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We develop an expression herein for the intensity scintillation index on a two-
way (radar) path, in terms of the one-way index and the correlation between
scintillations produced on the uplink and downlink. The expression is appropri-
ate for monostatic (fully correlated) and bistatic (totally or partially uncorrelated,
or anticorrelated) paths whose links are statistically similar and obey Nakagami
m statistics. A compani P for the mean apparent radar cross section
(RCS) in the presence of scintillation describes enh t on tatic paths
and energy-conserving depletion of mean apparent RCS on small-angle bistatic
paths. The companion expression, which does not depend upon Nakagami m
statistics nor require statistical similarity, is consistent with more detailed calcu-

lations by previous authors. Special cases of both expressions are consistent with

Y "

recent

1. INTRODUCTION

In seeking a simple expression for the intensity scin-
tillation index on a two-way path through a randoml;
structured medium, we encountered a surprise: su
a channel cannot display reciprocity and conserve en-
ergy simultaneously. T{e average power received on
a two-way path in the presence of scintillation, given
reciprocity, is greater than that received in the ab-
sence of scintillation. A monostatic radar channel is
reciprocal, however, and resolution of the apparent
dilemma lies in accounting for energy preferentially
scattered into it from small bistatic angles. Such a
resolution is consistent with calculations by de Wolf
[1971) and by Kravtsov and Saichev [1982, 1985]. The
enhanced apparent radar cross section (RCS) is caused
bg correlation between the reflected wave field and
the refractive index irregularities it encounters on the
return path. Recently, the enhancement in apparent
RCS has been observed experimentally by Knepp and
Houpis [1991].

Herein we first present expressions for the mean ap-
parent RCS. We then extend the theory to obtain the
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scintillation index (fractional standard deviation

of intensity) to be expected in monostatic and bistatic
radar measurements through random media. The lat-
ter (but not the former) is limited to channels whose
one-way paths (1) are statistically similar and (2)
yield Nakagami [1960] intensity statistics. We present
our Ngenera.l development in section 2 and apply it
to Nakagami m statistics in section 3. In section 4
we present conclusions that may be of some practi-
cal value, at least on transionospheric channels (for
which Nakagami m statistics provide a useful signal
characterization).

2. GENERAL CONSIDERATIONS

Consider a radar link described by the opera.tinﬁ
wavelength A; the antenna gain and aperture, G an
A, res ectively- the transmitted power P;; and the
cuget%tCS and range, ¢ and R, rgspectlvely. In the
absence of scintillation the power intercepted by the
target would be

_ GP
Po= gl ®

In the presence of scintillation the intercepted power
P, consists of a mean value < P; > and a fluctuat-
ing part. Energy conservation requires that the mean
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value equal the undisturbed value P,. If we express
the instantaneous power fluctuation produced on the
uplink as a fraction §,,, of the mean value, we have

G P,
P=<P >(1+6.)= TR‘*”(HJ“) - (2

If there were no further scintillation produced on
the downlink, the received power would be

= A_P' = _’\QGP L (3)
T 4xR? T (47R)?

In the presence of scintillation, however, the power P
actua.ll‘ﬁ/ measured at the receiver consists of P, plus
an additional fractional fluctuation g, produce

the downlink. That is, employing equations (3) and
(2), we have

P

A2G?P,
P =P(l+62) (4“_)31240(1 +68)1+82) . (4)
We now express P in terms of its undisturbed value
and a fractional fluctuating part 8. The undisturbed
value Pp is given by the standard radar equation, and
it is just the factor in front of the right-hand side of
equation (4)(including o). That is, we write

P = Py(1+8) = Poorm/fo , 5)

where we have denoted the instantaneously measured
(apparent) RCS of the target by

on=o(l48) = a(1+8)1+8) . (6)

Thus the measured RCS consists of its true value plus
a fluctuating part, given fractionally by

5= 64+ 6+ 8,64 . (7

Herein lies our apparent dilemma. The cross term
in equation (7) is important and, when averaged, rep-
resents the correlation between intensity scintillations
produced on the uplink and those produced on the
downlink, Energy conservation on each one-way path
requires that §, and &4 each be a zero-mean random
variable. Accordingly, averaging (denoted by < >)
of equation (7) produces

< §>=< 8,64 > . (8)

Thus we cannot have both energy conservation on the
two-way path (< 6 >= 0) and reciprocity of the two
one-way links (6; = 8, and therefore < 8,60 >=<
62 >=< §3 >), except in the case of no scintillation
(< 62 >=< 63 >=0). Reciprocity requires that the
average 1]fauwer on the two-way path in the presence
of scintillation be different from that in the absence
of scintillation. In fact, equation (8) describes the
surprising conclusion that the mean RCS observed is
enhanced by scintillation on reciprocal links, which we
expect a monostatic radar path to comprise. As coun-
terintuitive as this conclusion may be, it has now been
definitively confirmed experimentally {Knepp and Hou-

pis, 1991] on a monostatic path with apparently re
aiprocal links.

For such links the right-hand side of equation (§)
is just the fractional variance of intensity experienced
each way. that is, the square of the intensity scintilla.
tion index usually denoted by S, [Briggs and Parkm,
1963]. Generically, we will call the one-way fractional
variance S2, = m™~!, in preparation for using the no-
tation of Nakagami {1960] in the next section. When
ipeciﬁca.tion of the link direction is useful, we will use

', and Sg, respectively, for the uplink and downlink
scintillation indices. Using this nomenclature, equa-
tion (8) for the general (partially correlated) two-way
channel becomes

<§>=pS§.Sq¢ (9)

where p is the correlation coefficient between inten-
sity scintillations produced on the uplink and those
produced on the downlink. (For statistically similar
links, S4 = Sy = S, even though the two links may
not be deterministically reciprocal.) Averaging equa-
tion (6) and inserting equation (9) produces

< op >= ol + pSuSy) (10)

as the general expression for the mean observed RCS.
In the special case of Rayleigh scatter (§m = 1) on
fully correlated paths (p = 1) it describes a twofold (3-
dB) enhancement in mean apparent RCS (< oy >=
2¢0).

Formally, < > denotes ensemble averaging. The
amount of enhancement depends upon the degree of
correlation that spatial structures in the medium and
temporal changes therein permit between intensity
scintillations developed on tﬁe uplink and on the down-
link. In some situations, for instance radar astro-
nomical situations, temporal changes may contribute
to decorrelation of uplink and downlink scintillations.
In those cases, enhancement on a monostatic path
would be decreased. (One also could concoct geome-
tries in which bistatic paths would display full en-
hancement due to drift of “frozen-in” structures.) In
many practical cases of interest, including transiono-
spheric propagation from surface to, say, geostation-
ary orbit, temporal changes are negligible, as they
apparently were in the measurements of Knepp and
Houpis [1991].

In interpreting their (solely monostatic) observa-
tions of the enhancement, Knepp and Houpis followed
the procedure established by Yeh [1983] for comput-
'mﬁ the mutual coherence function of the returned sig:
nal. To Yeh's spatial lag they added temporal and
spectral lags as arguments to this correlation func-
tlon of the complex signal, which depends primar-
ily on phase relationships between different (multidi-
mensional) lag points. While the mutual coherence
function is affected also by the degree of intensity
correlation, the formalism does not address correla-
tion between uplink and downlink intensity scintil
lations per se. Indeed, the procedure invokes reci-
procity by requiring the uplink and downlink chan-
nel transfer functions to be identical to one another
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for all lags. Thus the scintillations (of both inten-
sity and phase) produced on the two links are re-
stricted to being fully correlated. The cumulative-
forwardscatter /single-backscatter (CFSB) formulation
introduced by de Wolf [1971] and extended by Yeh
does not permit accurate integration over all (monos-
tatic and bistatic) scattering angles. Thus Knepp and
Houpis were not able to interpret the apparent lack
of energy conservation encountered on their strictly
monostatic channel.

To inquire where the extra energy measured by
Knepp and Houpis came from, one must consider
bistatic as well as monostatic paths within the sys-
tem. Indeed, the development culminating in equa-
tion (10) is quite consistent with far more detailed
calculations by Soviet authors [Kravtsov and Saichev,
1982, 1985] and with the original CFSB calculations
of de Wolf [1971]. Those calculations indicate that,
while energ{ must be conserved on the totality of
paths, correlations between the returning wave field
and irregularities in the medium can scatter emer
preferentially into the monostatic two-way chann:
from small bistatic angles. Equations (9) and (10)
suggdest that the angles from which the energy is scat-
tered are those for which cﬁ <0.

While the foregoing prediction that scintillation en-
hances the mean RCS observed on a monostatic path
is not new, we think that the simplicity with which
we have shown it to arise may provide new clarity.
In particular, there is no need to invoke saturation of
the scintillation so that the scintillating signal may be
treated as a complex Gaussian variate, as did Knepp
and Houpis. Moreover, it is not necessary that the sig-
nal approach such behavior as a special case of Rice
[1945] statistics nor even that it obey a generaliza-
tion thereof, such as Nakagami m staiistics. Rather,
the enhancement and (energy-conserving) depletion
of mean apparent RCS described by equation (10)
are fundamental behaviors of scintillation-produciny
two-way channels, They are not merely incident:
consequences of some statistical description of signal
behavior; indeed, they place constraints on admissible
statistical treatments.

We are not aware of detailed propagation calcula-
tions of the variance of intensity on two-way paths,
which would involve the fourth moment of field strength
in the presence of correlation between it and the re-
fractive index irregularities it encounters on the re-
turn trip. Equation (10) provides a ready tool for
evaluating the relationship between mean aﬂpa.rent
RCS and the one-way scintillation index in both mono-
static and bistatic channels. (Parameterization in
terms of bistatic angle, however, would require knowl-
edge of the spatial correlation function of the medium).
We now turn to the relationship between the two-way
scutillation index S, and its one-way counterpart Sm.

We begin by defining the positive, real, normalized,
random voltage e, (produced on the uphnk) and eq
(produced on the downlink) as follows:

e =(1+6), (1)
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eg=(1+6) , (12)

and noting that < €3 >=< €2 >=< €2, >= 1, where
we are employing e, as a direction-independent sym-
bol for the normalized random voltage produced on
a one-way path. Now recall that the square of the
one-way scintillation index is defined as

2 _ <(e3-<el>P> |
82 = %—Qz =m™ . (13)
Accordingly,
§2=<el >-1. (14)

We now define the positive, real, normalized, ran-
ldOI].l voltage e, observed on the two-way path as fol-
ows:

e=(1+6) . (15)
and note from equation (6) that
e=e.eq . (16)

By definition, the square of the scintillation index 5.
for the two-way link is the ratio of the variance of }3
to its mean square value. Thus from equations (5),
(15), and (16) we have

<(P=<P>P> _
< P>? -

< elel >

Si= -
4 < e2ed >?

1. (a7

For fully reciprocal paths (en = ez = &,) the forego-
ing reduces to

2_ <eh>
Si= st (8

We see that in the simple case of reciprocal paths,
calculation of the two-way scintillation index involves
the eighth and fourth moments of field strength on the
one-way link. For this case the two-way voltage distri-
bution is identical to the one-way power distribution,
as is obvious from equation (16). Indeed, the latter
equation directly answers the deterministic question
that prompted this work: namely, “If a one-way tran-
sionospheric communication link undergoes a scintil-
lation fade of z dB, how deep will the fade be on the
corresponding (monastatic) radar link?”(G. Bishop,
private communication, 1990). Equation (16) sup-
ports the reciprocity-based intuitive answer, 2z dB.
As we have seen, however, the same intuition applied
statistically leads to an apparent dilemma over energy
conservation. .

For partially correlated links, mixed moments of
fourth and second order are required to compute the
two-way scintillation index. Computing these correla-
tions directly from propagation theory for a medium
prescribed statistically probably would be a formid-
able task. If the statistics of amplitude on the one-
way path are well described, however, useful results
can be obtained with relative ease. In the next section
we illustrate this approach by means of the Nakagami
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m distribution, which provides a useful description of
signal intensity on transionospheric paths [Whitney et
al., 1972; Fremouw et al., 1980; Knepp and Houpis,
1991]. The two-way description is limited to statisti-
cally similar one-way links.

3. APPLICATION TO A NAKAGAMI m
CHANNEL

If e, and e4 are totally uncorrelated Nakagami m
variables, then the distribution of the normalized elec-
tric field magnitude { voltage) sensed by the radar’s re-
ceiving antenna, namely, e, is that given in equation
(90) of Nakagami [1960] for the product of two such
variables. In the event of partial correlation, Nak-
agami’s equation (135) gives the distribution of e as
a function of the correlation coefficient p. Moreover,
his equation (137) may be used to compute moments
of e as mixed moments of e, and e4, also as functions
of p. In particular, the latter equation yields

< >=1+L=14p52, (9
where we have employed formulas (14.4.1) and (6.1.15)
of Abramowitz and Stegun [1972] to evaluate the hy-
pergeometric function appearing in Nakagami's equa-
tion (137). This result is identical to that stated for
enhancement of the mean apparent RCS on statisti-
cally similar one-way paths by equation (10), which
does not depend upon applicability of Nakagami m
statistics.

Similarly, we use Nakagami's equation (137) to com-
pute the fourth-order mixed moment. Again, apply-
ing formulas (14.4.1) and (6.1.15) of Abramowitz and
Stegun [1972] and some algebra, we obtain

a4 _ (m+ 1?7 4p 2p*
<eyeq >= me [1+ m + m(m + 1)] 4 (20)
For p = 1 the foregoing reduces to
2 1
< > mEmANmAL) ),

m

which also may be obtained as the eighth moment of

the Nakagami m distribution from his equation (17)

and the recursion relation for the gamma function.
Substituting equations (19) and (20) into (17), we

obtain

S2 +1 pS2
2 _ [ Pm 2 2 E m
Si=1 S 1] [1+p5',,,(4+252 1)]—1 . (22)

For a monostatic channel (p = 1) the foregoing re-
duces to

S
52, +1°

57=452 +2 (23)

For large bistatic angles (p = 0) it reduces to
53 =51 +25% . (24)

Equation (23) for the monostatic special case has beey
derived independently in terms of m by Knepp and
Reinking [1989]. The general expression, equation
(22), and its wide-angle bistatic special case, equa-
tion (24), are new.

4. CONCLUSION

Equation (10) provides a general expression for the
mean apparent RCS as a function of the one-way scin-
tillation index and the correlation between scintilla-
tions developed on the uplink and the downlink. I
is not restricted to Nakagami m statistics. Equation
(22) provides a general expression for the scintillation
index on a two-way Nakagami m path, as a function
of the one-way index and the aforesaid correlation.

Nakagami m statistics admit values of 2, from 0 to
2. Values greater than unity account for geometrical
optics focusing and defocusing, which can arise from
media rich in large refractive index structures (e.g.,
those characterized by steep power law spatial spec.
tra). Thus equation (23) admits values of S4 ranging
from 0 to v/5 = 2.24 for Rayleigh fading to a maxi
mum of 3.27. For the same range of conditions ona
monostatic path, equation (10) admits enhancement
of mean apparent RCS by a factor ranging from 1 to

2 (3.01 dB) to 3 (4.77 dB). The largest value of 5,
that the authors have encountered in ionospheric scin-
tillation is 1.3, for which equation (23) would yield a
two-way 54 value of 2.98 and for which equation (10)
would yield a mean apparent RCS enhancement of
2.69 (4.30 dB).

For large bistatic angles (uncorrelated scintillations
on the uplink and the downlink), equation (24) yields
S, values from 0 to /3 = 1.73 (for Rayleigh scat-
ter) to a maximum of /8 = 2.83. For S, = 131t
would yield §4 = 2.5. The mean RCS would show no
enhancement on such channels.

Energy is conserved by a depletion in mean appar-
ent RCS at small bistatic angles in the presence of
scintillation, the behavior being governed by equation
(10) with negative values of p. Since Fresnel filtering
cuts off the spectrum of intensity scintillations even
in the common case of refractive index structures de-
scribed by a red, power law spatial spectrum, p prob-
ably oscillates as a function of bistatic angle in prac-
tical situations. To the extent that it becomes sub:
stantially negative, the mean apparent bistatic RCS
may suffer substantial depletion, complementaiy to
the monostatic enhancement.
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