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Abstract. The chaotic, but nondeterministic, structure of the ionosphere and radio 
wave amplitude and phase scintillation measured on the ground have been simulated 
using the phase screen model with the power law spectrum of random Gaussian phase 
fluctuations. Comparison of the information dimension calculated for phase fluctuations 
on a screen with that for amplitude scintillation at the receiver shows that the original 
chaotic structure in the ionosphere is completely masked by the propagation effects. 
Hence the ionospheric turbulence attractor (if it exists) cannot be reconstructed from 
amplitude scintillation data. On the other hand, measured phase scintillation data 
adequately reproduce the assumed chaotic structure in the ionosphere. Results of the 
attractor reconstruction for amplitude scintillation observed at high latitudes show an 
excellent agreement with our simulation. 

1. Introduction 

In recent years the concepts of chaos and nonlin- 
ear dynamics have found application in studying the 
behavior of various complex systems. Their attrac- 
tiveness stems from the fact that they provide a 
relatively simple statistical description of the sys- 
tem. Although the use of the nonlinear dynamics 
approach does not tell us about the physical nature 
of a system, the theoretical model of the system 
should aim in reproducing the results of nonlinear 
analysis. 

It is known that ionospheric plasma turbulence 
causes scintillation of transionospheric radio sig- 
nals. An important question is what can we learn 
about the irregular structure from scintillation mea- 
surements. The answer to this question is provided 
by the scintillation theory which relates the mea- 
sured statistical parameters of scintillation and sta- 
tistics of irregularities [Yeh and Liu, 1982]. It has 
been found, for instance, that the phase and ampli- 
tude scintillation spectra can be used to deduce the 
form of the power spectrum of electron density 
fluctuations. However, the power spectrum does 
not describe unambiguously the turbulent nature of 
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the ionosphere [Costa and Kelley, 1978; Bhatta- 
charyya, 1990] since it gives only the power of 
Fourier components, while the information about 
the phase coherence between components is miss- 
ing. An alternate description of ionospheric turbu- 
lence can be inferred using the chaotic system 
concept. It gives an independent measure known as 
fractal or Hausdorff-Besicovich dimension charac- 

terizing the "degree of chaos" or "degree of deter- 
minism" which is present in the experimental data. 
In other words, the fractal dimension provides 
some measure of the number of degrees of freedom 
or independent parameters describing the system 
under study. It is based on the rough notion that the 
fractal dimension increases with the complexity of 
the system. More precisely, the fractal dimension is 
the dimension of the strange attractor, a certain 
domain of phase space toward which converge all 
trajectories of the chaotic system ([Berg• et al., 
.1987] gives an excellent introduction to the chaos 
theory). Alternative dimensions, characterizing the 
attractor, include the information dimension and 
the correlation dimension. In most cases they are 
equal to the fractal dimension. 

The chaotic behavior of ionospheric electron den- 
sity fluctuations resulting from the interchange in- 
stabilities has been investigated by Huba et al. 
[1985] and Hassam et al. [ 1986]. In the first paper it 
has been shown that for a three-mode system the 
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nonlinear equations describing the Rayleigh-Taylor 
and E x B gradient drift instabilities reduce to 
equations which describe the so-called Lorenz at- 
tractor for Rayleigh-Benard instability, a typical 
example of the chaotic system. In the development 
of chaotic behavior the ion inertia plays a critical 
role in that if it is neglected, as below 500 km in the 
ionosphere, the three-mode system does not exhibit 
chaos, and a stable convection results. Hassam et 
al. [1986] have shown, however, that this is not so 
when many mode coupling is allowed. At the same 
time, in the inertial regime, for which the three- 
mode theory predicts chaos, the large-scale turbu- 
lence cells do not show chaotic behavior. 

An attempt to obtain information about the cha- 
otic behavior of ionospheric plasma density has 
been made by Bhattacharyya [1990] who has ana- 
lyzed phase and amplitude scintillation data. Her 
main conclusions are (1) ionospheric turbulence is 
generally low dimensional; (2) as the strength of 
amplitude scintillation increases, its information 
dimension increases, possibly due to the "focus- 
ing" of the incident wave. Thus a higher scintilla- 
tion intensity does not necessarily imply higher 
dimensionality of the ionospheric plasma turbu- 
lence. 

In this paper we will relate the chaotic behavior 
of ionospheric turbulence and scintillation using 
numerical modeling of scintillation and compare the 
results with observations made at high latitudes. 

2. Numerical Mode of Scintillation 

To model the amplitude scintillation resulting 
from wave propagation through the irregular iono- 
sphere, we can apply the method described, for 
instance, by Knepp [1982] and Rino and Owen 
[1984]. In this method the phase screen model is 
used in which the irregular ionosphere affects only 
the phase of the wave. The amplitude fluctuations 
develop during propagation between the screen and 
the ground as a result of phase mixing. If the 
dimension of the first Fresnel zone is much smaller 

than the outer scale of the phase fluctuations on the 
screen, the wave field on the ground can be com- 
puted using the KirchhotF s diffraction formula [ Yeh 
and Liu, 1982]: 

f z)= exp {-t•qb(x') + (k/2z)(x - x')2]} dx' 

(1) 

Here A0 is the amplitude of an incident plane 
wave, k - 2•r/A is its wave number, z is a distance 
between the phase screen and the ground, x is the 
position coordinate, and •x) - --AreANT(X ) is a 
phase change of the incident wave on the screen 
due to the deviation of the total electron content 

&Nr through the irregularity slab (r e = classical 
electron radius). Equation (1) can be integrated 
using the Fourier transformation, provided the 
phase fluctuations •x) are known. 

To model the phase fluctuations, it has been 
assumed that they represent a Gaussian random 
process with a power spectrum given by 

Sq0(•:) -- C(•:o 2 + •:2)-p/2 (2) 

The structure strength parameter C in (2) is 

2.,2•.2 r.,p-2 C = 2,• ,e,,•v.•,,o 
F((p- 2)/2) 

where • is the electron density variance, L is the 
irregularity slab thickness, and g0 = 2rr/ro (ro = 
outer scale). The spectral index p is 1 less than the 
spectral index for a three-dimensional electron den- 
sity fluctuations. 

The phase field qb(x) has been generated by taking 
the inverse Fourier transform of 2[S•(g)Ag] •/2 mul- 
tiplied by phase angles uniformly distributed over 
the interval - •r, •r [cf. Rice, 1954] with Ag = 2•r/A x, 
where A x is the step size along x. 

In the actual numerical calculations, qb(x) was 
generated for various spectral indices p and fixed 
values of r0, L, z, and Ax equal to 15 km, 100 km, 
350 km, and 21 m, respectively, and rr2• was chosen 
to cover three regimes of scintillation' weak, mod- 
erate, and strong. The wavelength A is 2.2 m corre- 
sponding to the beacon wave frequency 137 MHz 
used in the experiment described later on. 

Figure 1 shows an example of a random phase 
field (upper panel) generated for p = 2.35 and 
corresponding amplitude scintillation calculated us- 
ing (1) for three regimes of scintillation. To compare 
with observations the spatial coordinate x has been 
converted to time assuming the speed of the diffrac- 
tion pattern e = 1.5 km/s. 

3. Reconstruction of Information 

Dimension 

Before proceeding further, we will make an im- 
portant remark. The phase fluctuations qb(x), as 
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Figure 1. An example of simulated random phase screen (upper panel) and amplitude scintillation 
patterns for three levels of scintillation intensity as quantified by the scintillation index S4 and rms 
phase try. Spectral index p = 2.35. 

generated in our model, represent a random colored 
noise and not a deterministic chaos with the same 

form of spectrum and well-defined attractor. As has 
been demonstrated by Osborne and Provenzale 
[1989] and will become evident also from our cal- 
culations, such a noise has a finite information 
dimension. This means that the colored noise has 

fractal properties which entitles us to use notions 
taken from the chaos theory. An often used method 
of distinguishing between stochastic processes and 
deterministic chaos is based on the fact that the 

Fourier components of random noise are not corre- 
lated. In this method the information dimension 

analysis is performed twice: on the original data and 
substitute data. Substitute data are obtained by (1) 
taking the Fourier transform of the original data, (2) 
introducing random phases, and (3) taking the in- 
verse Fourier transform. If the information dimen- 
sion for substitute data is the same as that for 

original data, then the original data set represents 
random noise. 

The kind of data shown in Figure 1 has been used 

to reconstruct the information dimension for ran- 

dom phase on a screen and scintillation on the 
ground. The first step in the procedure is the 
reconstruction of the attractor in the phase space 
and, second, finding the dimension of the attractor. 

To reconstruct the attractor from the discretely 
sampled time series {x(t)} (t = 0, A t, 2A t, ß .., NA t) 
the classical method of time delay coordinates is 
most often used [Packard et al., 1980; Takens, 
1981]. In this method a vector Xi in an m-dimen- 
sional phase space is constructed by taking delayed 
samples of the time series as coordinates: 

Xi = (x(ti), x(ti + •) ' ' ' x(ti + (m - 1)' •')) (3) 

where •-is a fixed time delay equal to the multiple n 
of the sampling time At and t i is the discrete time. 

It has been shown [Takens, 1981] that in order to 
reconstruct the attractor of dimension d the embed- 

ding dimension rn must be at least equal to 2d + 1. 
For a long series of the noise-free data an arbitrary 
time delay ß (hence n) can be taken. In practice, 
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Figure 2. An example of the two-dimensional phase 
portrait of measured amplitude scintillation for two de- 
lays showing stretching of the attractor when the delay is 
too small. 

however, the choice of r is critical since the coor- 
dinates of the reconstructed attractor must be as 

statistically independent as possible. Fraser and 
Swinney [ 1986] have presented a method to find the 
optimum value of r by calculating the mutual infor- 
mation. The method is complicated and requires 
very large data sets unless the dimension is very 
low. Instead, as the first trial we have used the time 
delay corresponding to the first zero of the autocor- 
relation function and then tried smaller and larger 
delays looking for the dependence of the informa- 
tion dimension on r. It is obvious that the informa- 

tion dimension should not depend on the delay. 
To demonstrate the effect of time delay on the 

attractor reconstruction, we show in Figure 2 the 
two-dimensional phase portraits constructed for 

one of our experimental data sets for n = 1 and n = 
15. This latter value of n corresponds to the first 
zero of the autocorrelation function. One can see 

that due to a high degree of correlation between 
points in the phase space the attractor for n = 1 is 
stretched along the diagonal which apparently will 
give an underestimated attractor dimension. 

In order to test the choice of r we have used a 

phase space construction procedure adopted from 
Osborne and Provenzale [ 1989]. Rather than using a 
single time series, 15 independent time series rep- 
resenting the phase fluctuations on the screen have 
been generated. The point in m-dimensional space 
is represented by (3) but each coordinate x(t i + (m 
- 1)' A t)(rn = 1,'", 15) is now taken from 
different realizations. This procedure assures the 
independence of closely spaced points in the phase 
space. The information dimension is then computed 
by the method described in the next section and 
compared with that for a single series. It has been 
found that indeed the choice of r is important and 
that the optimal delay has a value as large as 
compared to the correlation time, possibly close to 
the first zero of the autocorrelation function. 

The most popular method of the attractor dimen- 
sion reconstruction is that proposed by Grassberger 
and Procaccia [1983]. However, it has been shown 
[Holzfuss and Mayer-Kress, 1989] that the so-called 
pointwise dimension method [Mandelbrot, 1983] 
gives a smaller error in the calculated dimension, 
especially for high-dimensional attractors. The 
method consists in counting the number of points 
Nxo(r) within a sphere of radius r centered at a 
certain X0 point in the phase space and computing 
the dimension D/from 

In Nxo (r) 
D/= lim (4) 

In r r---• 0 

If D/ is computed for a number of embedding 
dimensions m, then for sufficiently large m, D/ 
should become independent of m. This constant 
value of D/is a measure (lower bound) of the fractal 
dimension d. 

In practice, it is necessary to take many randomly 
chosen reference points X0 and compute the aver- 
age to get a reliable estimate of the attractor dimen- 
sion. We experimented with several numbers of the 
reference points Nre f and found that a good com- 
promise between the error in D/ and computation 
efficiency is reached when Nre f = 50. It should be 
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mentioned that when computing the distance be- 
tween points we used the Euclidan norm as recom- 
mended by Havstad and Ehlers [1989]. 

The crucial point is the choice of the range of r for 
which D• is calculated. By definition, D• in (4) is 
estimated from the In N - In r plot by fitting a 
straight line at small r. Unfortunately, that is the 
region of r sensitive to various distortions [Havstad 
and Ehlers, 1989; Caputo et al., 1989]. The most 
dangerous distortion is caused by oversampling 
which generates large number of vectors along a 
short segment of the trajectory in the phase space 
producing a tail of slope 1 at small r. Apparently, if 
not eliminated, this distortion will underestimate 
the dimension. For this reason, in computing D• the 
In N - In r plot is inspected for the presence of a 
tail. The data are decimated until the tail disap- 
pears. Unfortunately, this procedure reduces the 
number of data points. 

Another distortion reducing the useful range of r 
results from the fact that number of points within a 
specific volume of phase space have a Poisson 
distribution which requires a modification of (4) 
[Havstad and Ehlers, 1989]: 

q•(Nx0 (r)) 
D/= lim (5) 

In r r---• 0 

where •x) = d(ln F(x))/dx is the digamma function. 
This modification stretches the ordinate at small 
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Figure 3. The •N) versus log r curves for actually 
measured amplitude scintillation. Computations were 
made for the embedding dimension rn = 5 and 50 refer- 
ence points. 
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Figure 4. D/(m) for the Lorenz (open circles) and 
Mackey-Glass (crossed circles) attractors. The rms errors 
are also shown. 

values of N, resulting in an increased slope of the 
curve. An example of the •N) - In r plot for 
actually measured scintillation is given in Figure 3 
for Nre f = 50 and the embedding dimension rn = 5. 

The program evaluating D/has been designed for 
a. full automatic analysis of data. A straight line is 
fitted by least squares to a certain segment of $ - In 
r curve using the FIT routine of Press et al. [ 1988]. 
Both the length of the segment and its starting point 
are varied and the X 2 goodness of fit test is used to 
choose the best scaling range of r. The average 
slope is calculated with weights proportional to the 
variances of each individual slope. Only those ref- 
erence points are used for which the goodness of fit 
parameter is larger than 0.5. The procedure has 
been verified for the Lorenz and Mackey-Glass 
attractors for which the dimensions are known from 

other sources. The Lorenz attractor is modeled by 
solving the well-known set of equations: 

}(= 16.0(Y- X) 

}•= X(45.92 - Z) - Y (6) 

,• = XY- 4.0Z 

The D• versus rn plot is shown in Figure 4. One 
can see that D/ tends to a constant value for rn 
sufficiently large. The information dimension calcu- 
lated as the average of D• for rn _> 6 is equal 2.06 •- 
0.07, which agrees with the value 2.07 calculated 
from the Lyapunov exponents [Wolf et al., 1985]. 

Since specific problems might be encountered 
when reconstructing high-dimensional attractors, 
we have tested the procedure also for the Mackey- 
Glass attractor [Mackey and Glass, 1977] which is 
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Figure 5. Dr(m) for the measured amplitude scintillation showing the effect of the delay and sample 
length on the estimate of the attractor dimension. 

known to have a high dimension. The Mackey- 
Glass equation 

0.2x(t- •') 

1 + Ix(t- •.)]10 0.1x(t) (7) 
with the delay parameter •-= 100 has been solved 
using the method similar to that described by Hays- 
tad and Ehlers [1989]. The plot Dl(m) is shown in 
Figure 4. The information dimension calculated as 
the average D I for rn >_ 18 is equal to 7.28 • 0.49, 
which is smaller but close to the correct value 7.5 

[Haystad and Ehlers, 1989], The :difference might 
be caused by too small a data set having been taken 
for the analysis. We will discuss briefly the effect of 
data set length on the dimension estimate. 

It is generally accepted that for larger data sets 
the dimension estimate is more reliable. However, 
specialists in chaotic system analysis have not 
reached a consensus as to what is the smallest 

useful data set. For instance, Ruelie [1990] claims 
that if the dimension is determined from a data set 

of length N over at least one decade in r, then one 
should not believe dimension estimates that are not 

well below 2 log10 N. Thus the maximum slope for 
N -- 4096, which is the number of points used in our 
analysis, is approximately 7. Roberts [1991] argues 
that N > 10 '• is required. It seems that this is too 
pessimistic an estimate. Haystad and Ehlers [1989] 
have shown by numerical computations that the 
independence of points in the phase space is essen- 

tial and, if it is satisfied, even a small data set would 
give a reliable estimate of the dimension. 

In view of such differing opinions we have de- 
cided to experiment with several data sets of differ- 
ent lengths. An example is given in Figure 5 where 
Dt(rn) is plotted for N = 4096 and 2048 for one of 
our experimental data sets. It is seen that for 
smaller N, D• is smaller. Since we can not increase 
N over 4096 due to the danger of nonstationarity we 
conclude that in this particular case the information 
dimension is higher than 12. In the same figure the 
already discussed effect of time delay is illustrated. 
One can see that for n = 1, Dt is much smaller than 
for n -- 15, which is the zero autocorrelation delay 
for this data set. 

4. Chaotic Behavior of Simulated 

Scintillation 

The method described in the previous section has 
been used to calculate the information dimensions 

of the modeled phase fluctuations on a screen as 
well as simulated amplitude and phase scintillation 
of the diffracted wave. The aim of these calculations 

is to look for a relationship between the chaotic 
behavior of scintillation and ionospheric irregulari- 
ties, if any. 

Figure 6 shows Dr(m) for random phase fluctua- 
tions on a screen (representing the ionosphere) for 
three values of the spectral index p. One can note 
the saturation of Dl for large embedding dimensions 
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Dr(m) for random fluctuations on the phase 
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which means that the information dimension is 

finite and can be determined from the plot. In 
Figure 7 we plotted the dimension of the phase 
attractor as a function of the spectral index p. The 
dimension falls rapidly with increasing p, approach- 
ing the asymptotic value of 1. This result agrees 
with more detailed calculations by Osborne and 
Provenzale [ 1989] for colored random noise, similar 
to our random phase fluctuations. 

Figure 8 presents the behavior of D• for simulated 
scintillation. Upper panel corresponds to p = 1.84, 
and the lower one to p = 2.35. For each p, three 
curves are plotted representing three levels of scin- 
tillation intensity, as measured by the scintillation 
index S4. For other values of p the behavior of 
D•(rn) is very similar. A surprising result is that D• 
does not saturate even at such high embedding 
dimension as 20, which means that we cannot claim 

. 

Figure 7. The dependence of information dimension of 
random fluctuations on the phase screen on the spectral 
index p. 
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Figure 8. Examples of Dr(m) for modeled amplitude 
scintillation corresponding to two spectral indices p. 
Three curves are drawn for weak, moderate, and strong 
scintillation. 

the existence of the scintillation attractor and, if it 
exists, its dimension is considerably higher than 12. 
Another interesting feature is the independence of 
D•(rn) curves on the scintillation intensity, at least 
over the range of rn considered here. Note that in 
spite of a strong dependence of the dimension of 
phase fluctuation attractor on p (cf. Figure 7), for 
scintillation the dependence of D• on p is very 
weak. Only with some effort can one see that the 
larger the spectral index p, that is, the steeper the 
spectra, the smaller are D• values at large embed- 
ding dimensions, reflecting the dependence of the 
scintillation attractor dimension on the phase fluc- 
tuations attractor. The effect is, however, very 
small and certainly not strong enough to be found in 
experimental data. The conclusion is that (provided 
the assumptions made in the scintillation simula- 
tions are satisfied) the amplitude scintillation attrac- 
tor, if it exists, reflects the propagation effects 
rather then the chaotic behavior of irregular iono- 
sphere and that from studying the amplitude scin- 
tillation attractor alone, no additional information 
about the irregularities can be gained. 

The information dimension has also been com- 

puted for simulated phase scintillations on the 
ground and compared with that for the phase 
screen. An example of comparison is shown in 
Figure 9 for the phase spectrum with p = 2.35 and 
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Figure 9. DI(m) for random fluctuations on the phase 
screen and modeled phase scintillation on the ground with 
various rms values of phase •r•. 

three values of rms phase or4 corresponding to the 
weak, moderate, and strong amplitude scintillation. 
One can see that the asymptotes of all Di(rn) curves 
agree which means that the phase scintillation has 
the same information dimension as ionospheric ir- 
regularities independent of or4; thus the phase scin- 
tillation measurements can be used to reproduce the 
fractal structure of ionospheric turbulence. 

5. Chaotic Behavior of Measured 

Scintillation 

To compare the results of modeling with obser- 
vations we have used amplitude scintillation of 
Hilat and Polar Bear 137-MHz beacon signals re- 
corded at the Polish Polar Station at Hornsund, 
Svalbard. The details of setup and reduction 
method are described elsewhere [Wernik et al., 
1990]. Here we only mention a few important fea- 
tures. Original data are recorded on an FM ana- 
1ogue tape recorder, then digitized at a rate approx- 
imately 250 samples per second. A low-pass, six- 
pole Butterworth filter with a cutoff at 0.1 Hz is 
used to detrend the data. Each raw value of re- 

ceived power is divided by the corresponding value 
of the trend. Since it has been found that spectral 
intensities reach the noise floor at frequencies 
slightly higher than 30 Hz, detrended data are 
decimated by a factor of 4 after appropriate low- 
pass filtering needed to eliminate aliasing. The re- 
sulting Nyquist frequency is 35.89 Hz. 

Three sets of data corresponding to the weak, 
moderate, and strong scintillation have been ana- 
lyzed. In Figure 10 we show their Di(rn) plots. In all 
three cases a characteristic feature of Di(rn) curves 

1988/02/21 02:$1:47 
15 ..... [ ........ ,,,, 

[_ 
I-,,• s4=0.17 

O. I/;,,, I , ,, : I ,,, , I,,,, I ,,, 
O. 5. 10. 15. 20. 25. 

Ill 

1988/02/21 19:14:38 

15 ..... t .... •...• .... •,,, 
-- 9o 

$. •" ß p=$.00 ./- 0.05 
,/..., .... ,,.. 

O© i t i i till lilt till I I t I 
O. 5. 10. 15. 20. 25. 

Ill 

1988/02/09 22:51:10 
I: .... ' .... ' ' ' .... '"' 

f t 9. 

6. 

,. . . o'o' 
O. 5. 10. 15. 20. 25. 

Ill 

Figure 10. Examples of DI(m) for measured weak, mod- 
erate, and strong amplitude scintillation as quantified by 
the scintillation index S4. 

is a lack of saturation and high values of D I at large 
rn. This behavior of Dl(rn) seems to be independent 
of the scintillation intensity and spectral index. The 
agreement with the results of simulation is striking. 
Unfortunately, we have no phase scintillation mea- 
surements at our disposal; thus its comparison 
needs to be deferred to the future. 

6. Discussion and Conclusions 

In this paper we tried to relate the chaotic behav- 
ior of ionospheric turbulence to the amplitude and 
phase scintillations. On the basis of the simulation 
calculations, we conclude that the propagation ef- 
fects would mask the effects of turbulence, and thus 
the ionospheric turbulence attractor cannot be re- 
constructed from the amplitude scintillation analy- 
sis. This conclusion agrees with Bhattacharyya's 
[1990] results. However, at one point our results 
disagree with that of Bhattacharyya. She has found 
an increase of Di with the scintillation intensity, 
while both simulation and data analysis presented 
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here show that it is independent of scintillation 
intensity. This disagreement might be due to the 
fact that in all her cases, Bhattacharyya used the 
delay time r equal to the sampling time A t. We have 
shown that the optimal delay is that equal to the first 
zero of the autocorrelation function %; otherwise, 
the attractor dimension is underestimated. For 

small scintillation intensity % might be much larger 
than the sampling time, and consequently, D• will 
be underestimated. Additionally, D• is underesti- 
mated because the data sets analyzed by Bhatta- 
charyya are very small (N = 800). With increasing 
scintillation intensity, % decreases, becoming 
closer to At, and the dimension estimate increases. 

In spite of a failure of amplitude scintillation 
analysis to reproduce the chaotic behavior of iono- 
spheric turbulence, the analysis of phase scintilla- 
tion measurements could be valuabl e in studying 
the chaos in the ionosphere. 

The difference in the chaotic behavior of ampli- 
tude and phase scintillation is apparently related to 
the physical mechanisms responsible for each type 
of scintillation [Yeh and Liu, 1982]. As the wave 
propagates inside the irregularity slab, to the first 
order,,,only its phase is affected by the random 
fluctuations of refractive index and when emerging 
from the slab, the wave front is phase modulated. 
As the wave propagates a distance z below the slab 
an interference pattern develops, resulting in ampli- 
tude fluctuations. The major contribution to the 
amplitude scintillation comes from irregularities 
smaller than the size of the first Fresnel zone F • 

(Az) •/2. When the rms phase fluctuation •r• at the 
exit from the slab is small, the phase mixing results 
in a complicated, random interference pattern on 
the ground, very much different from the irregular 
structure of the slab. Simulations show that even 

very close to the phase screen the amplitude scin- 
tillation pattern does not resemble the phase pattern 
on a screen. Because of that, the chaotic behavior 
of irregular ionosphere cannot be reconstructed 
from amplitude scintillation. For small •r•, only 
lower-order moments of scintillation (scintillation 
index, correlation function, and power spectrum) 
can be related to the moments of random fluctua- 

tions of electron density. When the rms phase 
fluctuation •r• exceeds 1 rad, irregularities larger 
than F also contribute to the amplitude scintillation 
causing focusing and defocusing of individual rays. 
However, this effect would not change already 
complicated, random amplitude scintillation pattern 

on the ground. On the other hand, the phase fluc- 
tuations at the bottom of the irregular slab map 
directly onto the ground without too much distor- 
tion caused by the interference. Thus the chaotic 
behavior of phase scintillation can be directly re- 
lated to the chaotic behavior of the ionosphere. 

In our discussion of the information dimension 

reconstruction methods we stressed that the analy- 
sis must be made with the proper account for effects 
which affect the information dimension estimate 

and could lead to erroneous results. The most 

important effects are those related to the choice of 
length of the data set and of the delay time. 
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