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ABSTRACT

This paper presents a computationally efficient
motion estimation technique based on image sampling
which determines the dominant motion between pairs
of images. The technique is suited (o low complexity,
low bit rate multimedia applications, where the
objective is to achieve good fidelity without the
overhead of full motion compensation. This can be
achieved if the dominant motion is a combination of
transiation, rotation and zoom, which can be described
by a similarity transformation. The method adopts a
new approach to determining the model parameters,
based on generating a list of parameter estimates from
pairs of block motion vectors and selecting the mean of
those estimates close 1o the median. The method gives
a good sub-pixel dominant motion estimate by
sampling as lttle as /20" of the image area. Resuits
show the method to be accurate and robust, with low
computational requirements.

1. INTRODUCTION

Motion estimation is an important component of
video codecs, as it greatly reduces the inherent spatial
redundancy within video sequences. However, it aiso
accounts for a large proportion of the computational
effort. To estimate the motion of pixels between pairs
of images block matching algorithms (BMA) are
regularly used, a typical example being the Exhaustive
Search Algorithm (ESA) often employed by MPEG-II.
Many researchers have proposed and developed
algorithms to achieve better accuracy, efficiency and
robustness |1-3}. A common approach is to search in a
coarse to fine pattern or to employ decimation
techniques. However, the saving in computation is
often at the expense of accuracy. This problem has
been overcome by the successive climination algorithm
(SEA) of Li and Salari [0], that produces identical
results to the ESA with greatly rcduced computation,
and is the method used in this resecarch. However,
block-based motion  estimation  still  remains  a
significant computational expense and is sensitive 1o
noise. A further disadvantage of a block-based
approach is that the motion vectors constitute a
significant proportion of the bandwidth, particularly at
low bit rates. This is one reason why standard systems
such as MPEG IT or H263 use larger block sizes.
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In typical multimedia video sequences, many image
blocks share a common motion, as scenes are often of
low complexity. If more than half the pixels in a frame
can be regarded as belonging to one object, we define
the motion of this object as the dominant motion. This
definition places no further restrictions on the dominant
object type; it can be a large foreground object, the
itnage background, or even [tagmented. A model of the
dominant motion represents an efficient motion coding
scheme for low complexity applications such as those
found in multimedia and has become a focus for
research during recent years [7-9]. Por internet video
broadeast, a limited motion compensation scheme of
this type offers a fidelity enhancement without the
overhead of full motion estimation.

The use of a motion model can lead to more
accurate computation of motion fields [10] and reduces
the problem of motion estimation to that of
determining the model parameters. Onec of the
attractions of this approach for video codec
applications is that the model parameters use a very
small bandwidth compared with that of a full block-
based motion ficld.

The paper is organized as follows. The motion
model and new algorithm arc described in Section 2
and in Section 3 the optimal block size for the new
method is defermined. Section 4 presents experimental
results and conclusions are drawn in Section 5.

2. MOTION MODEL AND ALGORITHM
DESCRIPTION

For many multimedia applications, the dominant
motion can be described by a similarity transform that
has only 4 paramecters. As shearing is relatively rare in
most  video sequences its cxclusion does not
compromise the generality of the model. The similarity
maodel relates corresponding points in the source (x,y)
and object (u,v) images by
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For motion estimation the parameters «, b, ¢ and d
are unknown and must be inferred from image pairs
using correspondent points and a matrix inverse
operation. When ecrrors in the matching process are
anticipated, an over-determined set of cquations can be
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used to approximate the parameters. The conventional
approach is to use a least-squares technique, perhaps
with regularization, to solve the matrix inverse.
However, for real-time motion estimation applications
this has the disadvantages of being computationally
expensive and sensitive to outliers.

A new method for estimating the model parameters
is presented that, instead of combining all matching
blocks in one least-squares procedure, takes them in
pairs to produce a series of estimates for the
parameters. Equation (1) has four unknowns and thus
can be solved using two image points, [(x/,vl), (x2,v2)}
and their correspondences  f(ulvl), (u2v2)).
Substituting these into (1} and eliminating ¢ and d gives

[(xz =x) {y:— v )}{ﬂ} ~ ]i“z - ”L} @)

(y2= ¥ ) (x,—x, )b Vo ¥y
which can be easily solved either directly or, for
example, by Gaussian elimination. Thus each pair of
matched points produces an estimate of & and &, but
with a high risk of error. The problem now is to
determine accurate values from the list of estimates.

As the dominant motion is the motion of the
majority of the blocks, many of the estimates should be
of similar parameter values. Therefore the most
common value of the estimates should be that of the
dominant motion. This suggests that a histogram-type
approach can be wused, with the dominant motion
parameters corresponding to the mode. However,
selecting the accumulator bin size for a histogram is not
trivial, a problem exacerbated when the number of
estimates is small compared with the numbers of bins
and a high resolution estimate is required. This has
motivated a new approach to parameter estimation,
using Order Statistics.

Figure 1 shows a typical sorted list of estimates
from an actual image pair for the parameter @, For this
example 20% of the 1024 blocks in a test image were
sampled, giving 102 estimates. Presented in this format,
the modal value occurs at the flattest section of the
graph, as this is produced by a significant number of
estimates with very similar values. The flat region is
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Fig. 1: Ranked list of estimates for the parameter o
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Step 1 Tile the reference frame into non-overlapping
blocks,
While (Proportion of blocks selected < desired
proportion) '
Step 2 Select blocks from the source image and
use SEA algorithm to find matching blocks
Step 3 Find estimates for parameters g and b
using Equation (2) and place them in a sorted
lists.
End
Step 4 The mean of the estimates within +0.1
standard deviations of the median provides values for
aandb.
Step 5 For each block, substitute the calculated values
for @ and b into Equation (1) and solve to give
estimates for the translational motion components ¢
and d. Again, place the estimates in a sorted list.
Step 6 Find the mean of the estimates within 0.1
standard deviations for ¢ and d.

Fig. 2: Algorithm for model parameter estimation.

approximately 24 estimates wide. Those estimates on
either side of the flat region result from incorrect or
inaccurate motion estimates, and from blocks not
belonging to the dominant object. It should be noted
that the distribution of these outliers is reasonably
symmetric around the central flat region. The mean of
the estimates within the flat region offer a suitable value
for the parameter ¢ and this is implemented in practice
by averaging those estimates within 0.1 standard
deviations of the median value. This approach is used
to find values for a and b, which are substituted into (1)
to produce a list of estimates for ¢ and d, from which
values can be found using the same method. The
method is easily combined with a block sampling
scheme and a pseudo-algorithm is given in Figure 2.

3. BLOCK SIZE SELECTION

Step 2 of the algorithm described in Figure 2 uses
block comparisons to find matching blocks. This is
performed using the SEA algorithm and the mean
absolute deviation (MAD) is the matching metric.
However, the question of block size still has to be
addressed. It can be seen from Figure 1 that there must
be sufficient values in the flat region of the list for the
parameter selection routine to be successful. The
number of blocks that must be sampled to achieve this
is proportional to the probability of finding pairs of
good maiches and the size of the dominant object.

Therefore the smaller the block size, the less the
computation that is required to generate the list of
estimates. Furthermore, small blocks have less
likelihood of containing points from more than one
object. Opposing this, the probability of achieving a
good match decreases with smaller block sizes.

To investigate this effect a test set of image pairs
with known inter-image transformation parameters were
generated from the Y component of the CCITT test
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Fig. 3: RMS vector errors of raw motion vector
estimates versus block size.

image Gold Hill. The test set consisted of pure
translation, rotation and zoom and a combination of the
three, termed complex motion, that consisted of a
combination the pure motions: 4.5 pixel horizontal and
vertical shift, a zoom of 1.035 and finally a 3° rotaticn.

The reference coordinate for the transformation was
the image center and the image size was 256x%256 for
all cases. For each test image pair the SEA was
repeatedly applied, varying the block size between 2
and 32 pixels. The search range was set to =8 pixels for
the pure motion test images and +16 pixels for the
complex motion pair. Figure 3 presents the RMS vector
error between the raw motion estimates from matching
the all blocks in the test images, using a range of block
sizes between 2x2 and 32x32 pixels. It can be seen that
the overall error for all test images is at a lowest within
the range of 8 to 16 pixels and therefore the minimum
of this (8x8) was selected for the block size.

4. EXPERIMENTAL RESULTS

The new algorithm was applied to the test image
set. In all cases 20% of the image blocks were sampled,
the block size was 8x8 and the search range was as
above. To quantify the performance of the algorithm,
the results achieved are compared with those of the raw
motion estimates and those produced by performing a
least-squares fit on the raw estimates. In additicn, the
known inter-frame transformation parameters are used
to provide a set of standard results (the "right answer")
which can be directly compared with the model results.

Figure 4 (a) presents the motion vectors produced
for the complex motion test image set. The raw block
motion estimates (top left) are irregular and
inconsistent. Both the motion model and least-squares
fit exhibit a smooth field but by comparison with the
right answer (bottom right) it can be seen that the
motion model result is closer to that of the actual flow.

This is confirmed by considering the vector error at
each point. The vector error is the difference between
the detected and the true motion vectors, given by
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Fig. 4: Experiment results for complex motion (a)
motion fields and (b) vector errors

and shown in Figure 4(b). The errors for the motion
model and least-squares fit are much lower that of the
block matching estimates. However, the sensitivity of
the least-squares technique to outliers can be seen in
the residual error values. The motion model techniques
clearly has the lowest overall error and this is
confirmed by Figure 5 which gives the average vector
error for pure translation, rofation, zoom, and the
complex motion of Figure 4(b)., For all cases the
motion model has produced the lowest error, with
values ranging from a half to a sixth of the least-
squares result.

The performance of the motion method in the

Raw Motion | Least-Squares
Estimates Model Fit
Translation 1.98 0.61 1.22
Zoom 1.63 0.24 1.51
Rotation 0.94 0.29 0.71
Complex 2.49 0.33 2.43

Table 1; Average RMS vector errors for all test images
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Fig. 5: RMS vector error in presence of noise for
complex motion test image set

presence of noise is assessed by adding Gaussian noise
with zero mean and standard deviation 1.0 to the test
image set, to a predetermined level of Power Signal to
Noise Ratio (PSNR). The result for complex motion is
shown in Figure 5. Again the motion model produces
the lowest error; this was also the case for the pure
translation, rotation and zoom test images.

Finally the performance in relation to the proportion
of the image of the image that is sampled is
investigated. Figure 6 shows the results for the complex
motion test images. Between 16 and 200 of the 1024
8x8 blocks were sampled. Below 16 the vector error
rapidly increased. For all cases the model method
produces a lower error than the other techniques. In
practice, high quality results can safely be achieved
with as little as 48 blocks, less than 5% of the image.

5. CONCLUSIONS

A new low complexity limited motion estimation
algorithm has been described, based on image
sampling. The underlying model for our algorithm is
the similarity transform, which only requires 4 model
parameters to specify the flow vectors and 1s well
suited to muitimedia appiications.

The conventional approach to estimating the
parameter values uses motion vectors and a least-
squares technique. This is both computationally
expensive and sensitive to outliers. Instead of
combining all vectors in one estimate, our method
generates a list of estimates from pairs of matching
blocks. The mean of those estimates close to the
median is then selected as the parameter value. This is
a robust nonlinear technigue that produces accurate
results with reduced computation. The approach can be
used for many practical multimedia applications and
has the potential for extension to multiple objects. We
have evaluated the method and found it to be accurate
and efficient for determining the dominant motion
using as little ag 5% of the image area

Our group have recently developed a two layer
video codec that demonstrated 10dB improvement over
so-called Motion JPEG [11] for fixed cameras and no
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Fig. 6: RMS vector error versus number of
blocks sampled for complex mation test images

motion compensation. The technique presented here
will further improve this system, with significantly
lower computation than occurs in block based motion
compensated video systems such as MPEG-II or H263.
We also plan to extend the technique to allow the
extraction of multiple video objects.
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