER LAW.'--'-- Irl of frequency separation X at a given receiving point. 

ø'8I N"N X -x- Lr •s* The results are presented in terms of the normalized parameters C, [o, [, etc. The set of values C = 1.55' 

o.?i •_ x,• 12o.•, /•o=0.212, /•=1.484 correspondstoionospheric ," •"'- parameters L = 50 km, lo = 330 m, f• = 6 MHz, 

0.6• ,, • • .. 115' ((AN/No)2) 1/2 = 5%, and z = 350 km for a wave / '/ • •.• frequency [ = 125 MHz. We note that in general, [FI decreases monotonically as X increases while 

0.5 F ,' x•X_..x•.._x_x_ x 1 arg F seems to increase with X and for the gaussian | ,' x.....x......., • •o* spectrum it actually reaches a maximum and then 

o.4 1 decays. For small X, Irl is larger for the gaussian s* spectrum than the case for the power-law spectrum. 
But as X increases !¾1 decreases faster for the 031/' I I I I I I 0* • 

o o.• o.• 03 o.4 o.s 0.6 gaussian case. Figure 3 shows the results for similar 
x computations but for [o = 1.698, corresponding to 

Fig. 2. Amplitude and phase of F as functions of frequency 
separation, for both power-law and gaussian spectra. 

Consequently, in our computations, a power-law 
spectrum of the form 

(32) ß •(K) o: 1/(1 + l•K2) 2 

i.o 

= 1.55, to = 1.698 
=2.97 

GAUSSIAN: 
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Fig. 3. Same as Figure 2 but for greater slab thickness. 

a slab eight times thicker than that in Figure 2. 
Because of more scattering, the signal is rapidly 
decorrelated with the bandwidth as is evident from 

the figure, becoming nearly uncorrelated when the 
frequency separation is 20%. 

For a given set of ionospheric parameters, it is 
possible to study the dependence of F on the car- 
rier frequency of the signal. Figure 4 shows the re- 
sults of such computations for L = 50 km, l= 

POWER LAW L--50km, ./o=300m 
F fo =5MHz, 

Arg• 
1.0 I00 ø 

80ø[• 

0.1 0.2 0.3 0.4 0.5 0.6 

x 

Fig. 4. Amplitude and phase of F as functions of frequency 
separation with carrier frequency as parameter, for power-law 

spectrum. 
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300 m, J'p = 5 MHz, ((AN/No) 2) ]/2 = 5%, and z 
= 350 km. We note that for/' = 250 MHz, the signal 
is very well correlated even when X = 0.6. As /' 
decreases, the correlation also decreases. This result 
is consistent with the observation that the fluctua- 

tion of the refractive index in the ionosphere is 
inversely proportional to the square of the wave 
frequency. We note that for /' = 31.28 MHz, I FI 
becomes sharply peaked as a function of X. The 
antisymmetric mutual coherence function F is found 
to depend on X very weakly. However, its value 
seems to depend on the strength of scattering. Figure 
5 shows I•l as a function of carrier frequency for 
a given set of ionospheric parameters. We see that 
IP I is very small at lower frequencies and it increases 
to values comparable to those of I FI as the fre- 
quency increases. This implies that when the wave 
frequency is low so that the scattering is strong 
and the slab thickness is large, the variances of 
the in-phase and the phase-quadrature components 
of the signal are almost equal and the antisymmetric 
mutual coherence function is very small. On the 
other hand, when the scattering is very weak, the 
variance of the in-phase component dominates. 
When this is the case, the channel cannot be treated 
as a symmetric channel [Bello, 1971 ]. 

In Figures 2-5 we have presented the mutual 
coherence functions at a fixed receiving position. 
We wish now to generalize these functions by 
introducing both the frequency and spatial correla- 
tions for the ionospheric scintillation channel. De- 
fine the Correlation coefficient as 

1.0 

0.8 

-- 0.6 

0.4 

0.2 

L=50km, ./o = 300m 
fp= 5 MHz 

AN 2. I/2 o " /,_• 11 

31.25 62.5 125 250 

f (MHz) 

• c = 1.55 
•Ol- -•.•-----•. • 

- • • =2.97 m ' •. -- GAUSSIAN 

20 '• • 
x 

01 0 2 0 3, 0.4 0.,•0 0 6 0 7 0.8 0.9 1.0 œ/ 

Fig. 6. Contour curves for constant correlation coefficients, 
plotted in the X-0/l0 plane for a given set of ionospheric 

parameters. 

Ctl -'- 
I((u, - (.,))(u7 - (.• 

(<1.•- <.,)l•)<lu• - <.•)1•)) •/• 

[(( u• ) - (u,)'-)((u•) - (u•) '-)] ]/• 

where [Liu et al,, 1974a]' 

(33) 

(.,) = exp [-k, 2. A(O)L/8] 

and 

(34) 

> = iv (0,z,0 o)1 (35) (/gi ' 

The correlation coefficient so defined is seen related 
to the mutual coherence function. Once the mutual 

coherence is computed, (33) can be used to compute 
C•. In Figures • and ? are plotted the constant 
C• contours in the X- (p/lo) plane for different 

30[ C: 1.55 
I {;04'698 

25 h • :2.97 
! GAUSSIAN 
L ----- POWER LAW 

20•___. ' 
x .15 :_.._ ---' '• ' 

'•. •. 
I0 0.3 •. 0.4 •0.3 0 2 0 I 

' •-'"-.-. •.,,.... •,..,.,,. • ß 
.... •.• -•.• '% ) 05 0 4 • 

06 0605 •5 / • 
0.• 0.• 0 3 0.4 0.5 0.6 0 7 o.e 0'.• 

e/1o 

Fig. 5. Amplitude of P as a function of carrier. Fig. 7. Same as Figure 6 but for greater slab thickness. 
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sets of ionospheric parameters. The general shape 
of the contours is the same in both cases. In Figure 
7, the curves are compressed toward the origin, 
indicating more decorrelation for a given spatial 
and frequency separation. This is to be expected 
since the parameters in Figure 7 correspond to a 
thicker irregularity slab. If one follows a constant 
C• contour starting from zero spatial separation, 
these curves show that as X decreases, in order 
to maintain the same amount of correlation (or 
decorrelation), the spatial separation has to in- 
crease. This trend continues until the spatial separa- 
tion reaches a maximum. Beyond this maximum, 
further decrease of frequency separation results in 
a decrease in p/10. This implies that in the neighbor- 
hood of this maximum p//0, for a fixed value of 
spatial separation, there may exist two values of 
frequency separation at which C• has the same 
value. This result has obvious implications in the 
study of frequency and/or spatial diversity com- 
munication schemes. 

To interpret this interesting result, we resort to 
a rather simple model. As is well known, the 
scattering process is closely related to the Fresnel 
filtering effect [ Yeh et al., 1975]. It is then reason- 
able to assume that the degree of frequency and 
spatial correlation of the signal is proportional to 
the amount of overlapping Fresnel zones corre- 
sponding to the two frequencies at the two spatial 
points. Since the Fresnel zone is proportional to 
1/j,/2, in the absence of spatial separation, the 
Fresnel zones at the two frequencies are propor- 
tional to (1 + X) -•/2and (1 - X)-•/2 respectively. 
The overlap is therefore the smaller of the two 
or P(1 + X)-•/2 where P is a proportionality con- 
stant. Hence as X increases, the frequency correla- 
tion decreases as expected. This is true when there 
is no spatial separation. The situation gets a little 
bit more complicated when there is spatial separa- 
tion 0. Let us refer to Figure 8. The two receivers 
are at 0 and 0', separated by a distance 0. The 
corresponding Fresnel zones at two frequencies 
when projected on the ground are indicated by A 'A 
and B'B respectively. From the figure, it is not 
difficult to write down the overlapping region of 
the Fresnel zones as 

(P/2)(1 + X) -•/2 - p + (P/2)(1 - X) -•/2 • P- p 

+ (3/2) PX 2, for Xsmall (36) 

We see that in this region the overlap increases 

FRESNEL ZONE ( • f-'• ) 

0 
! A 
I ' 

I •0' •B 
- I I 

A ß •- (I + X)- , A' ' - (I + X) 

;,/' _ 8' --•-(I- X + p , B'' (! - X + p 

Fig. 8. The overlapping Fresnel zones. 

as X increases, indicating higher correlation coeffi- 
cient for larger X. This is essentially the behavior 
of the contour curves for small X. As X increases 
further such that 

(P/2)(1 - X) -'/2 - p > (P/2)(1 + X) -'/2 (37) 

we see from the figure that under this condition 
the overlap reduces to P(1 + X) -'/2 again, hence, 
decreasing correlation for increasing X. This simple 
picture seems to explain qualitatively the behavior 
of the correlation contour curves. 

4. CONCLUSIONS 

In this paper, the frequency and spatial correla- 
tions of transionospheric scintillating radio signals 
are investigated by using the mutual coherence 
functions. Equations are derived for the mutual 
coherence functions taking into account the effects 
of multiple scattering. The effects of the background 
ionosphere have also been included, although in 
the numerical computations the emphasis is on the 
random scattering. The full equations can be used 
to model theoretically the transionospheric commu- 
nication channel including effects on dispersion and 
stratification as well as scattering. 

Numerical results for frequency correlation are 
presented for cases of strong scattering and large 
frequency separation. The decorrelation effects of 
scattering are obviously indicated. Study of both 
frequency and spatial correlations shows that for 
a given spatial separation, in order to achieve a 
given level of decorrelation, there may exist two 
values of frequency separation. This result turns 
out to be explainable by using the simple picture 
of overlapping Fresnel zones. 
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