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In this paper a general characterization of the statistics for an ionospherically diffracted, 
monochromatic plane wave is presented. The main results are restricted to weak scatter, 
although two possible extensions that accommodate large phase perturbations and multiple 
scatter are discussed. A detailed discussion of the first-order statistics of amplitude is given. 
The general Gaussian distribution is discussed together with its Nakagami-distribution ap- 
proximation and the log-normal distribution. By using a segment of ATS-3 satellite data 
recorded at Lima, Peru, we show equally good fits to Gaussian and log-normal distributions 
at least for the limited dynamic range available. The Nakagami distribution provides only 
a poor approximation. A transverse scale size of 600 m is inferred, which we believe is 
representative of the nearly linear dependence of the measured field's correlation distance on 
the Fresnel-zone radius. 

1. INTRODUCTION 

The statistics of transionospheric VHF-UHF sig- 
nals have been studied extensively by communica- 
tions engineers as well as geophysicists. Moreover, 
the same phenomena are observed in the scattering 
of light by turbulent air and of radio-star emissions 
by the solar wind. To date, however, few attempts 
have been made to fully utilize the statistical struc- 
ture of homogeneous random fields as a basis for 
theoretical computations or experiment design. 

In this paper we shall present a general charac- 
terization of the statistics for an ionospherically dif- 
fracted plane wave. The solution is the kernel of the 
more general case of an extended noise-like source, 
although that extension will not be pursued. Our ap- 
proach follows the work of Bello [1971 ] who calcu- 
lated the statistics of a signal scattered by the 
troposphere. The method was used in an early paper 
by Bowhill [1961]. More recently it was applied 
'by Uscinski [1966, 1968] and Budden and Uscinski 
[1970]. 

Bello analyzed the voltage phasor at the receiv- 
ing-antenna terminals. Following the more usual 
approach of geophysicists, we have chosen to analyze 
the complex field itself. This initially frees us from 
ß considering the effects of the receiving antenna (a 
,spatial filter) and the receiver (a temporal filter). 
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We assume that the field is well approximated, at 
least locally, by a statistically homogeneous random 
field. The mean, or undeviated component, will be 
treated separately. 

Let 

E(x, y) = ER(x, y) q- iE,(x, y) (1) 

represent the field. Since it is complex, a minimum 
of three correlation functions is required to specify 
the second-order statistics, namely, the spatial auto- 
correlation function of Ee and E• and their cross- 
correlation. These, in turn, are most conveniently 
derived from the complex autocorrelation function 
orE, 

•(•x, •y) • (•(x, y)•*(x', y')) 
= (ERE•') q- (E,E?) q- i((E,E•') -- (E?E•)) (2) 

and the asymmetry autocorrelation function (Bello's 
terminology), 

•(•x, •y) • (•E(x, y)•E(x', y')) 
= (E•ER') -- (E, Et') q- i((E,E•') q- (E,'E•)) (a) 

where (-) denotes ensemble average, 8x = x' - x, 
and 8y - y' - y. We have suppressed independent 
variables where confusion is unlikely. Note that 
(E[E•) can be derived from (E•E•'), so that only 
one of the two quantities need be specified. 

For interpretation as well as computation, it is 
often more convenient to work in the spatial-fre- 
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quency domain. Most familiar is the real and non- 
negative spectral-density function, 

•o(kx, k•) a_ F-•(R•) = •o• q- •o• -- 2 Im (•o•x) (4j 
where 2 Im (•0m) is an asymmetric component and 
F-•(') denotes the inverse two-dimensional Fourier 
transform, such that 

F-•(R•) = L L R•e(•x, iSy) 
ß {exp [--i(kx iSx q- k•, /Sy)]} diSx dl•y (5) 

V•---- F-X((EnEn')) 

•,•, = F-•((E,E•')) 
To determine the components of • we use the com- 
plex spectral-density function 

•o•(k•, k•) & F-•(B•) = w -- v, q- •2 Re (•o•,) (6) 

As with the cross-correlation function, the real and 
imaginary parts of the cospectral density •j,• cannot 
be specified independently of one another. 

We shall see in section 2 that R• and B• are 
easily computed for a weakly scattering medium. 
Moreover, the form of the results permits the deter- 
mination of • and w by inspection. The results are 
independent of the particular spectral-density func- 
tion for the scattering-medium irregularities and the 
incident-wave direction. 

The complete statistical structure of the field can 
be determined from equations 2 and 3 if the 
statistics are Gaussian. We shall show that this is a 

good approximation for weak scattering. A general 
treatment of strong scattering is quite difficult. It is 
possible, however, to extend the results to accom- 
modate large phase perturbations. The amplitude 
perturbation must still be small. These conditions are 
generally valid at VHF/UHF frequencies in the 
vicinity of the scattering medium. 

Thus, if the complex phase is Gaussian, we would 
infer log-normal statistics for the field in the vicinity 
of the scattering medium. It is important to realize, 
however, that free-space propagation alters the sta- 
tistics of the field. We discuss the simplest effect this 
could have on the observed statistics. A proper treat- 
ment of the general case must await accurate com- 
putations of the quantities we have discussed. 

In section 3 we discuss in detail the first-order 

statistics of amplitude. This is of particular interest 
since amplitude statistics are the most readily ob- 

served. We first consider amplitude statistics under 
the Gaussian hypothesis and the applicability of the 
approximate Nakagami distribution. Its use for VHF/ 
UHF scintillation was suggested by BischoI• and 
Chytil [1969]. We then consider the different form 
that results if the amplitude statistics are log-normal. 

To obtain analytic formulas for the necessary 
parameters we have assigned a Gaussian spatial auto- 
correlation function to the electron-density fluctua- 
tions as most other theorists have done. Unfortu- 

nately, the simple formulas that result can lead to 
erroneous interpretation of the data. Inferred spec- 
tral-density functions from amplitude data show a 
weighting of the spatial frequency components in 
inverse proportion to their wavenumber [Ruienach, 
1971]. 

The effect is that the structure with size com- 

parable to the Fresnel-zone radius (2Xz/•) •/" domi- 
nates the data. This effect was inferred by Rufenach 
[1971]. It was demonstrated with a direct com- 
putation by Matheson and Little [1971]. The con- 
clusion is that a single scale size at best leads to 
an incomplete specification of the statistics. A more 
useful parameter is the spectral' index as used by 
both Rufenach [ 1971] and Matheson and Little 
[1971]. 

In section 4 we apply our results to analyze a 
segment of data from the synchronous satellite ATS- 
3 recorded at Lima, Peru. Using the simple formulas 
deduced by applying a Gaussian autocorrelation 
function, we infer a transverse scale size of 600 m. 
This restfit is somewhat larger than the usually 
accepted value [Fremouw and Rino, 1973], al- 
though it is easily understood in view of the afore- 
mentioned problem with the Gaussian autocorrela- 
tion function. 

Our conclusion is that the amplitude statistics are 
non-Rician and poorly approximated by the Naka- 
gami distribution. Moreover, the conditions for 
Rician statistics are unlikely to be achieved for the 
frequencies of interest here. The data are well fitted 
by density functions derived from Gaussian sta- 
tistics when proper allowance is made for unequal 
amounts of power in the in-phase and phase-quad- 
rature components as well as for their cross-cor- 
relation. This result has been anticipated by others 
[Wernik and Liszka, 1969] but not demonstrated. 

Finally we show that over the dynamic range 
of the available data, the measured histograms are 
equally well fitted to a log-normal distribution. To 
perform a convincing separation between the two 
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possibilities (Gaussian versus log-normal) requires 
a very careful measurement, since the distinguishing 
features occur where the data are least certain. 

Future effort will be directed toward a more careful 

analysis of this aspect of the problem. 

2. THE DIFFRACTION COMPUTATION 

For a weakly scattering medium, the Booker- 
Gordon method can be applied to calculate the 
diffracted field. We shall use BuddeWs [1965] formula 
which has been rigorously derived by Tatarski [1969]. 
For an incident monochromatic plane wave 
Eo [exp (--fir. r)], the diffracted field is given as 

E(X, Y;z)= Eo[exp (--tit.r)][1 q- •(X, Y;z)] (8) 

where 

X= x--ztan0cos•, (9) 

Y= y--ztan 0sin•o 

An approximate expression for ½ is 

(10) 

f_L/2 f_oo •(x, ¾; z) = (•/2•) -•./• _• f/•, An(x', y', z') 
ß (({exp [--ikH'(X, Y)]}/[(z- z') sec 01)) 

ß dx' dy' dz' (11) 

where 

H;(X, Y) a__ {(X-- X') 2q- (Y-- Y')2-- sin • O[(X 

- x') cos •, + ( Y - Y') sin •,1"/[(z - z') sec 0l 

(12) 

In equation 11, L is the medium thickness, An is 
the deviation of the index of refraction from its mean 

value, and k '= 2,•/X where X is the wavelength. 
The coordinate system is shown in Figure 1. Note 
that X and Y are measured relative to the line-of- 

sight intercept in the plane of the measurement. 
Since the frequencies of interest are well above 

the electron plasma frequency, we let An = -(2,rrJ 
k :) AN,, where ANd is the deviation of the electron 
density from its mean value and r, is the classical 
electron radius. To allow for slow variations of the 

statistics with altitude we let AN/ -- •(z)•N,, 
where t• (z) is a deterministic profile function [Bud- 
den, 1965]. We introduce the autocorrelation and 
spectral-density functions of AN, through the equa- 
tions 

• (a N.(x', y', z') a N.(x", y", z'9) 

= (AN. •) ,z) 
ß {exp [i(k. 15x q- k,, 15y)]}(dk./2•-)(dk,,/2•-) (13) 

By substituting equations 8, 11, and 13 into 
equations 2 and 3, and making some straightforward 
approximations, we obtain our main results. We 
omit the details since the computations are similar 
to those performed by many other authors cited 
in the references. A simplification can be realized 
by omitting the deterministic factors in equation 8. 
That is, we first compute the second-order statistics 
of • in equation 8. The deterministic factors can 
be reintroduced as they are needed. The results can 
be compactly summarized as 

{R•}=q-[((ra,2secO)/t•] B• 

ß L L •(k•, k., O){exp [iZg(k•,, k.)]} 
ß { exp [i(k• X q- k, I01} (d•J2•r)(d•J2•r) (14) 

where 

z-- [(X •: X)z sec 0]/4r (15) 

g(k•, k,,) = k. • q- k,, • q- tan •' O(k• cos • q- k• sin •)•' 

(16) 

• = f f q'(k•,k•, O)(dkd2•')(dkJ2•') (17) 

IONOSPHERE PENETRATION POINT 

x-z PLANE OF 

MAGNETIC 

MERIDIAN 

PLANE OF OBSERVATION 
Fig. 1. Geometry for diffraction calculationß 
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' ro•X•(L sec 0)tff(0)(ANo')g (19) O' T 

The upper sign in equations 14 and 15 is used for 
R•, and the lower sign is used for B•. Hence, the 
exponential involving g(k•, k•) does not appear in 
the R• integral, and it is independent of z. The 
weak-scatter assumption requires that •rv •' << 1. The 
approximations made in deriving equation 9 are 
valid when (x L sec ,0)/•?' << •'/2, where • is the 
minimum irregularity scale size. For a more de- 
tailed discussion, see Barabanenkov et al. [ 1971]. 

Consider first the R• integral. The result states 
that •(k•, ku, 0) is the inverse Fourier transform 
of R• in the X-Y coordinate system. The final result 
actually depends only on difference coordinates. The 
special coordinate system simplifies the computa- 
tion, however, provided that the aforementioned 
condition involving x, L, and • is valid. This result 
for Re has been derived by other authors, e.g., 
Cronyn [ 1970']. 

The nature of the second-order statistics of E 

itself, as implied by equation 14, is most easily 
deduced from the behavior of Re and B• when 
X - Y - 0. With the normalization in equation 
17, R•(0, 0) - •rv •' sec 0. But, from equation 8, it 
follows that 

{p•) a__ [(E•.E•*)cos O]/2Zo = Eo•av•/2Zo (20) 

where E, = Eo [exp (ik. r)]½, and Zo is the intrinsic 
impedance of free space. Hence, o'v •' is the ratio of 
the scattered power (per unit area) crossing a plane 
perpendicular to z to the total incident power (per unit 
area) Eo•'/2Zo (see Uscinski [1968, equation 3.13]). 

If we replace av •' sec 0 in equation 14 by (P,), we 
shall have computed scattered power (per unit area) 
crossing a plane perpendicular to z. Henceforth, this 
normalization will be used. The quantities of interest 
are 

v• = = (•/2){•(0, 0) + •e [&(0, 0; z)]} 

(2•) 

a,' {Ez2} = (1/2){R½(0, 0) -- Re [Be(0, 0; z)]} 

(22) 

C'e.,. a_ {EeE_,) = (1/2) Im [Be(0, 0; z)] (23) 

From equation 14 we deduce that Re IBm(0, 0; 0)] = 
--Re(0, 0). Moreover, since exp [iZg(k•, k•)] oscillates 

rapidly for sufficiently large z, we deduce that 
lim,_•., B,(0, 0; z) = 0. 

We can identify three zones for the behavior of 
•r• •, •r?', and Cm as functions of z. These are sum- 
marized in Table 1. The results show the power ini- 
tially in phase quadrature with the undeviated com- 
ponent of the field. Ultimately it becomes equally 
divided between the in-phase and phase-quadrature 
components. 

This result is a very old one, having been orig- 
inally deduced by Hewish [1952]. It was demon- 
strated for a Gaussian autocorrelation function by 
Bowhill [ 1961]. It is important, however, to have 
a formulation independent of a particular spectral- 
density function. We shall see that the boundaries 
of the regions we have identified cannot be specified 
by a single scale size. 

To complete the formal development we note, 
as others have, that with a loose application of the 
central-limit theorem, we can deduce a Gaussian 
limiting distribution for the statistics of ½. It follows 
from equation 8 that the statistics of E itself are 
Gaussian, and we have the desired complete sta- 
tistical description of the diffracted field. The main 
restriction is that rrv •' be small compared to unity. 

We conclude this section by briefly discussing 
two possible methods of extending the results to 
accommodate large values of try •'. The simplest ex- 
tension results from recognizing that 1 4- ½ in 
equation 8 is an approximation to ee. The latter 
form results from an application of the method of 
smooth perturbations [Tatarski, 1969]. It is now 
fairly well established, however, that the method-of- 
smooth-perturbations solution is valid only when 
the amplitude fluctuation is small [Barabanenkov 
et al., 1971]. 

Recall, however, that equation 14 describes the 
second-order statistics of ½. Thus, the results in 
Table 1 apply to ½ if (P•) is replaced by •rv •' sec •0• 
It then follows from the method-of-smooth-perturba- 
tions form, equation 8 with 1 + ½ replaced by 
e*, that the amplitude fluctuation is small if (rn • is 
small. This could occur in the vicinity of the medium 
(small z) even if •rv •' itself is near unity. Thus, we 
expect the form to be accurate in the vicinity of 
the scattering medium, at least for typical conditions 
at VHF and UHF. In this instance we would deduce 

log-normal statistics for the field. That is, the 
logarithm of amplitude and phase are jointly Gaus- 
sian. 

Now, however, we must explicitly perform the 
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TABLE 1. Behavior of •z a, •a, and C•zr 

Near zone Far zone 
z N 0 Intermediate zone z --* o• 

Increasing •,.,(P.)/2 
Decreasing ,-,., 
N Maximum • 0 

diffraction calculation for the ensuing free-space 
propagation. The technique is straightforward in 
principle, but difficult in practice. Limiting cases 
for amplitude and phase statistics have been evalu- 
ated by many authors, most notably Salpeter [ 1967]. 
In general, the free-space propagation can be viewed 
as a filtering of the spatial-frequency content of E• 
and Ez. The filters exhibit no sharp cutoff, but spatial 
frequencies beyond ,r/2Xz are attenuated. 

To obtain some feeling for the possible effect on 
the statistics, we consider a theorem from com- 
munications theory. It states that the output sta- 
tistics of a narrowband filter are asymptotically 
Gaussian as the bandwidth approaches zero [Pa- 
poulis, 1972]. Hence, if this mechanism is operative 
sufficiently far from the medium, we may observe 
Gaussian statistics even if the method-of-smooth- 

perturbations solution is applicable in the vicinity 
of the medium. 

Finally, we mention the work of Uscinski [ 1968]. 
He applied the thin-layer result as a differential 
operator describing the scattering of a single spatial- 
frequency component. By integrating over all spatial 
frequencies and adjusting amplitudes so that energy 
is conserved, he obtained a system of integral 
equations for e and eB that include the effects of 
multiple scatter. In that case, large amplitude fluctua- 
tions are permitted. Unfortunately, the equations 
are quite difficult to solve although they are well- 
suited for numerical computation. 

3. THE FIRST-ORDER STATISTICS OF AMPLITUDE 

To describe the first-order statistics of amplitude, 
/t = (EI•: + EF') •/•, we must determine the prob- 
ability-density function or the cumulative-density 
function. Once this is done we can easily compute 
the probability-density functions for ,4 •' or 20 log•0 A, 
depending on the particular application. From the 
statistics of the complex field developed in section 2, 
we can derive the joint probability-density function 
for E• and E•, say, Pro(x, y). Then, 

f0 •r P.{(a) = aP•(a cos 0, a sin 0)dO (24) 

For completely general Gaussian statistics Beck- 
man and $pizzichino [1963] have discussed P•(a) 
in detail. We shall only summarize the important 
features of the general case here. The contours of 
equal probability for the total field are ellipses. 
A typical contour is shown in Figure 2. They are 
characterized by the variance along the • axis, (r• •, 
and the • axis, {r• •. In addition, we need to know 
the orientation angle • since we measure quantities 
involving E• and E•. 

To ensure energy conservati'on, we adjust the 
amplitude of the undeviated component in equation 
8 so that (E •) - E0L We further simplify our re- 
suits by normalizing the field to unity incident 
power. Then, (r: - (Ps)./ (Eo:/2Zo) is the fraction 
of the incident power that is randomized by the 
scattering medium. With this simplification we easily 
obtain the results. 

a = a• + a•. (25) 

[BI - *• - *• (26) 

1/2 Z B = •' (27) 

where B = B(0, 0; z) is given by equation 14 with 
a suitable renormalization. 

One additional quantity is important, namely, the 
scintillation index S• defined as the normalized 
standard deviation of A :- 

(< A -- < A'>')/< A'>' (28) 
For Gaussian statistics Nakagami [1960] has de- 
rived the result 

(29) 

Fig. 2. Typical contour of equal probability for Gaussian 
statistics. 
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We note that S4 •' is given by a quadratic equation 
in •' with z-dependent coefficients. To make this 
explicit we write equation 29 as 

where 

S49' -- 2o'2gl -{- o'4(g9. -- 2gl) (30) 

where 

gl = 1 '-• (IBI/•> cos 2<g' -- •) (31) 

g2 = I q-IBlY• (32) 
We also note that 0 _< S• •' < 2. 

We now consider a particular spectral-density 
function, namely, the Gaussian form 

ß (kz, k•, O) = •rS/2a• a exp {--k•(•/•)•/4 -- /%•/4} 

(33) 

where 

/•2 = a •. cøs •. •p q_ sin •. •p (34) 

The angle ½ is the magnetic dip angle at the iono- 
sphere penetration point (see Figure 1), • is the 
transverse-scale size, and a is the axial ratio. Also, 
from equation 17, 

• = x/• a•/• (35) 

It is then fairly straightforward to evaluate equa- 
tion 14 to obtain the result 

B = --•'[(1 -- tan ux tan u•. sec •' 0) •' 
..2,,--1/2 

q- (f, tan u, q- f2 tan u21 J 

( f•tanu•-l-f2tanu• )]} itan -x '1 -- tanux tanu•sec • 0 (36) 

tan u• = (2Xz sec 0)/Sr(•t•)•l 

tan u• = (2Xz sec 0)/•r• • 

f• = 1 q- tan •' 0 cos• •o 

f• = 1 q- tan •' 0 sin•'•o 

For normal incidence, h = fa = 1, and the result 
simplifies to 

B•r = --•?(cos u• cos u2)•/"exp [i(1/2)(ux q- u•)]} 

(37) 

We shall now restrict our discussion to this special 
case. 

It follows from equations 37, 26, and 27 that 
I•rF' - •r2•-I = •r•-(cos u• cos u2) •/•' and • = (1/4) 
(u• + u: + •r/2. In addition, from equations 31 

and 32 we see that g• ,= 1 - (cos u• cos u2) •/• 
cos (1/2) (u• + u•) and g• - 1 + cos u• cos ua. 
Now, as z varies from 0 to oo, u• and ua vary from 
0 to •r/2. Hence, when z - 0, •rF' - •', •:•' - 0, and 
• - •r/2, in agreement with the behavior summarized 
in Table 1. As z --> oo, the angle • rotates from •r/2 
to •r, and •r• •' and •' tend to •'/2 from above and 
below, respectively. 

The behavior of S• •' with z depends on the magni- 
tude of •' in general. For small •', however, we 
can approximate equation 31 as S• • m 2•F'g• - 
4•r• •', which can be shown to be identical to the 
formula given by Briggs and Parkin [1963]. For 
oblique incidence, the formula derived from equa- 
tion 36 is approximately equal to the Briggs-Parkin 
formula to zenith angles of approximately 20 ø . The 
discrepancy stems fromm the fact that Briggs and 
Parkin treated oblique incidence by effectively 
rotating the ionosphere normal to the propagation 
direction and increasing its thickness by the secant 
of the zenith angle. This technique greatly sim- 
plifies the calculations, but it is approximate. 

We digress here briefly to consider the Nakagami' 
probability-density function which is given by the 
formula 

Pa(a) = {2m'•a•'-x/[I'(m)]} [exp (-- ma•] (38) 

The total intensity (power) is normalized to unity. 
In equation 38, m - (S•-) -x. Because equation 38 
depends only on a single readily measured param- 
eter, it is an attractive candidate for P•(a). It has 
been applied to convert among various scintillation- 
index measures that have been used in practice 
[Bischo# and Chytil, 1969]. 

Nakagami found that equation 38 fit the distribu- 
tion of amplitude fades observed on long-range 
HF (9.67 to 20.02 MHz) communication channels 
fairly well. He also showed [Nakagami et al., 1953 ] 
that equation 38 can be derived as an approxima- 
tion to the general Gaussian probability-density 
function for certain ranges of the parameter m. 

For very strong scintillation, say, when •' = 1, 
we have from equation 38 that •rx •' - • = (m -• - 
1) •/•'. The scintillation index S4 •' i's then independent 
of • and greater than unity. Nakagami showed that 
equation 38 is a good approximation to the true 
(Hoyt) distribution in this case. At the other ex- 
treme, S• •' << 1, Nakagami showed that equation 
38 approximates a Rice distribution with 
= (1/2) [1 - (1- m-•)•/•]. 

We shall see, however, that the far-zone condi- 
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tions where a Rician probability-density function 
is accurate are rarely observed. Hence, while equa- 
tion 39 may be more accurate than a strict Rician 
function, it cannot accurately represent the true 
function for typical scatter conditions at VHF and 
UHF. 

To conclude this section we consider the form of 

the amplitude probability-density function if the field 
statistics are log-normal as discussed in section 1. 
The density function depends only on the variance of 
the real part of the complex phase perturbation ½. 
Hence, the log-normal function is also easily applied 
in practice. Moreover, the scintillation index S• a 
takes the simple form 

84 " exp (4o'• •') -- 1 (39) 

For log-normal statistics the maximum value of 
S4 •' is e • - 1. However, for small ,•', S4 •' ----- 4,• " 
which is identical to the small ,• form of equation 
31. This simply verifies the fact that Gaussian and 
log-normal statistics are nearly identical for weak 
scatter, provided the Gaussian probability-density 
function includes all the parameters, namely, ,•', 
,?, and Cm. 

The log-normal probability-density f.unction is 
important because it has been demonstrated to 
accurately represent the amplitude distributions ob- 
served in optics [Ochs and Lawrence, 1969] and 
in radio astronomy [Cohen et al., 1967; Young, 
1971; Armstrong et al., 1972]. Armstrong et al. did, 
however, find difficulty in fitting the log-normal 
distribution over the entire range of their data. Thus, 
it is important to have a hypothesis other than a 
Rician distribution, which is generally a poor fit 
to the data. 

4. APPLICATION TO ATS-3 SATELLITE DATA 

To test the theory developed in the previous 
sections, we have analyzed a segment of data from 
the synchronous satellite ATS-3 recorded at Lima, 
Peru. Two channels of data were received from 

antennas separated approximately 415 rn along an 
E-W baseline. The frequency was 136.4 MHz. The 
data were recorded on December 17, 1969, from 
0400 to 0440 UT. The scintillation was average 
(T. Golden, personal communication, 1971). 

Histograms were computed on 1-min segments 
of the data with a 5-msec sampling interval. Hence, 
each histogram contained 12,000 samples. The in- 
tensity interval used in making the histograms was 
10 -• mw. The scintillation index S• • and the average 

power were estimated on 25 consecutive segments. 
The average of the 25 estimates of S• was 0.475 
for channel 1 and 0.487 for channel 2. The stan- 
dard deviation for both channels was less than 0.01. 

Channels 1 and 2 should differ only in average 
power. Since the differences in the estimated values 
of S• are on the order of the standard deviation, 
we have a good check on the consistency of our 
estimates. Our working parameters are the time 
average of power (P)v and the time average of 
power squared (P•)v. 

If we assume Gaussian statistics, (P•')v and 
are not sufficient to determine the theoretical ampli- 
tude probability-density function. Thus, researchers 
have considered quantities involving higher mo- 
ments, such as skewness [Salpeter, 1967]. With the 
spectral-density function specified, however, the 
theoretical results from sections 2 and 3 allow us 

to compute •', •?, and Cm from (P•')v and 
alone. 

We estimate S4 • by using (P•')v and (P)v in equa- 
tion 28. Then ,• is determined as a function of g• 

and g,by solving equation 30. With ,• determined, 
we evaluate equations 21, 22, and 23 as 

• (1/2)[o '2 q-- Re (B)] (40) 0' R 

o'z' = (1/2)[o '2 -- Re (B)I (41) 

C•t = (1/2) Im (B) (42) 

with B given by equation 36. Numerically integrating 
equation 24 then gives a parameterized family of 
probability-density functions that 'can be compared 
to the measured histogram for a best fit. 

Since the height of the scattering region, h, is 
fairly accurately known, we have chosen to fix this 
parameter together with the axial ratio, a, to 
produce a family of probability-density functions 
parameterized by the transverse scale size •0. We 
used the values h - 350 km and a - 10 from an 

rms electron-density fluctuation model [Fremouw 
and Rino, 1973]. The resulting family is shown in 
Figure 3. 

In Figure 4 we show the best fit to the data for 
the family of probability-density functions in Fig- 
ure 3. The best fit is achieved for a 600-m transverse 

scale size. The statistical parameters are summarized 
in Table 2. To interpret these results, we have made 
a contour diagram of IB[/,• • as a function of u• and u• 
(Figure 5). Recall that IBI -.• - Hence, large 
values of IB[/ imply vx >> •, which is characteristic 
of near-zone scatter. A small value of implies 
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Fig. 3. Family of probability density functions for ATS-3 
data in channel 1. 

TABLE 2. Computed parameters for ATS-3 data 

Parameters Channel 1 Channel 2 

S4 0.475 0.487 

(P) 1.747 X 10 -x' mw 2.307 X 10 -x' mw 
o-0'/(P) O. 239 O. 250 
o'•zo'/(P) 0.0455 0.0475 
•z' / (P) O. 194 O. 202 
IBI/•' o. 717 -- 
1' lO5.OO ø -- 

approximated by a Nakagami or Rice function. The 
best fit for ,•0 = 600 m occurs in the transition 
zone. This fact, however, is not coincidental. 

The Gaussian spectral-density function is used 
mainly for analytical convenience. Spectral densities 
inferred from amplitude-scintillation data show a 

•r• • •r2, which is characteristic of far-zone scatter. power-law behavior which weights the lower spatial 
We have arbitrarily divided the behavior zones frequencies in inverse proportion to their wave- 

(Table 1) by the 0.8 and 0.4 contours. Also number. Ultimately, such a spectral density be- 
plotted are the u• and u2 angles for the transverse- 
scale sizes used in Figure 3. Only for •0 = 300m 
is the theoretical probability-density function well 
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Fig. 4. Best fit to data for Gaussian statistics. The upper 
part is related to channel 2; the lower, to channel 1. 

t0 -- 600 m. 

comes singular [Rufenach, 1971]. There are, of 
course, physical mechanisms that prevent the catas- 
trophe. Rufenach showed that the structure in the 
data is biased toward scale sizes on the order of 

the Fresnel-zone area. This is just the effect we 
observe in our own data. 

In a recent paper Matheson and Little [1971] 
have performed theoretical calculations using a 
power-law spectrum. They approximate the spec- 
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0.4 

-- TRANSITION ZONE 0.5 

,,, 

/ •&•--•o = •ooo•////f/•5•.o..• .•o0. • , •• 

0 • • 3• • 
8 4 '8 2 

U 1 (rod) 

Fig. 5. Contours of constant [B[/o '•'. 
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trum of the amplitude fluctuations by the spectrum 
of the real part of E [Bowhill, 1961]. Thus, they 
compute what we called e• in the introduction. 
Their results are for normal incidence and isotropic 
irregularities, but they infer a linear relation be- 
tween the correlation length and (Xz) •/a for a 
spectral index between three and six. Since this range 
includes measured spectral indices for ionosphere 
scintillation, the phenomenon is well demonstrated 
by their results [Ru/enach, 1971]. 

To test the log-normal-statistics hypothesis, we 
have fitted our data to a log-normal probability- 
density function. The single necessary parameter ,• 
was determined by using the measured scintillation 
index S• •- in equation 39. The result agrees to within 
a percent of the value given in Table 2, indicating 
that weak-scatter conditions are a good approxima- 
tion. The result is shown in Figure 6. 

The fit over the main portion of the histogram is 
not significantly different from that obtained with 
the Gaussian probability-density function. To identify 
the features that distinguish the log-normal and Gaus- 
sian statistics, we have plotted the theoretical curves 
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Fig. 6. Fit to data for log-normal statistics. The upper 
part is related to channel 2; the lower, to channel 1. 
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Fig. 7. Semilog plot of Gaussian--[3 m and log-normal 
--C)-- densities. 

in Figures 4 and 6 on a semilog plot (Figure 7). 
The log-normal probability-density function rises 
more rapidly initially, then decays more slowly. The 
fact that the two curves are so close is somewhat 

surprising since the S• index of .48 is not small. 
Ideally, data with an S4 index greater than .5 should 
be analyzed. 

5. SUMMARY AND CONCLUSIONS 

In section 2 we presented results, equations 8 and 
14, that allow computation of the statistics, to sec- 
ond order, of the diffracted field for an incident 
monochromatic plane wave. The results are restricted 
to weak scatter, but they admit arbitrary incidence 
angles, and they do not depend on any particular 
form for the spectral-density function of the electron- 
density irregularities. Two possible extensi'ons to al- 
low strong scatter were also briefly discussed. 

The behavior of the statistics to second order is 

characterized by the zero-lag functions o-•"', •r?, and 
CRy. The general behavior is summarized in Table 1. 
For weak scatter the second-order statistics con- 

stitute a complete statistical description, since the 
scattered field is Gaussian. Moreover, if the variance 
of the real part of •p from equation 8 is small, the 
results, with a proper interpretation, completely char- 
acterize the log-normal statistics in the vicinity of the 
scattering medium. The diffraction calculation for 
the free-space propagation, however, must be com- 
puted explicitly. 

In section 3 we specialized the theory to the first- 
order statistics of amplitude. Log-normal statistics 
as well as Gaussian statistics were considered. The 

dependence of the S• scintillation index typifies the 
differences. Equation 28 depends on <r• •', •r?, and 
CRy, while equation 39 depends only on ,•a. We 
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also included a discussion of the Nakagami dis- 
tribution which also depends only on a single pa- 
rameter, the inverse of 

Simple analytic formulas for •r• •, •r• •, and Cm 
can be obtained if a Gaussian spectral-density func- 
tion (equation 32) is used in equation 8. The Gaus- 
sian function, however, does not adequately de- 
scribe the spectral-density function inferred from 
amplitude scintillation data. The components are 
weighted in inverse proportion to their wavenum- 
ber. Hence, the spectral index, rather than a scale 
size, is the appropriate quantity to characterize the 
structure in the scattering medium. The effect is 
evident in the data analyzed in section 4. 

We conclude that the Gaussian spectral-density 
function and the assumption of Gaussian statistics ac- 
curately describe the observed amplitude-probability 
density. The Nakagami distribution is a poorer ap- 
proximation. For the data analyzed the •0 - 300 rn 
(Figure 3) is closest to the Nakagami distribution. 
For systems applications the log-normal probability- 
density function is more accurate and more easily 
applied. The inferred scale size, however, gives little 
information about the irregularity structure of the 
medium itself. 

The question of whether log-normal statistics are 
more appropriate than Gaussian statistics is im- 
portant in verifying our understanding of wave prop- 
agation in a randomly irregular medium. We have 
shown, however, that very careful analysis is required 
to resolve this question. Previously, no realistic alter- 
native has been applied in analyzing data. 

The work presented here was undertaken initially 
to complement and extend the worldwide rms elec- 
tron-density model discussed in Fremouw and Rino 
[ 1973]. The model was derived empirically from 
published scintillation indices. Thus, it depended on 
assumptions that were made about the first-order 
statistics in order to convert among the various scin- 
tillation indices reported. 

We believe, on the basis of the results presented 
in this paper, that the model could be greatly im- 
proved by fully analyzing the amplitude statistics. 
Appropriate data are just becoming available, and 
future effort will be directed toward this goal. The 
results will be useful for communications-systems 
planning and evaluation as well as improving our 
understanding of the structure of the ionosphere. 
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